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1. Introduction. In recent years there has been considerable interest in classes

of functions meromorphic in the unit circle with a simple pole at the origin.

For instance, it was shown by Clunie [2] that if f(z) = z~l + a0 + axz + ■•■ is

meromorphic starlike and univalent in | z | < 1 then | a„ | S 2(« + l)"1 (actually

Clunie considers the case where a0 = 0; however, it has been remarked in several

places in the literature that his proof holds whenever a0 # 0). Similar results

have been found for close-to-convex meromorphic functions by Libera and

Robertson [6] and Pommerenke [8]. Hence to a certain extent, the work in

the meromorphic univalent case has paralleled the regular case.

For the class of multivalent functions very little has been done in the mero-

morphic case (see Biernacki [1]) to study the theory analogous to the regular

multivalent theory. Since the regular multivalent theory has many problems left

unsolved that have a solved counterpart in the regular univalent theory (see [4])

it is to be expected that the class of meromorphic multivalent functions will

afford greater resistance to the efforts to solve these problems.

We plan to study some coefficient problems pertaining to meromorphic multi-

valently starlike functions of order p.

Definition 1. A function f(z) meromorphic in the unit circle is said to be

multivalently starlike of order p (or p-valently starlike) in | z | < 1 if there exists

a positive number p, 0 < p < 1, such that the circles | z | = r, p < r < 1 are

mapped by/onto curves starlike with respect to the origin, that is, curves having

the property that the vector joining a point on the curve with the origin is con-

tinuously turning through an angle of 2p7t. Analytically,/ satisfies the conditions

(b) f   Reí jt§\ dB - - 2np,   z = rew,   p<r<L

For regular starlike multivalent functions of order p Robertson [9] has ob-

tained the sharp bounds on the coefficients in the Taylor expansion provided

that/ has a zero of order at least equal to p — 1 at the origin.
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Let 2P be the class of functions

(1) /(z) = - + --^- + - + anz" + ...

which are regular, except for a pole of order p at the origin, and p-valent in

|z| < 1. We shall be concerned with the subclass 2* of functions belonging

to 2P which are starlike with respect to the origin and with an associated class

2*(<x) of functions which are p-valently starlike and meromorphic in | z [ < 1 and

have a pole at z = a, | a | < 1. Among other things, we obtain sharp bounds on

the first p coefficients in the expansion of/e2* and show that |a„| = 0(l/n)

for large n. By taking the coefficients a_p+1 = .-- = a_1 = 0 we are able to ob-

tain the sharp bound for all of the other |a„|. For 2*(a) we obtain the sharp

bound on the second coefficient. Finally, we obtain the radius of starlikeness

for 2P.

2. Coefficient bounds. Let /(z) = Re "p belong to 2P then Golusin [3] and

Kobori [5] have shown that (LrRxd<b _ 0, X > 0, where Lr is the map of

|z | = r < 1. Since

we have

¿Jj/Kfl)l^ = o.

Upon setting 1=2 and substituting into these integrals we get the area theorems

of Golusin and Kobori, that is,

(2) £  (n-p)|a„_p|2áp + (p-l)|a-P+i|2 + - + |«-i|2.
Fl=p+1

In addition to the area principle, and indeed by employing it, Golusin proved

that if/e2p and is never zero in |z| <1 then |a_p+1|_ 2pand|a_p+2| = p(2p-l).

Both bounds are sharp.

We extend these bounds to higher ordered coefficients for the class 2*.

Theorem 1.   Lei/(z) = z~p + a_p+1z~p+1 + ••• belong to 2*; then

(3) |a_p+k|  =  ^ fork = 1,2,-,p.

The inequality (3) is sharp as is shown by the function /0(z) = z~p(l + elßz)2p,

ß real.

Proof. A method due to Clunie generalizes to the p-valent case. Let h{z)

be a function regular in | z | < 1 and satisfying the properties n(0) = 0 and
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| h(z) | S 1- By hypothesis Re{z/'//} < 0 for 0 < p < r < 1. Since zf'/f is

regular in |z| < 1, we can write z/'//= —p(l 4- ctz + c2z2 + ■■•) = —pg(z)

where Re{g(z)} _ 0 in | z | < 1 and g(0) = 1. Now we may write

h(z) = (g(z) — 1)(g(z) + Í)"1 which when written in terms of / yields

(4) Pf(z) + zf'(z) = h(z) \_pf(z) - zf'(z)}.

When expanded in series (4) becomes

00 /    CO \      / 00 \

(5) Z    (fc + p)akzk =    Z hkzk    2pz-p +     Z   (P - k)akzk
ft = -p+1 U = l /\ k=-p+l /

whence

n co / n — 1 \

(6) Z    (fc 4- p)akz* 4-       Z    bkzk = h(z)  2pz~p 4-     Z     (p - fc)a,zfc  .
*=-p+l k=n+i \ k=-p+l I

If we multiply each side of (6) by its conjugate and integrate around | z | = r < 1

and use the fact that | h(z) | ^ 1 we get, letting r -* 1,

(7) Z     (fc + p)2|a)i|2^4p2 4-     "Z     (p-fc)2|at|2
it = -p+i * = -p+i

which yields after some manipulation

(8) (n4-p)2|an|2^4p[p4-(p-l)|a_p+1|2 + -4-|a_I|2-Z fc|a,|2
L t=i

or

n — p— 1

m2 |a_p+m|2^4p p4-(p-l)|a_p+1|24--4-|a_1|2-   Z      fc|«4|

For m = 1, we have |a_p+11 =2p; m = 2, |a_p+2| ^ p(2p — 1) = C2p2. We

easily establish that

for 0 ^ fc ̂  p. From this identity it follows that

(9) (k4-l)2|a_p+l+1|2^(2p-fc)2(2^,2fc4-l^p

hence | a_p+t+11 ^ C2p>k+1, 0 < fc 4-1 = p which proves the theorem. In the

divalent case this same procedure yields |a_2+t| ^ C4;t for fc = 1,2,3, that is,

the inequality (3) holds for fc = p 4- 1.

Although the above method does not yield the sharp bounds for |a„|, n ^1,

p ^ 2, it does give the order of magnitude of the coefficients as n becomes

large. Indeed, we obtain from (8)
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(10) (« + p)2|a„|2í£4p2 + 4p Pïlk\a-k\2£p2(2pY
it = o \P !

hence

P(2P)
|a„|<-i-^ = o(lWs«.
1 "' - n + p \n J

oo.

Theorem 2. Let fe ¿Z*then \a„\ = 0(1/«). The function f (z) = z"p(l + z") w"

shows that the order cannot be improved.

Golusin [3] has shown also that if/eEp and satisfies (a)/(z)^0, |z| < 1,

(b) a_p+1 = a_p+2 = ••• = a_p+t_1 = 0, k ^ 1, then |a„|^2p/« for « = k,

k + 1, --^Ik — 1. In the following theorem we shall show that if a_p+1 = a_p+2

= ••■ = a_j = 0 and/eE* then sharp bounds can be obtained for all «.

Theorem 3.   Let f(z) = z~p+ a0 + axz+ ••• belong to E* then

|a„|^(2p)/(« + p)/or all n £ 0.

Equality holds for the function  f0(z) = z~"(l + Zn+P)2PK"+P\

Proof.   Under the assumptions made in the theorem (8) becomes

(11) (« + p)2|a„|2f£4p2.

This establishes the theorem. It is easy to verify that f0(z) belongs to E* The

zeros of/Ó lie at the (n + p) roots of unity (p fixed) and the zeros of f0 lie at the

(« + p) roots of — 1. Hence, for a particular value of «, /0 maps the unit circle

onto a p-sheeted surface furnished with (n + p) slits of length 22p/(n+p) making an

angle of 2np/(n + p) with one another.

If /eE* the problem |a„| = max, n ^ 1, is unsolved provided the coefficients

a_p+1, .-sao are not all zero. However, the Pick-Nevanlinna theory as employed

by Nehari and Netanyahu [7] yields that iff e E* is extremal for | a„ | = max then

/(z) = z-p  ff (1-9*2)",   |%|-1,    Pj ̂  0,   "î"pj = 2p.
j -1 j = i

In the previous paragraphs we have concerned ourselves with functions having

a pole of order p at the origin. Let us now suppose that/ has poles elsewhere.

More precisely, let / have a simple pole at z = a, | a | < 1 and a pole of order

p — 1 at the origin. Then / has in the neighborhood of the origin the expansion

(12) f(z) = a-P+1z-p+1 + a_p+2z~p+2 + •••.

The function g(z) = z~x(z — a)(l —~a.z)f(z) has all of its poles at the origin.

It is easy to show that Re {zg'/g} ^ 0 on | z | = 1 and that

-2k

Re{zg'/g}d9 = -2p7i, z = re m, p < r < 1.
Jo
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Hence g(z) is meromorphically starlike and p-valent in |z| < 1. A simple com-

putation yields

(13) giz)= -aa_p+1z-p + [(l + |a|2)a_p+1 - aa_p+2]z"p+1 + -.

Theorem 1 now yields, after a trivial transformation,

+ 2^(2P  +  H^)|flI "-P+2 | =\^i

We now have the following:

Theorem 4. Letfiz) be given by (12) and belong to 2*(a) then inequality (14)

holds. Equality holds essentially for the function

foiz) = z~p+1iz - «y\í - âzy-'il + z)2p.

The function /0(z) maps | z | < 1 onto a p-sheeted Riemann surface which

covers the point at infinity p times and is slit from the origin along a straight line

to the image of 0=arc cos [2p - (a + a_1)]/[2(p — 1)], where we have assumed

without loss of generality that a is real.

In the above case we can generalize to functions p-valently starlike in 0 < |z| < 1

and of the form/(z) = a^qz~q + a_i+1z_4+1 + —, 1 ^ 1<P and where/has

p — q poles in | z | < 1 other than at the origin, a pole of order k is counted

k times. Indeed, the function

(15) giz) = z-p+4 "ff (z - «k)(l - akz)fiz),      fiak) = co,
fc = i

is p-valently starlike and meromorphic in | z | < 1 and has all of its poles at the

origin. A short computation yields

(16) giz) = Ap_qa_qz-p + iA„_qa_q + 1 + Bp_qa_q)z-p+1 + -

where

^p-,=(-i)r,n^ B,_t-(-i)'-«-1 p£   Efa^n-1«;i2),
k = l j = l,k*j     k = l

which yields, by Theorem 1, that

(17) |a_9+1|:g(2p+  |^| )|a_,|.

Inequality (17) reduces to (14) for q = p — 1.

If we consider the meromorphic functions discussed in Theorem 3 we can, in

a certain sense, obtain bounds on the coefficients which are independent of the

position of the pole. For, let /(z) = a_p+1z-p+1 + ayZ + ••• be meromorphic

and starlike of order p in | zj < 1 and suppose / possesses a simple pole at
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z = a, \a\< 1, then, again, g(z) = z~y(z — a)(l - az)f(z) has all of its poles at

z = 0 and is p-valently starlike in |z| < 1. We find easily that

(18) ^W»y0 + 7lZ + yaZ2 + ...

where

7o = - P,Ji = -(« + O,   y2 = -(a2 + a-2), •••,

*-'(i^r-r-")>-
From Caratheodory's theorem we see immediately that \a 4- a-11 ^ |a| 4- |a|-1

^2p which establishes a lower bound for |a|, in fact, |a| ^p —(p2- 1)1/2.

Since / has a simple pole at z = a the function zf '// has a simple pole at z = a.

Hence the function

(z-oO(l-äz) zf'(z)
(19) h(z) =

fiz)

has only a simple pole at z = 0 with residue (p — l)a. The function

F(z) = h(z) - (p - \)(az~1-äz) is then regular in |z| < 1 and Re{F(e'*)} g 0,

hence by the maximum principle Re{F(z)} ^ 0 for |z| < 1. The function F has

the expansion

F(z) = F(0) 4- (p - 1)   IV,

(20) " = 1
F(0)=-(p-l)(l4-|a|2).

Upon computing zf '// we find

zf'(z) (p - \)z

f(z)       (z - a)(l - äz)
--(1 4- |a|2)4-äz-2äz4-c1z4- ■••

(21) =   _(p-l)4-(p-l) (-2a + Cy)z +

00 "I

ÏV"
n = 2 J(z-a)(l-äz) L

=  -(p-l) + (p-l)G(z).

The function zf'/f is regular in |z| < |a|, therefore, upon integrating from

zero to z, \z\ < \a\, we get

(22) ^Ä = exp
a-p+i •f•>o

^dz

If we denote G(z) = Y£=2bnz", then b„ - bn(c\,c2,---,cn_y) where c[ = cx — 2a,

is a linear combination of the complex constants ck,\ ^ fc ̂  n — 1. We can now

write
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exp

(23)

(P
<^\

= l + d1z + d2z2 + - = H-^—zp + -=2— zp+1 + ...
a-p+l a-p+l

where dn = d„ic'y,c2,•••,cn_1) is a homogeneous polynomial in ck with positive

coefficients and linear in cn_j. Equating coefficients in (23) we have

c'y = dy = 0, d2 = ••• = dp_! = 0 which implies that c2 = c3 = — = cp_2 = 0

and (a1/a_p+1) = dp = [-(p-l)cp_1/pa]. However |(p - 1)^., | = 2|F(0)|

= 2(p-l)(l + |a|2), hence

(24)    |.,| g o-^w^ |._,»| - J^frH«!-)!«.,,.!.

It was shown above that | a \ + | a |~1 _ 2p which gives the bound

(25) \ay | = 4(p — l)|a_p+11, independent of a.

We also note that (a2/a_p+1) = a_1(p + l)_1[cp + (a + a-1^,,-!] which yields

the bound

(26) |«a|á2&^(|«| + |«|-1)(l + |«| + H-1)|«.^»|.

We have the following

Theorem 5. Let /(z) = a_p+1z~p+1 + axz + — be meromorphic and p-val-

enlly starlike in | z | < 1 then the inequalities (24), (25) and (26) no/d.

Simply by retracing the procedure in the proof of the theorem we can show

that (24) and (25) are sharp. Let us suppose for simplicity that a_p+1 = 1 and a

is real and positive. Since c[ = c2 = — = cp_2 = 0 let

h(z) = (p - l)[az_1 - (1 + a2) + az - 2(1 + a2)(zp-1 + z2p_1 + •••)]

= a(p-l)[z_1 -2(a-f-a_1) + z + (a-1 + a)(l - 2zp_1 + 2z2p_1 +•••)].

Then

(27)
z/'(z) a(p-l)z     f.     „__,  ,„,,., ,„-i  ,   . 1-z""1

/(z)      (z-a)(l-az)

Whereupon integrating gives

\z l - 2(a J + a) + z + (a x + a) j^—r]

/(z)   = z-p+1exp|   ® dz
Jo    z

where ..        ... _,.        ,
2(p - l)(a + a *)     z<

&(z)   =

'+iexP r
Jo

(1 - a_1)z(l - az) 1 + zp
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The function / can be shown to satisfy conditions (a) and (b) of Definition 1

and hence is extremal for (24) and (25), whenever a = p — (p2 — 1)1/2.

It should be mentioned that if f(z) = a-qz~9 + a_9+1z-,+1 + ••■, q integral

and 1 < ¿7 < p, is meromorphic and p-valently starlike in | z | < 1 and does not

assume the value infinity more than q times then the methods of Theorems 1

and 2 will yield bounds on the coefficients similar to the bounds given there.

3. Starlikeness in £p. In the following two theorems we shall obtain con-

ditions pertaining to the starlikeness of members of Ep.

Theorem 6. Let /eEp,/#0, and the coefficients satisfy the condition

ZZ™= -p+i | « 11 a„ | r"+p ̂  1, a0 = 0, for some r, 0 < r ^ 1, then f is starlike for

\z\<r.

Proof.   Consider the expression

(29) H(f,f') = \zf'+f\-\zf'-f\.

Replacing/ and/' by their series expansions we have

(30) H(f,f) I   (« + l)a„z" I   («-l)a„z"

Hence H(f,f')r"^ - 2+2S„°l_p+1|n| |an|r"+p^ 0 which gives

m'/n + íiKzf/n-í]-1^!

or Re(z/'//) ^ 0 for | z | = r.  However, this inequality holds for all circles of

radius p where r — ¿><p^r:gl,o">0, which implies that / is starlike.

Suppose that fe Ep and / ^ 0. Then g(z) = zpf(z) is regular in | z | < 1. For

a given p,p > 0, we can write g(z) as g(z) = [«(z)]2p/" where a particular branch

has been chosen so that «(0) = 1. Then «(z) = 1 + cxz + c2z2 + ■■•. If in the

integral of Golusin mentioned in §2 we set X = p/p, R = |/(reíe) | we have

f V¿¿0 =   f *|[/(reie)7/2p|2¿¿0 = 27r(V'1 + I  I^V""")
Jo Jo \ B=l /

which yields, upon further application of the area principle techniques,

2^°=1 (2« — p) | c„ \2 ^ p. We also note that for z = re'e the expression

(zg'/g) — p = (zf If). We consider now an expression similar to (29)

(31) H(g,g',p) = (Í-H-KÍ-')
and note that whenever H is nonpositive Re {(zg'/g) - p} — Re(zf'/f) is non-

positive and hence / is meromorphically starlike of order p. Therefore / will be

starlike whenever
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(32) Z nc„za \ - \p - Z (n - p)cnz"
M = i

<0.

If 0 < p ^ 1 the inequality (32) will be valid whenever Z„°°= x(2n - p)\c„\\z\n <L p.

An application of the Schwarz inequality yields

oo r   oo -] 1/2 r oo -i 1/2

Z(2n-p)|e„||z|"^     Z(2n-p)|c„|2 Z(2n-p)|z|2"
n = 1 Ln = l JLn=l J

[oo -i 1/2

Y,(2n-p)\z\2»\

= ^1ö^w^|z|2+2-^1/2-

The right-hand member of (33) will be less than or equal to p provided

| z |2 = p(2 + p)~1. We easily see that the largest value of | z | occurs when p = 1

and hence | z | ^ (1/^/3) is the radius of starlikeness. We have the following

Theorem 7. Lei/eSp andf^ Ofor |z| < 1; then f is meromorphically star-

like in |z|<(V3)_1.
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