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The self-adjoint elements of a B* algebra A may be regarded as a partially

ordered (real) vector space H(A), taking as positive those elements which can be

written in the form x*x, for some x in A. From the standpoints both of mathemat-

ics and of physics, it is desirable to know the extent to which A is determined by

H(A). Ideally, one would like to know, given a partially ordered real vector

space H, exactly which B* algebras A have H(A) isomorphic to H with respect

to both linear and order structure. This is a complicated question, which we

will not discuss; instead we consider the simpler question:

Given a B* algebra A with identity e, for what other B* algebras Ax with

identity ex, is H(A) order isomorphic(2) with H(A,) under a map taking e onto ex1

(The restriction involving identities is necessary if the answer is to be at all simple.)

This problem has been considered by Kadison who obtained the following

result [2, Theorem 10] :

Theorem. Let A and Ax be weakly closed algebras of operators with identities

e and ex, respectively. Let 9 be an order isomorphism(2) of H(A) onto H(AX)

taking e onto ex. Then the linear extension of 9 to

9:A^AX

is the direct sum (2) of a *-isomorphism and a *-anti-isomorphism.

(Kadison's hypothesis is actually that 9 is a linear isometry. It is easily seen, as in

(10) below, that an order isomorphism taking the identity onto the identity is an

isometry on H(A); it follows from the B* norm identity that 9is an isometry on A.)

Our purpose is to show that Kadison's result cannot be extended without

change to the case where A is an arbitrary B* algebra with identity, but that

it does imply a weaker determination of multiplication by order in the more

general case. This result frames itself naturally for a class of algebras slightly

wider than that of B* algebras with identity. In the terminology of Naimark

[4], this class consists of the reduced symmetric rings with identity that admit

a regular norm. Alternatively, the members A of this class may be characterized
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by the conditions: (i) A is an algebra over the complex numbers, having invo-

lution and identity; (ii) HiA) has certain properties as a partially ordered real

vector space.

The properties required of HiA) are shared by partially ordered real vector

spaces arising in other ways. We call any such partially ordered vector space a

GM space (because it has some of the properties of the M spaces of Kakutani),

and in the next section note some of the properties of GM spaces which seem

generally interesting. Most of these properties could be obtained for the space

HiA) by slight modifications of known results, but it seems worth noting that

they are, in fact, consequences of simple assumptions about order alone.

1. Notation, definitions, and elementary results on partially ordered vector spaces.

Throughout this paper, A will always be an algebra over the complex numbers

having an involution * and identity e. X will always be a real linear space.

A linear map 9 defined on A is the direct sum of a *-isomorphism and a ^anti-

isomorphism if A is the direct sum of self-adjoint ideals I y and I2 such that 0 is

a *-isomorphism on I y and a *-anti-isomorphism on I2.

A cone in X is a subset C of X such that for every x, y in C and reals s, t ^ 0,

sx + ty is in C. We say that x is positive if x is in C, and that x ^ y if y — x is

positive. The pair (X, C) is called a partially ordered vector space.

If iX,C) is a partially ordered vector space, we denote by C the set of all

linear functional on X that are non-negative on C. The linear space X" is defined

by X" = Cp — C. Cis clearly a cone in Xp; we call the partially ordered vector

space iXp, C") the order dual of iX, C).

If iX,C) and iXy,Cy) are partially ordered vector spaces, a linear map 9 of

X into Xy is order preserving if 0(C) Ç Cy ; 9 is an order isomorphism if 9 is

one-one and 0(C) = 0(X) n Cv

If 9 :iX,C)->iXy,Cy) is order preserving, we define the dual map,

9PiXpy,Cpy) ^ iXp,C") by (0p/)(x) =/(0x). Evidently, 0" is order preserving, and

if 0 is an order isomorphism of X onto Xy, then 9P is an order isomorphism of

X\ onto Xp.

We denote by clC the closure of C in the strongest locally convex  linear

topology for X.

1. Remark.

clC =  {x:/(x)^0, all/e Cp}

= closure of C in the weak Xp topology.

(Let Cy he the closure of C in the weak X" topology, C2 the set {xeX :/(x) > 0

for allfeC"}. The inclusion cl C ç C, g C2 is obvious. To show C2sclC,

suppose x is not in cl C. Then there is a convex set U containing x as an internal

point and not meeting C. The fundamental separation theorem for linear spaces
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asserts that under these circumstances there is a nontrivial functional /and number

d such that/(y) ^ d for all y in C and f(x) < d. Since 0 is in C, d <L 0. Since C

is closed under multiplication by positive reals, / is non-negative on C. Thus,

/is in C,f(x) < 0,and so x is not in C2.)

The following remarks are easily verified, bearing in mind that 0, as a linear

map, is continuous when X and Xy are given the strongest locally convex

topology.

2. Remark. If 0: (X,C) -> (Xy,Cy) is order preserving, so is 9(X,cl C) -»

(Xy, cl Ci). If 0 is an order isomorphism of (X,C) onto (Xy,Cy), then it is an order

isomorphism of (X,c\C) onto (Xy,clCy).

The order radical R of(X,C) is defined by

R   = clCn(-clC)

= {x :f(x) = 0 all x in C}.

3. Remark. Let (X,C) have order radical {0}, and let (Xy,C¡) admit a one-one

order preserving map into (X,C). Then (Xy,Cy) has order radical {0}.

4. Remark.   If (X",CP) is the dual of the partially ordered space (X,C), then

(a) C'-dC;
(b) the order radical of (XP,CP) is {0} if and only if X = C - C.

5. Remark.   If X = C - C, the canonical map k: (X,C) -* (XPP,CPP) given by

(KX)(f)=f(x)

is an order preserving map with kernel R.

If R = {0} and C = cl C, then jc is an order isomorphism.

An order unit for (X,C) is an internal point of C; thus, e is an order unit if

for each x in X there is some positive number T such that e + txeC for all real

í with | í | = T. Observe that if (X,C) has an order unit, then X = C - C.

Given an order unit e for (X,C), we may define a pseudo-norm on X. Various

definitions have been given. Probably the oldest is

py(x) = inf {t > 0 : —te ^ x 5Í ie}.

Braunschweiger [1] has pointed out that zero is an internal point of the convex set

U = (C-e) n (e-C),

so that a pseudo-norm is given by the support function of U,

p2(x) = inf{i > Oif'xeU}.

For our purposes it is convenient to use the pseudo-norm defined by

p3(x) = sup{|/(x)|:/6C,/(e) = l}.

A standard argument shows the following :
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6. Remark. Let e be an order unit for (X,C), let C ^ X, and let px,p2,p3 be

defined as above. Then for all x in X,

px(x) = p2(x) = p3(x).

Denote their common value by pe. If u is another order unit for (X,C), then

p„ and pe are equivalent pseudo-norms. If pe(u) = pu(e), then for all x in X,

Pe(X) = Pu(X)-

Proof. Let p(x) be the support function of C—e. Since x/te(C — e) C\(e—C)

if and  only  if x/te C — e,  p2 (x) = max(p(x),p( - x)).    But

p(x) = inf {i > 0 : x ^ -te},

and   p( —x) = inf {i > 0 :x ^ ie}.   Thus   by   the   definition   of  px, px(x) =

max(p(x),p(-x)),i.e.,p1 = p2.

Clearly, if - te ^ x ^ ie, /e Cp, and f(e) = 1, then - i ^/(x) ^ i. Thus i ^ pj(x)

implies î 2ï p3(x), and so Pi(x) Sï p3(x). To obtain the reverse inequality, consider

x fixed and define on the subspace generated by x the linear functional /0 by

/0(ix) = ip2(x).

We must consider two cases.

If p2(x) = p(x), then f0(tx) ^ p(tx) for all t. We may then extend /0 to a

functional/ defined on all of X and satisfying f(y) ^ p^) for all y. In particular,

/( — e) ^ p(—e) = 1 (for if p(—e) < 1, — e is an internal point of C — e, Ois an

internal point of C, and so C = X). We have p(y) ^ 1 for y in C — e and so

/(c-e) ^ 1 for c in C. Thus/(ic) ^ 1 +f(e) for all ce C, i > 0, and so/(c) ^ 0

for all ceC. It follows that the functional g = -/ satisfies geC, g(e) ^ 1,

and g(x) = p(x) = p2(x), whence p3(x) ^ p2(x).

If p2(x) = p(—x), then /0(ix) ^ p(-x) for all i, and we obtain an extension /

of/o satisfying f(y) ^ p(—y) for all y. In particular, f(e) S p( — e) = 1. Also,

f(e—c) ^ p(c —e) g 1 for all c in C, so/(c) ;>/(e) — 1 for all c in C, from which

fe C. Consequently we again have p3(x) ^ p2(x).

We note that if u is another order unit, then for any e > 0,

-(pu(e) + e)u^e< (p„(e) + s)u.

Thus if -te g y ^ ie (whence i ^ 0, since C i= X),

-(pu(e) + s)tu ^ y ^ (Pu(e) + e)tu

so i ;= pe(y) implies pB(e)i ^ pu(y), i.e., pe(y)pu(e) ^ My)- The rest of the proof

follows at once.

7. Remark,   (a)   R = {x:pc(x) = 0};

(b) If 0 g *! S x2, then pe(xt) ^ pe(x2);

(c) If p' is the pseudo-norm obtained from e and the cone cl C, then, for all

x in X, p'(x) = p(x).

We are interested in the case where this pseudo-norm is actually a norm; in

this case we call (X,C) a GM space. Thus, (X,C) is a GM space if R = {0} and
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iX,C) has an order unit. We shall always suppose that a particular unit e is dis-

tinguished, and write || x || for pe(x). Whenever we refer to a topology on X,

we mean the norm topology unless we state otherwise; in particular, X* will

refer to the conjugate space of X with respect to the norm topology.

The following theorem gives the most important fact about GM spaces; it is

a direct translation of a result of Takeda [8, § 2] to a slightly more general setting.

8. Theorem (Takeda). Let iX,C) be a GM space. Then for any I in X*

there arefy,f2 in C" such that

l=h-fi,

I'l-lAl + l/sl-
Proof. Let Q = {fe Cp:/(e) = 1}. Then Q is a compact Hausdorff space in the

weak X topology, since/e Cp implies ||/| = /(e). Let C(£2) be the space of con-

tinuous, real valued functions on Q. We order C(Q) by taking the positive cone

P to be the set of functions which are everywhere non-negative. If we define the map

4>:X-+CiQ)

by içbx)if) =/(x), then cb is a linear isometry, and an order isomorphism from

iX,C) into (C(ii), P).

Given any I in X*, we obtain a functional / on the subspace <¡>iX) of C(Q)

by setting

¡i<px) = lix).

Evidently the norm of / on çbiX) is just || 11|. It follows by the Hahn-Banach

Theorem that / has a linear extension î~ defined on all of C(Q) and satisfying

in-i'i-
The Riesz representation theorem asserts that there is a regular measure p on Q

such that

/-(v)= |\dp,||r|| = H /x ||
Ja

where  || p || is the total variation of p. The Jordan decomposition of p yields

positive measures pt and p2 on £2 such that p = Py — p2 and || p || = || Pi || +1| p2 \\.

Each pi induces a positive functional /¡ on C(Q) satisfying ||/j || = || p¡ ||. If we

define f¡ by f¡ =f¡cp, then/¡ is a positive functional on X such that

l=h-fi,

l<l-M-|ft| + |*|-|/i|+|/,|
=Â(e)+f2ie)

=hie) +/2(e) = \\fy || 4- ||/2 ||        Q.E.D.
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9. Corollary,   (a)   X* = X".

(b) The norm topology on X is the strongest locally convex topology giving

Xp as the conjugate space.

(c) IffeX*,xeX,0^x^e,andf(x)= \\f\\,then feCp.

Proof. We have just shown that X* £ Xp. As we noted in the proof of (8),

when/eCp, ||/|| =/(e), so C" ç x* whence XpçX*, so (a) is proved, (b)

follows from (a) and the Mackey-Arens theorem, (c) follows from the fact that

we have/ in C with  |/|| = \\fy || 4- ||/2 ||

¡/II =/W=/iW-/2W^/iW

á|/i|á|/i| + |/a|-|/|

whence

||/i || = ||/i || + ||/2 ||,        /2 = 0.

10. Corollary. Let (X„ C,), i = i, 2, be GM spaces with order units e¡, and

let

9: Xy->X2

be a linear map of Xy and X2 taking ex onto e2.

(a) // 0 is order preserving, then 9 is norm reducing, and the conjugate map

9*:(X*,C2)-+(X*y,Cpy)

is order preserving and norm reducing.

(b) // 0 is an order isomorphism, it is an isometry. Conversely, if 9 is an

isometry of Xy onto X2, and C, = c\C„ i = 1,2, then 9 is an order isomorphism.

Proof. If geCfand ||g|| ^ 1, then g(e2) ̂  1, so 9*g(ey) S 1. Since 9*geC{,

this means that || 9*g || ^ 1. Thus 0* is norm reducing on C"2. Given any I in

XI we have/!,/, in C\ such that l=fy-f2, \ I || = \fy\ 4- ||/2 ||. Conse-
quently,

||0*Z|| = ||0*/1-0*/2|| S ||0*/i|| + ||ö*/2||

á||/i|| + ||/2| = ||/||.

The rest of (a) is obvious.

Clearly, if 0 is an order isomorphism it is isometry. Suppose, conversely, that 0

is an isometry onto; then so is 0*. Given g in C2 we have

¡e*g\\ = \\g\\ =g(e2) = 9*g(ey),

and it follows fom (9) that 9*geC\. If 9*geCf we show in the same way that

ge Cp2. Thus 9*CP2 = C\. It follows by definition that if C, = clC¡, i = 1,2, then

9Cy = C2 and so 0 is an order isomorphism.
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We call (X,C) a GL space if

(a)X = C-C;

(b) X admits a norm || • | such that for any x1;x2 in C,

|| -*1 "I" x2 ||   =   || -"-1 ||   'V   || x2 || >

(c) Every positive functional on (X,C) is || • | continous.

11. Theorem, (a) If(X,C) is a GM space, then (Xp, C) is a GL space under

the usual conjugate space norm.

(b) If(X,C) is a GL space, then (X P,CP) is a GM space. In particular, Xp = X*.

(c) If X has order radical {0} and (XP,CP) is a GM space, then X is a GL

space.

Proof,   (a)   By definition, X" = C" - C". If fx,f2 e Cp, then fx+f2e C" so

||/i +Í2 || = (/i +f2)(e) =fx(e) +f2(e) = |/, | + ||/2 ||.

Suppose that £ is a positive functional on Xp; we can complete the proof of

(a) by showing that c; is bounded on the set

£ = {/eC:/(e) = l}.

For, given any / in X", there are fx,f2 in Cp such that I «/, -f2, \\l\\ = \\fx || +1|/2||,

and so

| «(0| S|Wi)| + |Wa)| = || i || sup {| ¿;(/) | :/e£}.

Suppose, then, that £ is not bounded on £. Then for each integer « there exists

/„ in E with ¿(/J ^ «2. By (9), X" = X*, so X" is complete; it follows that the

functional/0 defined by

/o = f (A/«2)
i

is in X". We assert that for any JV,

/oâf(/>2).
i

For, if not, there is some x0 in C and positive real ¿¿ such that

/o(xo)=[l(/„(x0)/n2)]-d.

But for M sufficiently large,

I/o- E(/„/»2)|<d/2||x0||
Il j II
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and so

(*) l/o(*o)- I (/„(*o)/«2)i i

Since x0 e C and /„ e £, we have

M

I (/„(*o)/»2)  è 0,

<d/2.

JV+l

M r N -i Ai

foixo) - I ifnix0)/n2)  = Ifoixo) - 2 ifnixo)/n2)  - y ifnix0)/n2)
i L i J    ¡v+i

S fo(x0) - 2 (fn(xo)/n2)
1

=   -d,

which contradicts (*).

We have, therefore, that

/o à 2 ifn/n2),       all N,
i

so

tifo) ii 2 Wn)/n2) è N,       all iV,
i

which is impossible : thus è, must be bounded on £.

(b)   Let XheaGL space, and let

U = {xeX:\x\ = 1}.

Since X is GL, 17 is convex. Let

F = {xeX:||x|| ^1/2}.

Then V is convex, radial at the origin, and disjoint from U. A basic separation

theorem says that there is a nonzero functional/on X, and a number d, such that

f^d on U,

fz%don V.

Since/is not the zero functional and V is radial at the origin, it follows that d > 0.

Since X is GL, every functional in Xp is || • || continous. Consequently, given /

in Xp, there is a number L such that

| Z(x) | ^ L,       all x in U.
Thus

- L/dfix) ^ Z(x) ̂ L/dfix),       all x in Í7.

But for any x in C, x/1| x || is in U, so the preceding inequality holds for all x in C,

and therefore says that/ is an order unit for iXp,Cp).
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Since X is GL, X = C - C; it follows from (4) that the order radical of X is {0},

which completes the proof of (b).

(c) If iX",Cp) is GM, its order radical is {0} so, by (4), X = C - C. If also X

has order radical {0} it follows from (4) and (5) that the canonical imbedding k

of X in Xpp is order preserving and has kernel zero. Thus, if || • || is the norm in

Xpp induced by the fact that Xpp = Xp* (by (9)), we can define a norm on X by

||x|| = ||Kx||.

If xx,x2 e C, then KXy,KX2 e Cpp and so, since Xpp is GL,

I Xy + X2 I = || KXy + KX2 J  = I KXy I  + || KX2 | = | Xy ||  + || X2 || .

Evidently if / eXp, then

|/|  = sup{|/(x)|:xeX, |x|gl}

= sup{|kx(/)| :xeX, \kx\   z% 1}

z% sup{\^l)\:^eXpp, H 5 H ̂ 1}

=  PI

when I /1 is the given GM space norm, so Xp çz X*.

On the other hand, if I e X*, then

-|/|||x||^/(x)g|/|||x||,allxin X.

In particular, when xeC,nxe Cpp and so

|| x || = || KX || = Kx(e) = e(x),

where e is the given order unit for Xp. It follows that for x in C

-|/|e(x)^/(x)^|/|e(x)

so / is in Xp, and || /1 g | /1.
Thus Xp = X*, and the norm we have defined on X has for its conjugate

norm on Xp exactly the original G M space norm.

12. Remark. (X,C) is a GL space if and only if iXp,Cp) has an order unit/

which on C is zero only at the origin. (If iX,C) is GL, we may define the/ in

question by/(x) = || Cy || - || c2 || where x = cy — c2, c¡ e C. Conversely, given iX,C)

with a functional / as above, the norm on X given by

¡x| = sup{|Z(x)|:ZeCp, l£f}

has the desired properties.)

The results of this discussion which we shall particularly want later are as

follows:
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13. Corollary, (a) Let (X¡,Cj), i = 1,2, be GM spaces with order units eit

and let 9 be an order isomorphism of (XX,CX) onto (X2,C2) taking ex onto e2.

Then 9"" is an order isomorphism of (X**, Cpp) onto (X™, CPP) taking Kex

onto Ke2.

(b) //, in addition, X¡ is the completion of X¡ in the norm induced by e¡,

C¡ the closure (with respect to this norm) of C¡ in X¡, and 9 the continuous

extension of 9 to Xx, then

C¡ = clc7= clC¡

and 9 is an order isomorphism of (XX,CX) onto (X2,C2).

Proof, (a) is just the statement that X**= XPP, which was proved in (9)

and (11).

(b) Since 9 is an isometry by (10), 9 will map Cx onto C2. The statement

Ci = clC¡ = clC, follows immediately from the fact that cl C; is the closure of C¡

in the strongest locally convex topology.

2. Applications to algebras. Let A be an algebra over the complex numbers

having an involution * and identity e. Let H(A) be the real linear space of self-

adjoint elements of A, and let C0(A) be the cone in H(A) consisting of all elements

that can be expressed as a finite sum of the form Z x*x¡. Let CL4) = c\C0(A).

We say that A is a D algebra if there is a "-isomorphism </> of A into a B*

algebra B such that

(a) <p(e) is the identity of B;

(b) every linear functional defined on <p(A) and non-negative on <p(C(A)) can

be extended to a positive functional on B. (We make the usual confusion between

real valued functionals on H(A) and complex-valued functionals on A which

are real on H(A).)

14. Theorem (Naimark). A is a D algebra if and only if both

(a) {xeA :f(x*x) = 0 for all f in [C(A)]"} = {0} ;

(b) for each x in A,

sup{/(x*x) :fe [C(¿)] p, f(e) = 1} < oo.

This theorem follows immediately from results in [4, §§ 10 and 18]. The B*

algebra B constructed there is the Gel'fand-Naimark representation of a B* algebra

as an algebra of operators on a Hubert space §. In the terminology of [4], a D

algebra is a symmetric ring with identity which admits a regular norm and has

reducing ideal {0}.

15. Theorem. A is a D algebra if and only if H(A) is a GM space with e

acting as order unit. In this case the map c/> is an isometry on H(A) when H(A)

is given the GM space norm induced by e.
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This theorem follows immediately from the results of [4, §§ 18.2 and 18.3].

That <p is necessarily an isometry follows from (10). Notice that each U-algebra

with identity has a unique norm which makes it a subalgebra of a B* algebra

having the same identity; any norm referred to in connection with a D algebra

will be this norm, unless otherwise stated.

Two D algebras Ay and A2 will be called order isomorphic under a map 0 if

0 is a linear map of Ay onto ^42 which is an order isomorphism of (H(Ay),C(Ay))

onto (H(A2),C(A2)). It is clear that the linear extension to Ay of an order isomor-

phism of H(Ay) onto H(A2) is an order isomorphism of Ay onto A2.

We note the following facts : if A is a Banach algebra under a norm making the

involution continuous, then e is an order unit for (H(A),C(A)) — see, e.g., [4,

§ 10.4]. If A has a faithful ""-representation in a D algebra Ay taking e onto the

identity of Ay, then the order radical of (H(A),C(A)) is {0}; this follows at once

from Remark 3. Consequently, any A* algebra (in the sense of [5] ) is a D algebra :

for such an algebra is a Banach algebra with continuous involution [5, p. 187]

and has an auxiliary norm satisfying the B* identity; the completion of the algebra

in the auxiliary norm provides a faithful representation in a B* algebra.

As specific examples, we note the following :

(i) The convolution algebra M(G) of bounded Radon measures on a locally

compact group G. This is a Banach algebra with identity and continuous involution

(p*(S) ■= //(S-1)) underthe total variation norm. On the other hand [7, pp. 47-48],

it has a faithful *-representation in the algebra of bounded operators on L2(G).

(ii) The algebra R(G) of L1 functions on G, with an identity adjoined if G is not

discrete, and with convolution as multiplication. R(G) may be regarded as a

closed, self-adjoint subalgebra of M(G) containing the identity, and so is again

an A* algebra.

A little may be said about the relation between order isomorphisms between

L1 algebras and order isomorphisms between R algebras: let G y and G2 be non-

discrete and 0 a linear map of ^(Gy) onto Ú(G2). Then the linear extension of 0

to R(Gy) is an order isomorphism of R(Gy) onto R(G2) if and only if 0P maps

the continuous (L1 norm) positive functionals on L1(G2)isometrically(L00norm)

onto the continuous positive functionals on ^(Gy). This follows from the fact

that an arbitrary functional/ on R(G) is positive if and only if/ is a continuous

positive functional on L1(G) and/(e) ^ ||/||i, the norm off restricted to L1(G).

(See [3, 26Hand31G].)

(iii) If G is compact, we may form the algebra RP(G), p> 1, consisting of LP(G),

with an identity adjoined (we assume G not discrete since, if discrete, it is finite and

LP(G) = L1(G)) and convolution multiplication. We may regard RP(G) both as a

self-adjoint subalgebra of R(G) and as a Banach algebra with continuous involution

under the norm induced by the V norm via the left regular representation of

RF(G) on LP(G).
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It is possible to construct examples of D algebras which are not /I* algebras —

which are not, in fact, complete in any norm. However, the author does not

know of any such example possessing intrinsic interest.

We now outline a possible method for constructing a D algebra order isomorphic

with a given D algebra A ; we shall see later that every order isomorphism between

algebras which preserves the identity must be the composition of a *-isomorphism

with a map of the type we are about to construct.

To carry out this construction, we must have in A (a D algebra with identity e)

self-adjoint ideals /, and I2 satisfying

(*) Iyl2 = 0,

(**) xy—yxely ©72 for every x,yeA.

The quotient spaces A/I¡ may be given multiplications and involutions such that

the natural maps

n¡ : A -* A/1¡

are *-homomorphisms; then n^e) is the identity for A/I¿. A/I¡ will also be a D

algebra ; this follows from (14) and the fact that every positive functional / on A/I¡

induces a positive functional fin) on A.

Let B be the linear space A/I\ © A/I2. B is again a D algebra under the multi-

plication

inyixy), n2iyy))inyix2), n2iy2)) = inyixyX2), n2iyyy2))

and involution

(jti(x), n2iy))* = inyix*), n2iy*)).

It is easy to show that the completion of B with respect to the norm

|| inyix), n2iy) || = max { || ji^x) ||, 17t2(v) || }

gives the desired B* algebra.

We have a natural map n of A onto a subalgebra of B, given by

nix) = inyix), 7T2(x)).

n is clearly a *-homomorphism and indeed, since I y and I2 are disjoint, a *-isomor-

phism. Since n is a linear isomorphism, it is a homeomorphism between A and

niA) when A is given the strongest locally convex topology and niA) the relative

topology induced by the strongest locally convex topology on B. Consequently,

niCiA)) — niA) O CiB) and so n is an order isomorphism and an isometry.

We form another D algebra BT from A/I\ © ^4//2, using the previous definition

of involution and the multiplication law

inyixy), n2iyy))inyix2), n2iy2)) = in1ixíx2), n2iy2y/)).
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It is easy to verify that this is indeed a multiplication consistent with the involution,

and that the positive cone in BT is identical with the positive cone in B. The map

n is therefore an order isomorphism of A into BT. Moreover, n(A) is a sub-algebra

of BT—for given x,y e A, the BT product of n(x) and n(y) is

n(x)n(y) = (nx(xy), n2(yx)).

But according to (**), there exist wx e Ix and w2 e I2 such that

xy—yx = wx + w2

so

xy — wx = yx + w2.

But

(nx(xy), n2(yx)) = (nx(xy-wx), n2(yx + w2))

so n(x)n(y) is in n(A).

We have thus found a subalgebra, n(A), of BT which is order isomorphic with

A. We shall show later that n need not be the direct sum of a "-isomorphism and

a *-anti-isomorphism.

The results in [4] previously mentioned show that if A is a D algebra, then A

has a Gel'fand-Naimark representation as a dense subalgebra of a norm-closed

algebra B of bounded operators on a Hubert space §. We denote by Ä the weak

closure of B (and so, of the image of A in B) in &(%>). Then H(Ä) is ordered by

C(Ä). We have seen that H(A**) is ordered by C(/l)pp. It turns out that the ordered

spaces (H(Ä), C(Ä)) and (H(A**), C(A)pp) axe the same. This is a simple refor-

mulation of a theorem of Sherman and Takeda [6;8].

16. Theorem (Sherman-Takeda). There is a linear isometry ß of Ä onto A**

which is an order isomorphism of (H(Ä), C(Ä)) onto (H(A**), C(A)PP). IfK is the

canonical embedding of A in A**, and <p the Gel'fand-Naimark embedding of

A in A, then ß<j> = k.

If J is an ideal in the D algebra A, we denote by Ia the set of x in A such that

xy = yx = 0 for all y in /. If I is a right ideal, Ia is a left ideal; if / is self-

adjont, so is Ia ; I" is closed in any topology making multiplication continuous

in each variable separately.

17. Theorem. Let Aiy i — 1,2, be D algebras with identity et, and let 9 be

an order isomorphism of Ax onto A2 taking ex onto e2. Then there exist self-

adjoint ideals I¡ in A¡ such that

(a)   ir = It;
(b) 9ix = i2, en = n-,
(c)  for every x, y in A¡,
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[x,y} = xy-yxel,®la, ;

(d)   the natural extension of 9 to

9: Ay/I y © Ay/Iay -* A2/I2 © A2/Ia2

is an algebraic *-isomorphism on Ay/Iy and a *-anti-isomorphism on Ay/I\

Proof. We denote by k, the canonical imbedding of A, in ^4** and by t¡>, the

Gel'fand-Naimark imbedding of A, in Ä,. Consider the map

9**:A*y*  ->A$*

induced by 0; it is the linear extension of the map

0PP: H(Ay)pp^H(A2)pp,

which is, by (13), an order isomorphism. Further, 9**Ky(Ay) = K29(Ay) = k2(A2),

and on Ay,

K219**Ky   =  9.

By the Sherman-Takeda Theorem we have order isomorphisms ß,: Ä,-*A**.

Consequently, \¡/ = ß219**ß1 is an order isomorphism of Äy onto Ä2, taking the

identity, <pex of Äy onto the identity <pe2 of Ä2. On Ay we have

tf^^tpy = k2"10**k1 =0.

Now the Ä, are weakly closed algebras of operators, so it follows from Kadison's

theorem that the order isomorphism \¡/ is the direct sum of a *-isomorphism and

a *-anti-isomorphism. Thus, there is an central (self-adjoint) projection p in Ay

such that i¡/ is an isomorphism on pÄx, and an anti-isomorphism on (ey—p)Äy.

Define the sets I, by

Iy   =   {X  eAy'.ptpyX = 0},

I2 = {xeA2:(^p)(tj>2x) = 0}.

It is clear that i^p is a central projection in Ä2, and that the I, are self-adjoint

ideals satisfying (a) and (b).

To obtain (c), observe that, given x,yeAy,

Miixy)) = ^ÍP)i^i<Pix)r¡i(4,yy)) + il/(ey-p)(^(tl)yy)iP(tpyx)),

WM = MpMWiyMtix)) + iK<?i -p)(i/#ix)<r'«>i>0)
so

\l/i<pyixy-yx)) = \¡j(2p-tpey)(\l/(ípyx)\}i(ti>yy)-\li(<i>yy)\}i(fl)yx)).

Since \j/(j)y(Ay) = (j)2A2, a subalgebra of Ä2, we have

1¡l(<PyX)\¡l(tpyy) - \il(tpyy)\il(4>yX) G <M2.
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But also \J/içbyixy — yx))eçb2A2, and so

"Kp)O(<M)i//(0i JO - lK0i)#(0i*)) e <p2A2 ;

but this implies

WpXMi*)Miy)-MiJ#(*i*)) e 4>2/2fl.

Thus there is an element u2 in /" such that

^ÍP)i^i4>ix)\¡/i<¡>yy)-\liicbyy)\lii<j)yx)) = <¡>29u2.

Similarly, there is ux in Iy such that

«K^i -p)(H<t>iX)H4>iy)-U4>iyM^ix)) = ̂ ö«!
so

Wi(xy - yx) = <p29iu2-uy),

4h.l ÏÏOiixy - xy) = 0(w2 - Uy),

0(xy-yx) = 0(«2-u1).

Since 0 is one-one, we have

xy — yx = u2 — UyEly ©/",

and (c) in established.

If n¡ is the natural map of At onto A¡/I¡ © A¡/I°, then the map 0 of (d) is given

by

0 = n2cb2 9<pynx   .

Clearly 0 has the desired property, and the proof is complete.

Evidently 0 is a *-isomorphism on BT, the algebra formed from Ay/1\ © Ay/I"

by interchanging right and left multiplication on the second summand, and so

every order isomorphism can be written as a composition of a*-isomorphism and

a map of A onto BT of the sort previously described.

The hypotheses of (17)may be weakened a little:

18. Corollary, (a) The conclusion of (17) remains true if A2 is assumed

only tobe an algebra over the complex numbers with involution and identity.

(b) If A2 is assumed to be a D algebra, 9 need only be assumed to be a map

ofCiAy) onto C(^42) satisfying

9ix+y) = 0(x) + Oiy)   all x,ye CiAy),

0(fx) = i0(x),   all xeCiAy), real t ^ 0,

9iey) = e2.

(c) Part (b) remains true if "CiAy)" is replaced by "C0iAy)" and "C(^2)",

by "C0iA2y.
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Proof, (a) follows since the remaining hypotheses of (17) imply that H(A2) is

a GM space with e2 acting as order unit, so by (15), that A2 actually is a D algebra.

(b) follows since, if the A¡ axe D algebras, H(A¡) = C(A¡) — C(A¡), and 9 thus has

a unique linear extension to H(AX), and thence to Ax, satisfying the require-

ments of (17).

(c) follows from (13b).

19. Corollary. Let A be a D algebra with identity e. Then A admits an

order isomorphism onto itself, leaving e fixed, which is neither a *-isomorphism

nor a *-anti-isomorphism if and only if A contains a self-adjoint ideal I

satisfying

(i)     {0}*1*A;

(ii)    I=I°°;
(iii)    \x,y]eI@rforallx,y in A.

If the order isomorphism constructed from I and Ia as in the discussion preceding

(17) is the direct sum of a *-isomorphism and a *-ant¡-isomorphism, then either

(iv)    I © /" = A or

(v)   at least one of I, Ia contains a nontrivial commutative direct summand.

Proof. The proof of (17) shows that the existence of an order isomorphism as

described above implies the existence of a self-adjoint ideal / satisfying (i)-(iii).

The discussion preceding (17), with Ix =1, I2 = Ia, shows that such an / produces

an order isomorphism of the sort described.

If 9, the order isomorphism constructed from J and Ia, is the direct sum of a

♦-isomorphism and a *-anti-isomorphism, there is a central projection p in A such

that 9 is a "-isomorphism on ,4p and a *-anti-isomorphism on A(e — p). It follows

that 9 is at once an isomorphism and an anti-isomorphism on Ip, and so, since

9 is one-one, that Ip is commutative—and clearly a direct summand of L Similarly,

I"(e — p) is a commutative direct summand of Ia.

Suppose first that Ip = I, so A(e — p) Z Ia. If I\e — p) = {0} , then p = e and

9 is an isomorphism. If Ia(e—p) = Ia, then ia£ A(e — p), so I" = A(e—p) and

A = i@r.
Suppose, then, that Ip = {0}, so Ap £ Ia. If Ia(e-p) = {0}, then Ia s Ap and

A = I © Ia. If I"(e-p) = Ia, then Ap s I"(e-p), so Ap = {0}, p = 0, and 9 is an

anti-isomorphism.

Thus, under the hypotheses above, at least one of Ip, I"(e — p) is nontrivial.

3. Examples. The last corollary shows us at once how to construct an order

isomorphism whichis not a direct sum of a "-isomorphism and a "-anti-isomorphism :

choose Ix and I2 to be B* algebras without identity each of which either is simple

or has center {0}. Let A be the direct sum of Ix and I2, with an identity adjoined.

A isjeasily seen to be a B* algebra (norming Ix® I2 by ||(x,y)|| =max{ ||x||i,|y|2}>

and A by its regular representation on Ix © I2), but the order isomorphism con-
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structed from I y and I2 cannot be a direct sum of a *-isomorphism and a '"-anti-

isomorphism.

There is a class of D algebras for which all order isomorphisms leaving the

identity fixed are of this sort :

20. Remark. Let A he a D algebra consisting of annihilator algebra A0

[4, §25] with an identity e adjoined. Then eveiy order isomorphism of A onto

itself which leaves e fixed is on A0 the direct sum of a *-isomorphism and a ^anti-

isomorphism.

Proof. Given such an order isomorphism, let / be the ideal of (17) and let

J = I © /". Then A0 n J is a norm-closed left ideal in A0 and so, since A0 is an

annihilator algebra, either A0 nj = A0 (the desired conclusion) or there is a z ^ 0

in A0 such that iA0 C\J)z = 0. The latter is impossible, for, since A0J Q A0<^J,

it would imply zz*k2zz* = 0 for every self-adjoint fe in J; thus that

zz*k = kzz* = 0 for every such fe. But J is self-adjoint, so this would mean

zz*J = Jzz* = 0. In particular it would mean zz*I -— Izz* = 0 and so that zz* e I".

Since /" çz jf this would imply zz* = 0, so z = 0, a contradiction.

One might suppose from the preceding remarks that the source of "bad" order

isomorphisms was the adjunction of an identity. We now give an example showing

that this is not the case—i.e., we exhibit a B* algebra A with identity and an order

isomorphism of A onto itself which leaves the identity fixed and which is not a

direct sum of isomorphism and anti-isomorphism on any ideal of deficiency one.

Let § be the Hubert space of sequences {£,,} of complex numbers such that

2r|£n|2 < °°> with the usual inner product

«a ou)=26/B.i
Let á?Q5) be the algebra of all bounded linear operators on §, e the identity of

á?(£>), and u the shift two places to the left :

•K{íi.€a.ís."-})-{«»&."•}•
Then u* acts on § by

U*i{Cy¿2,-})  =   {0My¿2,...}.

Let 9JÎ be the (closed) linear subspace of §> consisting of all sequences {£,,} such

that ¿„is zero for all odd n. Let A0 he the subalgebra of á?(§) generated by e, u, u*

and the set of all compact operators in &i$) which are reduced by 9Jt. Let A be

the noim closure of A0.

Observe that u and u* are reduced by 9JÎ, so every element of A is reduced by 9JÎ.

We define two (closed) left ideals in A by

Iy = {xeA:xiiW) = 0},

I2 = {xeA:xiiW±) = 0}.
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Since every element of A is reduced by 9JI, I y and I2 are actually self-adjoint ideals

in A; clearly Iyl2 = 0.

21. Lemma.     For any x, y in A, the commutator

\x,y}=xy-yx

is in Iy(&I2.

Proof. Since Iy and I2 are closed, it is enough to prove the lemma with A

replaced by A0. If either x or y is compact, then [x, v] will also be compact, and

is reduced by 9)1. In this case [_x,y} can be written as the sum of two compact opera-

tors, one vanishing on 9JI and the other on 3Jix. Since A0 contains all such operators,

this shows that [x,y} ely@l2. The remaining case is that in which neither x nor y

is compact—therefore, since the compact operators are a self-adjoint ideal in

A0, where x and y are both in the sub-algebra of A generated by u, u*, ande.

We appeal to the general

Remark. Let R be a ring, / a two-sided ideal in R. For any subset S of R,

denote by [S] the ring generated by S, and S' the set of commutators [x,y] for

which x,y e S. Then S' ç I implies [S]' ç f. This remark follows at once from

the identities

\_xy,z} = x\y,z} + [x,z}y,

[xy,zw} = x\_y,z}w + \_x,z}yw + zx\_y,w} + z[x,w}y.

To prove the lemma we note that I y © I2 is a two-sided ideal in A0 and verify

directly that if S is the set consisting of u, u*, and e, then S' ç i1 © j2.

We may thus form the map n: A -> BT as in the last section.

22. Lemma. Let Sn be the element of fy having 1 at the nth place and zero

elsewhere.

Given any x in A and real e >0, there is a number N such that for all r,s ^ JV

andk ^ 0,

\(xSr+k, Ss+k)-(xS„ Ss)\ <e.

Proof. Again, it is enough to show this for x in A0. If x is compact, it is easy to

see that for N sufficiently large,

\(xSr+k, 5s+k)\ <e/2 and   |(x<5r,  <5S)| < e/2

whenever r, s, and k are as in the statement of the lemma.

Thus the problem reduces to the case where x is in the subalgebra generated by

u, u*, and e. The desired conclusion then follows at once from the easily seen

facts that

(i) uu* = e, so any product of u's and u*'s can be written in the form

(u*)V;

(ii)   'for n^ß, (u*yußSn = Sn-ß+x.
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23. Theorem. There cannot exist disjoint, two sided ideals Jx, J2 in A such

that

(a) Jx © J2 is of deficiency at most one in A;

(b) for x,y e Jx, n(xy) = n(y)n(x); for x,y e J2, n(xy) = n(x)n(y).

Proof. We first show that for J¡ as described, then whenever x e J¡, \_x,y] e I¡

for all y in Jx © J2. Since the J¡ are disjoint, it is enough to show this for y e J¡.

In the case i = 1 we have

7t(xy) = n(y)n(x),

i.e.,

(nx(xy), n2(xy)) = (nx(yx), n2(xy))

so

ni(xy — yx) = 0,       xy — yxeli.

The case i = 2 is done in the same way. Next, if the J¡ axe as described, then

(*)   For each x in Jx there is a number X such that

X*2s+1 = X02s+X, S = 1)2,-".

For each x in J2 there is a number p such that

xô2s = pô2s,      s = 1,2,3,—.

We prove only the first part of (*); the second is done in the same way. By the

definition of § there are numbers ay such that

00

x<5j =   Z <x-¡jO}.

Given any integer s > 0, define the operator y by

0, / # 1,
yoi =

*2s+l' ' —  1-

y is an operator of finite rank, reduced by 9ft, and so y is in A. Note further

that y + Xe is regular for X # 0, in fact, (y + Xy1 = e/X-y/X2. Thus y + Xe$ Ji®J2

for X ,¿ 0 unless ^ © J2 = A. It follows that if Jt © J2 is of deficiency at

most one, yeJx@J2.

Therefore xy — yx is in Ix, i.e.,

xy<52¡+i = y^2i+1.

In particular,
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xySy = yxSy,

00

£ a2s+1>y¿J = aU(525+lF

j = i

Í0,        j*2s + \,
2s+1J~Ui,     / = 2*4-1,

which is the desired result.

We now show:

For each x in J, © J2 and e > 0, there is a number N such that for every r, s ̂  N,

r # s,

| (*¿„   <5S) |   < £•

Clearly it is enough to show this separately for xeJy, and for x e J2. Since the

proof is essentially the same for either case, we suppose xeJy. By (22), there is

an N such that for r, s ^ N and k S: 0,

\(xSr+k, Ss+k) - (xSr, Ss)\ < e.

For suitable choice of k, depending on r, r + k is odd. For such k, (*) and the

fact that x is in Jy imply

(xSr+k, Ss+k) = 0       for r#s;

This gives the desired result.

The promised contradiction is obtained by noting that for any s'SiO,

(uSs+2, Ss) = 1,

so u$ Jy © J2.
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