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Part I. Introduction

Let A(y, Dy,--,D"y) = 0 be an algebraic differential equation belonging to

Strodt's class (D) [1, p. 5], and let M be a principal monomial [1, §66] for A = 0.

In search for principal solutions of A = 0 (i.e., solutions which are ~ M) one

substitutes y = M(l + z). This almost always [2, §121] leads to a differential

equation P(z) = 0 in which F is an asymptotically quasilinear algebraic differ-

ential operator having a nonexceptional factorization sequence (Wx, •■-, Wn) such

that F is normal with respect to (Wx,---,W„,r) for a sufficiently large positive

integer r. Strodt [2] has shown that F = 0 has at least one solution Z -< 1, and

accordingly A = 0 has at least one solution 7= M(\ + Z) ~ M; but if F is, in

addition, uniformly quasilinear, then P = 0 has a «-parameter family of sol-

utions -< 1 (and A = 0 has a u-parameter family of solutions ~ M), where u

is the number of indices i for which \IF]~(Wi,4>)<0 (<¡> denoting the direction in

which the complex variable approaches infinity). The significance of the number

« in the more general a.q.l. situation has hitherto been obscured by the compli-

cated manipulations used to ascertain the mere existence of a solution -< 1 for

a.q.l. equations.

In the present study, a «-parameter family of solutions -< 1 is exhibited for

a large class of normal a.q.l. equations P = 0. We require that the factorization

sequence for P satisfy a condition which resembles (and includes) the classical

"distinctness of characteristic roots" in the case of linear differential equations

with constant coefficients (§2, below). The virtue of this condition is that it allows

us to pass from approximate factorizations of linear operators in terms of the

operators Wi = (1 — W¡~ 1D) to exact factorizations in terms of certain Vt such

that Vt ~ W¡. Once the linear part of an algebraic a.q.l. equation has been exactly

factored, the situation may be said to be well in hand. Among other things,

exact factorization enables us to measure with considerable precision the asymp-

totic size of our small (^ 1) solutions, and even to obtain a sort of asymptotic

development for them. Other phenomena used to advantage in this study include

the invariance of normality and asymptotic quasilinearity of differential operators
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under small displacements of dependent variable or small displacements of

factorization sequences, and the evolution of new a.q.l. operators from old ones

under judicious substitutions.

For an index of terminology used in references [1] and [2] and in the present

paper, the reader is referred to [2, Part IX, pp. 105-107].

Part II. Exact factorization of linear differential operators

1. Lemma (approximate factorization-» partly exact factorization). Let

Wy,---, W„ be logarithmic monomials in the divergence class. Let Wt\ — Wy x W{

for i = 2,3, -,n. LetU^Wi-Wy (i = 2,3, --,n) and let iU2,U3,-,Un) be

unblocked in ia,cb,ß). Let L=Wn-~Wy + H"=yE^Vr--Wy+Eo, with eachEt<l

in Fi*x,ß). Then there exists a function Vy such that Vy ~ Wy and such that

L^Wn-W1Vy + y.UyEVl Wi'W2ti with each Eu -< 1 (a// relations holding

in Fia,ß)).

Proof. In the notation of [2, §4], we want R*L{Vy) = 0. According to [2,

§§32,33], we have R*L{y) = W¿y) - Wyiy)-l+ lUiEMy)- Wyiy) ■ l + £0,

where Wiy) = (1 - W 1y - W lD). Under the substitution y = 1^(1 - z) we

have Wiy) = UtWf^Û, + WyU/^z), where Uffî1 x 1 and WyU//x <1 for all
relevant i. One proves by induction on i that W¡iy) ■■■ Wyiy)■ 1 = bß^z), where

b¡ x 1 and B¡ is a differential operator which is ~ (s) £/(/, •• -, 2). In carrying out

this proof, it is convenient to dispose of terms of the form

Üj{cz'°iÜ2zy .:iÛhÛh-y- Ü2z)<*->}

(h <j) by means of the relations ÙiAB) = A t7(B) + B ÛiA) - AB and

UjiÙh-   Û2Z)   =   Uh + yU]-\Ûh+yÙh-   Ù2z)+il  -   Uh+yU¡l)Uh~.   Ü,Z.

Once the properties of b¡ and B¡ are established, it follows immediately that

R*LiWyil - z)) = bBiz), where b x 1 and B ~ (s)tf(n,-,2). Since (i/2, •••, Un) is

unblocked, Theorem II of [2] implies the existence of a solution Z of Biz) = 0

such that Z -< 1 in Fia, ß). Define Vy = Wyil—Z). The lemma now follows from the

fact that R*LiVy) = 0 and iVy, W2, •••, Wn) is a factorization sequence for L[2,§54].

2. Definition. We shall call iWy,---,W„) separated when the W^ are ~ lo-

garithmic monomials in the divergence class satisfying

(1) W¡- WjXW¡ for i>j,

(2) each W¡ - W¡ is unblocked in (a, çb, ß).

Theorem I (approximate factorization -» exact factorization). Let

iWy,---,W„) be a separated factorization sequence for the linear differential

operator L. Then there exist functions Vlt •••, Vn such that V¡ ~ W¡ (i = 1, •••, n)

and such that L= uVn--- Vy for some u ~ 1.
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Proof. By Lemma 1, L= LyVy for some function Vy ~ Wy and a certain

operator Ly such that Lx ~W(n,---,2). It is clear that Lv is qualified to play

the role which L plays in Lemma 1, so we get Ly = L2V2 where V2 ~ W2 and

L2 ~ W (n, ■■■,3). The conclusion of the present theorem is reached after finitely

many repetitions of this same argument.

Part III. On the equation H>nM>B_1 ... Wyy = 0

3. We present here some results of a computational nature, necessary for

the subsequent study of transformations of differential operators under sub-

stitutions for the dependent variable.

Lemma. Let W, ~ a logarithmic monomial in the divergence class (i= 1, •■•,n),

and W, - Wj x W, if i > j. Let S>x>0. Let k 6(1, —,n). Let

^~Cx-1(logx)-1-(logp_1x)-1(logpx)-1 + t(logí;+1x)ai-(logíl+sxr.

Let F = (logpx)_a. Let G < 1 and DG = FWk (see Lemma ()• Let //* = 1 and

Hs = (1 - W.W;1)-1^ - W.W^y)-1 - (1 - W.W^y)-1 for s - fc - 1,-,1. Let

Rs = //Sexp \X0Wk (s = 1, •••,&). Let z be an admissible function. Then:

(3.1) Ws(Ks) = usKs+1, withus~\   (s=l,-,fc-l).

(3.2) Ws(Ksz) = usKs+ yMsz, with Ms = us(Ws - Wk)   (s = \,-,k- 1).

(3.3) MS(G)~G   (s=l,..,fe-l).

(3.4) Ws(GKs) = vsGKs + y, with v, ~ 1   (s = l,-,fe-l).

(3.5) Ws(GK,z) = vsGKs+yÜsz, with Us = vs(Ws - Wk)   (s = 1, - ,k - 1).

(3.6) Fors = l,—,fe-l, rVs---rVy(Kyz) = Ks+1i¥sNs-NyZ, with Vs~land

JV;~ W,-Wk   (i-1,-,5).
(3.7) For s = l,-,k-l, Ws-Wy(GKyz) = GRS+13)SKS--- VyZ, with <DS ~ 1

and F¡~ W,-Wk   (i=l,-,s).

(3.8) !Ffc(zexp fX0W4) = - W^Dzexp $X0Wk.

(3.9) Wk(zG  cxp¡X0Wk) = - F cxpj^móz,  wnere ß = - G^ÖG.

Lef a^l-WW'-F"1»',-1/^ and ^Pt = \-WkW~\ for t = k + l,-,n).

O, and *Ft are easily seen to be « 1.

(3.10) H>(exp (xoWk) = ¥,exp (XoWk   (t = k + 1, -,n).

(3.11) ^(Fexp J^) = <D(Fexp fX0Wt   (t = k + 1,-,n).

(3.12) lF,(zexp J^Jr^^A^zexp JXolFt, wnere M, = ^W,   (t = fe + 1,■•-,«).

(3.13) IFt(zFexp fX0Wk) = «D.i/.zFexp fX0Wk,where Ut = <D,lv;   (t = fe4-l,•••,».

(3.14) Mt~U,~W,-Wk   (t = k + l,-,n).

(3.15) Wt-Wk+l(zcxp íX0Wk) = ^tcxp SX0WkÑt-Ñk+lz, with «P** 1 and

Ar,~W;-ry*   (i = /c4-l,-,n).

(3.16) H>(-lFi+1(zFexp \XoWk) = ^Fcxp ¡XoWkVt-Vk+yZ, with Of« 1 and

K(~WÏ-W.   (t-fe + 1,-,ft).

Proof. In verifying (3.1)-(3.16), much use may be made of the relation (R):

W(Ty) = (W(T))(M(y)),  where  M=WT~1W(T)  (cf.   [2,   §113]).
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For (3.1): WS(KS) = Hs(l - W;\h;1 DHs + Wk)) exp¡XoWk. H;'DHs<Wk

because 0¡(HS) = 0 (i = 0,l,---,p-l), implying 0¿(HS~1DHS) = -1 (i = 0, -,p).

Henee 1 - Wf 1(//S"1DJ?S + Wt) ~ 1 - W,"1!^, and the conclusion follows

because (I - wy'WJH^ Hs+X.

For (3.2): In applying (R) and (3.1), we have M5 = WtutKt+lK~1 = uJ(Wl-Wl).

For (3.3): The conditions imply G ~ (t — ô)~ lx(\ogx) ■■• (logpx)FWk. We also

have Ms « Wk; therefore MJlDG xF<G.

For (3.4): Apply (3.2) with z replaced by G.

For (3.5): Apply (R) together with (3.4).

For (3.6): For successive values of s, we show that if yVs-x ~ 1, then

PAVr-A z') = -Ks+ixI's^z' where z' = Ns_x ••• Ñxz, ¥, ~ 1, and Ns ~ Ws - Wk.

By (R), W£t,_lK¿') = (WsVs_x)(S(Ksz')), where ^s_, ~ 1 because «F,_t ~ 1

whiles = »w;, where» = i',111ïfra(l,]I_1) which is ~ LThen5'(Xsz') = (l/t;)lFs(Xsz')

+ (1 - l/t>)X,z' = (l/t;)(usXs+1^sz' + (t>-l)Xsz'), using (3.2), =

Ks+x(us/v + ((v-l)/v) (Ks/Ks+X))(z' - Dz'/Ms(l + (v - l)Ks/usKs+x)). To

obtain the desired result we set Ns = Ms(l + (v — l)Ks/usKs+l) and

V> = (Ws(Vs-i))(uJv + ((v-l)/v)(K/Ks+1)). Noting that Ks+X> Ks and

(v — l)v < 1, we have ^ ~ 1 and Ns~ Ms~ Ws-Wk as claimed. To begin the

induction, (3.2) may be applied for the case s = 1.

For (3.7):   Apply (R) and (3.5) repeatedly.

(3.8)—(3.11) follow from easy computations.

For (3.12) and (3.13): Apply (R), (3.10), and (3.11).

(3.14) is obvious.

For (3.15) and (3.16): Apply (R), (3.12), and (3.13) repeatedly.

4. Theorem II. Let the hypotheses and notation of Lemma 3 be in force.

Let -n i£a < <¡> < ß-^n. Let Wx-Wk, W2 - Wk,---,Wk^x-Wk be unblocked in

(a,(j>,ß). Let S be an element of F(a,ß) in which Wk is analytic, and let x0eS.

Then for every complex number g^O, the differential equation

(4.1) Wn-Wxy = 0

has a solution yg which is ~ gHxexp ¡X0Wk.

Proof. Let y = gHxexp $XoWkz. (4.1) becomes

Wn-WkQVk_xexo¡XoWkÑk_x-Ñxz) = 0

(cf.(3.6)),oxW„-Wk+x(-Wk-1exp }xo WkDCVk.1Ñk7Í - Ñxz)) - 0 (cf. (3.8)),

and hence it suffices to solve the equation Ñk_x ■■■ Ñxz = x¥k2x for a

solution z ~ 1. Setting z = 1 + w, we seek a function w -< 1 such that

Ñk-X---Ñxw = xi'k~}x - 1. But (Nu — ,Nk-i) is unblocked in (a.,<p,ß) and

4V-i — 1 -< 1 in F(a,ß), so the existence of a solution w* < 1 may be inferred

from [2, §114]. (A direct proof using [2, §78] is also feasible: There exists a



1963]  PRINCIPAL SOLUTIONS OF ORDINARY DIFFERENTIAL EQUATIONS   265

wk.y -< 1 such that Ñk_yWk_y = fj-1! - 1, there exists a wk_2 -< 1 such that

Ñk_2wk_2 = wk_ !,-••, and finally there exists a wx = w* -< 1 suchthat ÑyWy = w2.)

Taking yg = gHyil + w*)exp \X0Wk, it is clear that the conclusions of the theorem

are satisfied.

5. Lemma. Let the hypotheses and notation of 4. be in force. Let

y = yg + GKyZ. Then

Ws-Wyy= Ws-JVyyg + GKs+y<ï>sK-VyZ   is = l,---,k-l);
Wk-Wyy= i-F^^exp y0Wk)Q'Vk-y-VyZ, with O^ ~ 1^ and

Wt-Wyy= i-F^expy^VI-VZ+yfrVk-i-ViZ,  ^h <D,«l,ß'~ß,

and V't~Vt   (i = k + 1,— ,n).

Proof.   Clearly Ws-Wyyg = 0 for s = fe, •••, n, and

Ws-WyiGKyZ)   =  GKs+y®sVs-VyZ

with í>s and the F's as in (3.7), for s = l,---,fe-l.

Wk---WyiGKyz) = WkiGexp (X0WkcT>k_yVk.y---Vyz) and we use (3.9) with

i<bk-yVk_y ■•- Vyz) in place of the z in (3.9). This gives

-Fexpf   Wk{Ûi<t>k-iVk-i-Vyz)}.
J XO

On   {•••}  we  use  (R)  with   T=Ot_1  and  y = Ft_1 ••• Vxz   (see   proof  of

Lemma_3), which gives Wk-WyiGKyz) = (-Ffc^exp \X0Wk)Û'Vk-y -Vyz,

where ®k_y = Q\i<ï>k_y) and Q' = QQ^y^-y.

If t = k+l,---,n we  have

Wt-WyiGKyz) = W>t-.lft+1(- Fexpf    WÄ-iß'^-i -*V),

and we use (3.16) with z replaced by <&k-yQ'Vk-.y ■■■ Vyz. This gives Wt---WyiGKyz)

= -Fexp /„.^^{^-n^i^^ß'F^-^z)}. On {•••} we use (R) as in

the previous paragraph to "permute" <bk~y past Vt---Vk+1 and obtain the

stated result.

Part IV. Solutions of nonlinear equations

6. Definition. Let P ~ (w)lF(n, •••,!). We say that P is condensed with

respect to iWy,-,Wn), and write P ~ (c,w)H>(n,--., 1), if [HLP]~ = uWn-Wy

for some u ~ 1. If P ~ (c,w)IF(n, •••,!) and P is also normal with respect to

iWy, ■■■, W„,r) [2, §102], we say that P is condensed with respect to iWt,---, W„,r)

and write P ~ ir,c,w)Win, •••, 1).

7. Lemma. Let iWy,---,W„) be separated and unblocked in ia,cb,ß). Let P'

be normal with respect to iWy,---,W„,r). Then there exists a function Y<; 1

and functions Vu—,Vn with Wt~ V¡ (i = l,---,n) such that if Piy) = P'(Y+ y),

then P ~ ir,c,w)Vin, •••, 1) and P(0) = 0.
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Proof. By Theorem Ilia of [2], there exists a solution of P'(y) = 0 which is

-< 1. Let Y be one such solution, and let P(y) = P'(Y+ y). Then P(0) = 0.

By Lemma a, P is normal with respect to (Wy,---,W„,r). Theorem I above

shows that the approximate factorization of \HLP}~ using (Wy,---, Wn) can be

converted into an exact factorization in terms of (Ft,—, V„) where V, ~ W, for

all ('. Lemma ß shows that P is normal with respect to (Vy,---,V„,r). Hence

P~(r,c,w)FYn,-,l).

8. Lemma.     Let the hypotheses and notation of Lemma 5 be in force. Let

[lF}~(Wk,tf>)<0. Let X, = Vt (i=l,-,k-l),   Xk = Q',   and   X,= V,'   (i =

fc + 1,— ,n).   Lei   P ~ (r,c,w)W(n, ■■-,1),   and   let   R(z, XyZ, ■■■, Xn •■• Xyz)

= P(y,Wyy,---,W„--Wxy).    Then   whenever   z < 1,   R(z,XyZ,—,X„ — Xxz)

<Fcxp\xaWk.

Proof. Since W„---Wx(yg) = 0, and since Xn---Xx is unimajoral, Lemma 5

immediately implies Wn---Wxy -<Fexp ¡XoWk for every z-<l. Let 9 = 9r. (We

assume, with no loss of generality, that r^p + l.) Then P(y) - [HLP}"(y)

may be expressed as a polynomial in y,9y, ■•■,9"y such that each monomial

has degree k 2 and each coefficient is ^ 1. It is easily shown that for every z<.\.

P(y)-[HLP}~(y) £(9'y)2 for some fe(0,— ,n). In fact, for the functions y

being considered, it is readily verified that 9'y = £,Jrexp jX0Wk where Et ~ 1 and

J, is a logarithmic monomial such that S¡(Jt) = 0 (i = 0, •••,p — 1; ( = 2,-,n).

Hence there exists a logarithmic monomial J* such that S,(J*) = 0 (i = 0, —,p— 1)

and such that J* exp fxo2H^>P(y, Wxy,■■ -, Wn-■■ Wxy)- \_HLP}~(y) whenever z-< 1.

But J*exp ¡xa2Wk < F exp $X0Wkby Lemma e. It follows that R(z,Xxz, —, Xn---Xxz)

-<Fexp fX0Wk whenever z -< 1.

9. Lemma. Let the hypotheses and notation of Lemma 8 be in force. Let

Ps and Rs denote the partial derivatives of P and R with respect to their sth ar-

guments. Then Ps(y,Wxy, ■■■,Wn---vVxy) < J"exp ¡X0Wk (s = 0,---,n-l), where

J" is any sufficiently large logarithmic monomial such thai S,(J") = 0

(i = 0,-,p-l).

Proof. Let P = P - [HLP}~. Then Pi = Ps (s = 0,--,n-l), since P is con-

densed. We have

P(y,Wyy,-,Wn-Wyy) = Zp?y W1 -iÔny)J"

with jo+jy + ••• +j„ = 2 and;'(p? < Ay -A, (t = 1,—,«) for each /, where

At= -(x(logx)-(logr_1x)»;r1. Also, by [2,«§100], we have

9'y= zZUoGthWh-Wyy

with Gth ̂  l/Ay -A,. Hence

PsiyWyy,-,W„-Wyy) = Hp7yJo(9y)Jl-(9nyy"Cl
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where C] = jsi9syyl Gss + js+1(0s+1 y)~l Gs+1,5 + - + jjPyy1^. But

J.+9PjG*+9* ̂ 1 (l = 0,..-,n-s). Hence we may write Psiy,Wyy,---,Wn---Wyy)

as a polynomial in y, 9y,---,9"y in which each monomial is of degree _ 1 and

each coefficient is £■1. The argument given in proof of Lemma 8 shows that

there exists a J" with the prescribed properties.

10. Lemma. Let the hypotheses and notation of Lemma 9 be in force. Then

R£z, XyZ, —, X„-- Xyz) -<Fexp ¡xoWkfor every z -< 1 andefery se (0,1,—,n — l).

Proof. R,iz, Xyz,-,Xn - Xyz) = P.iy.^y, -, Wn - l^y)7Xa) where

T(0) = GKy, Tis) ~ GKS+1 (s = 1, -, k - 1), and T(s) x - Fexp JX0Wt

(s = fe, —,n) (cf. Lemma 5). Hence there exists a logarithmic monomial J with

<5,(J) = 0 (i = 0,-.-,p-l) such that R¿z,XyZ,—,Xn — Xyz)<Jexp ¡X02Wk; but

Jexp ¡Xo2Wk -< Fexp JXoH* as a consequence of Lemma e, proving the assertion.

11. Lemma. Let the hypotheses and notation of Lemma 10 be in force. Then

R„iz, XyZ, —, Xn — Xyz) ~ —Fexp \X0Wk whenever z-<l.

Proof. /?„(z, Xyz, ., Í, ... *,z) . PJj&iy, -, IF„ ... I^y) T(n) where

T(n) ~ -Fexp Ji0Wi, while by hypothesis P„iy,Wyy, •••,W~n---Wiy) ~ 1 when-

ever y -< 1 and a fortiori whenever z -< 1.

12. Lemma. Let the hypotheses and notation of Lemma 11 be in force. Let

iXy,---,Xn) be an isotone permutation of iXy,---,Xn). Then S is normal with

respect to iXy,---,Xn,r), where S is the operator ( — Fexp §XoWk)~1R.

Proof. Lemmas 8-11 imply S ~ (w)AYn,-, 1). Hence S(0)-<1, [HLS]~

~ A-(n,-,l),  and   [HLS~\~ ~ X~(n, -, 1). Let yG = GKy.

^ + yGz)=2{aî n (e% + ie,yG)z + ti9'-1yG)9z + ...
í = 0

+ í0yGéT *z + y^'z)'': i0 + - + i„ 5: 2}.

Hence Piyg + yGz) may be written as a sum of terms each having the form

cqtMiyg,9yg,-,9"yg;yG,9yG,-,9nyG)Niz,9z,-,9nz)

where M and JV are products of integral powers of their arguments, c is a con-

stant, M is of degree ^ 2, and the differential order of N is <; t*, where (relative

to a fixed ~) i* is the largest integer t such that i, # 0. Let the differential order

of JV be s*. As in the proofs of the previous lemmas, it is verified that

M -< M*exp ¡Xa2Wk where M* is any sufficiently large logarithmic monomial such

that ¿¡(M*) = 0   (¿ = 0,-,p-l).

Consider a term for which s* > k. Let B¡ = -(x(logx) —(logr_,x).?¡)_1

(i = 1, ••., n). We have By ■Bk~ B*, where B* is a logarithmic monomial with

ôjiB*) = 0 (j = 0, ■ ■ ■, p -1). By the normality of P with respect to iWy, ■ ■ ■, W„,r),

q>¡ ¿-Ay ■■■A,,. Therefore Ay ■■■At,M*exp $X02Wk>-cq¿M;
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and

(-Fexp

(12.1)

Ax-AtM*F~1exp\    Wk>(-Fexp f   W^'^q^M;
J Xo J Xo

(-Fexp f  W¿-lcqJU(Bu~, Bs.)_1
J xo

¿ Al-A<* ■   M* .cxpf Wk_
Bk+i   ■• 5S,    Bx--BkF J Xo

Now ôi(M*/Bx -BkF) = 0 (i = 0, --.p-l); and, since X„ x W„ (h = k + 1, •■•, «),

we have Bhx Ah (h = k + 1, ••-,«). Hence the right-hand member of (12.1) is

^ 1. Therefore we can express ( — Fexp jX0Wk)~1- P(yg + yGz) as a sum of terms

of the form f<¡zJo(9z)h ■■■ (9"z)J "where js.f7 £BX ••• Bs. for every/suchthat s*>k.

The same inequality for/./^ can be verified in very much the same way for terms

in which s* ^ k. It follows that S is normal with respect to (Xx, ■■■ ,X„,r) by

[2, §102].

13. In this lemma we show that if P is an operator which has been "nor-

malized," i.e., ~ (r,c,w)W(n, •••,!) with P(0) = 0, then the equation P(y) = 0 has

a one-parameter family of solutions yg + yaz. These solutions are x Hx exp \X0Wk,

the matching constant g # 0 being arbitrarily chosen. (For z ■< 1, yg + yGz

~ y g ~ gHi exP Jxo W*-) This is the case for each fee(l, ••-,«) such that

\IF]~(Wk,<p) < 0, i.e., such that exp $XoWk-+0 in the direction <p. Thus we have

the "expected" number of solutions -< 1 in a weak sense: There are that many

separate one-parameter families of solutions -<1.

Theorem III, below, proceeds beyond this to show how "quasilinear combina-

tions" of such solutions may be formed to obtain a family of solutions -< 1

such that each member of the family corresponds to a simultaneous choice of

all available parameters.

Lemma. Let the hypotheses and notation of Lemma 12 be in force. Then

there exists a function Z -< 1 such that y = yg + yGZ satisfies

P(y,Wxy,-,Wn-Wxy) = 0.

Proof. The related operator S is normal with respect to (Xx,---,Xn,r), so

we may invoke Theorem Ilia of [2] to show the existence of Z -< 1 such that

S(Z) = 0. Of course P(yg + yGZ) = 0 for such a Z, q.e.d.

14. Theorem III. Let Wx 2>--- ̂  Wn, with each W¡~ a logarithmic mo-

nomial in the divergence class. Let P be normal with respect to (Wx,---,Wn,r).

Let Y<\ and let P(Y) = 0. Let (kx,—,ku) <= (1, ••-,«), and let \lF]~(Wki,<p) < 0

(¿ = 1, -,«). Lei (WX,-,W„) be separated. Let H(k) = (1 - Wx l Wk)~1 • • •

(1 - Wk}xWky\Let(y,o)beasubintervalof(aL,ß)inwhich[IF]~(Wk-Wk. + i, 9)

is either always positive or else always negative (i = 1, ".u —1). (Such a sub-

interval exists because of the unblockedness conditions.) Let WX,--,W„ be re-
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labeled, if necessary, so that [IF~\~iWkl — Wk¡tl,0) is always positive in (y,<5).

iThis can be achieved while retaining Wy ̂ — ^W„ and all other relevant

structure by virtue of stability under isotone permutations of factorization

sequences.) Then there exists a family of functions of one complex variable

{Y*igy,---,gu): igy,---,gu)eicomplex numbers)"}

such that:

(14.1) The map (gi,—,£„)-»■ Y*igy,---,gu) is bijective.

(14.2) For each (i-l)-íwp/e igy, •••,g¡_1) let igy, —,&_!,*) denote the set of

all u-tuples («i,—,nu) such that h¡ = g¡ for j = 1,—,i —l(i = 1, •••,«). Then

for every igy, ■•-, gi-y,*) there exists WHgy, —,&_!, *)) ~ Wkl and a

complex number xiiglt—,gt-i,*))=*x0 such that Y*igy,---,g¡_y,g¡,---,gu) -

Y*igy,-;gl-y,qi,---,qu)~igi-q¡)Hiki)exp ¡XoWiigy, ■■■ ,gt-u*))   in Fiy,5),

whenever g¡ ^ q¡.

iU.3)Foreachigy,-,gu),Y*igy,-,gu)<\inFioL,ß)andPiY+Y*igy,-,gu))=d.

Proof. Let Pyiy) = P(F+ y). Then, by Lemma a, Py is normal with respect

to iWy,---,Wn,r), and it follows that there exist W{,—,W'n such that W't~ W¡

(i = 1, —,n) and such that Py ~ ir,c,w)W'(«,—, 1) (cf. Lemma 7). For a fixed

choice of such functions W\ define WH*)) = Wk\; define x((*)) as some point be-

longing to an element of Fia,ß) in which W((*)) is analytic. Then for each non-

zero complex number gy define Yigy) to be some particular solution of Pyiy) = 0

which is ~ gyHiky)exp $X0Wii*)), where x0 = x((*)), and define Y(0) e= 0. (The

existence of Yigy) is guaranteed by Lemma 13.) We now have PyiYigy)) =

= PiY+Yigy)) = 0.

Let gy he fixed throughout this paragraph. Let P2igy',y) = PyiYigy) + y).

Then P2(gi; —) is normal with respect to iWy, —, W„,r) by Lemma a, and it

follows from Lemma 7 that there exist W",---, W// such that W" ~ W¡ (i = 1,—, n)

and such that P2igy; — ) ~ ir,c,w)W"in, — ,1). For a fixed choice of such W¡"

define WHgy, *))=Wk2 and define x((g1(*)) as some point belonging to an element

of Fia, ß) in which WHgy, *)) is analytic. Then for each nonzero complex number

g2 define Yigy,g2) to be some particular solution of P2(gi;y) = 0 which is

~ g2Hik2) exp ¡X0WHgy, *)), where x0 = xügy, *)), and let Yi^, 0) ee 0.

(The existence of Yigy, g2) is guaranteed by Lemma 13.) We now have

Pzteil Yigy,g2)) = PÍY+ Yigy) + Yigy,g2)) =L0. And so forth: When

Wiigi,—,gs-i,*)), xiigy,--,gs-y,*)), Psigy,--,gs-i,-), and Yigy,---,gs) have

been defined for all igy, — ,gs), we next define

p +i(gu-~,gs;y) = PÀgu-~,g-i;Yigy,-,gs) + y).

Then Ps+yigy,---,gs; -) is normal with respect to iWy, —, Wn,r) by Lemma a,

and it follows from Lemma 7 that there exist W*,■■■, W* such that

Wt~Wt (i = l,-,n) and such that P +1igy,-,g ; -) ~ (r,c,w)IF*(n,-,l).
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For a fixed choice of such W*, define W((gx,---,gs,*)) = W*s + 1, and define

x((gx,---,gs,*)) as some point belonging to an element of F(a,ß) in which

W((gx,---,gs,*)) is analytic. Then if gs+x^0 define Y(gx,--,gs+x) to be a

solution of Ps+x(gx,-,gs;y) = 0 which is ~ gs+xH(ks+x)exp $X0W((gx,---,gs,*)),

where x0 = x((gx,--,gs, *)), and let Y(gx,---,gs,0) = 0.

For  each  «-tuple  (gx, ••-,#„)   we  get   «   functions  in   this   way:   Y(gx),

Y(gi,g2),-,Y(gi,-,gu)- Define

U

H?i.-,gJ = Z T(gi, ■••,&,)•
D = l

Then (14.3) is obviously valid. To verify (14.2), we have Y*(gx, •••,#„)

-r*tei»-»&-i»?i»-.3J=4 + B-C, where .4 = Y(gx,--,gi)-Y(gx,--,gi_x,qi),

B= TUi+xY(gx,-;gv), and C= I"=i+1 Y(gx, ■■-, g _lf q¡,---,q0). Now we

have

A~(gi-qt)H(k¡)exp        W((gx,-,g¡-x,*))      (x0 = x((gx, •••, g¡-x,*))).
J xo

For the general term in B we have

Y(gi,--,gv)~gvH(K)exp      W((gi,--,gv-x,*))    (x0 = x((gx,-,gv_x,*))),
J xo

and a similar relation for the analogous term in C (v = 1 + i, ••-,«). For ü > i,

H(k¡)/H(kv) ^ 1 in F(a, ß) and hence in F(y, ô), while by virtue of the hypotheses

we have

exp f   W((gi,-,S¡-i,*))/exp f   W((gx,-,gv.x,*))>l
J xo J x'o

(x0 = x((gx,-~,gi-x,*)), x'0 = x((gx,---,gv-x,*))) in F"(y,ó"). Hence A>B in

F(y, ô), and similarly A > C in .F(y, ¿>), so we have A + B — C ~ A in Ftj, ¿5).

This verifies (14.2). (14.1) follows easily from (14.2).

15.   With the foregoing notion of a «-parameter family we arrive at

Theorem IV. Let a,(p,ß be real numbers with —n^a<<p<ß-^n. Let P

be a differential polynomial with coefficients in an LD(F(a.,ß)). Let M be a

simple principal monomial for P, and let (WX,---,W„) be an asymptotically

steady type for P at M which satisfies the separation condition (§2). Let

(Wki,---,Wku) be the subsequence of (Wx, •••, W„) consisting of the W¡for which

\IF]~(W¡,9) < 0 in (a,ß). Then P = 0 has a u-parameter family of solutions Y

such that Y~M in F(a,ß). I.e., the reduced equation P(M(l + z)) = 0 has a

family of solutions Z -< 1 which possess asymptotic developments, in the sense

of §14, in terms of « asymptotically distinct types of functions of the form

gHexp ¡X0W.

Proof.   This is a corollary of [2, Theorem V] and of Lemma 14 above.
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Part V. Appendix

Lemma a. Let P' be normal with respect to (Wy, —, W„, r). Let Y-<1. Let

P(y) = P'(Y+ y). Then P is normal with respect to (Wy, —, W„, r).

Proof. [2, §91] shows that P ~ (w)W(n, ••-, 1). Now by the normality of P',

P(y) may be expressed as a sum of functions of the form

cqîYio~Jo(9rYJi~Ji-(9nrY)t"-JyJo(9ry)h-(9ry)J"

and we must show that jtq~iYi°-J°(9rY)il-J'-(9r,Y)i»-J">Ay - At (t = 0,-,n),

where A, = -(x(logx)---(logr_1x)lf¡)~1. But this is clear from the fact that

0 £j, ^ i„ itq„ £ Ay -At, and Y, 9rY,-, and f^Yare -< 1 (cf. [1, §17]).
i

Lemma ß. Let P be normal with respect to (Wy,---,W„,r), and let

V,~ W, (i = 1, —,n). Then P is normal with respect to (Vy, —, Vtt, r).

Proof. Since W, ~ V„ the relation P ~ (w)W(n, ■■■, 1) implies P ~ (w)V(n,---,l).

The asymptotic inequalities of [2, §102] are readily verified.

Lemma y. Let W~ a logarithmic monomial in the divergence class in

F(a,ß), with \IF}~(W,9) < 0 in (a,ß). Then exp ¡X0W<\ in F(a,ß).

Proof. If P(y) = Wy, obviously P ~ (s)W(l) (with Wy = W). If x, is suf-

ficiently large and g is sufficiently small, the successive approximations of [2,§94]

can be made to converge to a function Y such that Y(xt) = g and Y«<1 in

F(a,ß). From standard uniqueness theory, Y=g exp (XiW. Since exp (xoW =

(expJx¿lF)expJxl W, exp \X0W<1.

Lemma S. Let W~ a logarithmic monomial in the divergence class and let

G<lin F(a,ß). Let [IF ~(W,9) have no zeros in (a,ß). Then

(a) if [IF}~(W, 9) < 0, every solution ofWy = G is < 1 in F(a,ß);

(b) // [IF}~(W,9) > 0, just one solution of Wy = G is -<1 in F(a,ß), and

every other solution is >- 1 in F(a,ß).

Proof,   (a) Any solution of Wy = G has the form

y(x) = gexp Í   Wdt- \   If G (exp f   Wds\dt
J XO J XO \ J t I

for some constant g. Clearly all such y are analytic in one and the same element

of F(a,ß), and y(x0) = g- In view of [2, §§95-97], and standard uniqueness

theory, such functions are -< 1 if g is sufficiently small and x0 sufficiently large.

Applying Lemma y one finds that y < 1 for any complex g and any relevant x0.

(b) [2, §§95-97] show there is one solution Y0 which is -< 1. Every other

solution is obtained by adding to Y0 a multiple of exp (X0W. But [/F]~(- W, 9) <0

wherever [IF}~(W,9) > 0, and exp $XoW= (exp fXo- WY1 ; and Lemma y shows
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that exp $Xo— W< 1. By [1, §13b], exp $XoW>-1, so every solution other than

Y0 is > 1.

Lemma e. Let c, x, and ö be numbers such that c ^ 0, x is real and positive,

and ô is real. Let F = (logtx)_í, let

W~ cx-^logx)-1 -(logt_1x)-1(loglx)-1 + Xlogt+1x)a'-(logt+sxr,

and let \IF~\~{W,ff) < 0 in (a,B). Then Fexp $X0W<1 in F(a,ß).

Proof. Fexp ¡X0W = F(x0)exp $xoiW + D(logF)), and the integrand is easily

seen to be ~ W, so the assertion follows from Lemma y.

Lemma £. Let (m0, —,mp) be a sequence of real numbers different from

(— 1, •■•,—1); let i be the least integer such that m¿ # —1. Let

JV ~ cxmo(logx)"" —(logpX)"1'' in Fia,ß), where c is a nonzero constant and

— nz^a < ß z%n. Let JV be analytic in VeFia,ß) and let x0eV. Let

M = (m,.+ l)-1c(logix)m, + 1(logi+1x)mi + 1 -(logpX)"*. Then

(a) (X0N ~ M(x) if JV e the divergence class ;

(b) if N £ the divergence class, (X0N ̂ 1 and there exists a unique complex

number A such that A + ¡XoN ~ M.

Proof. J^JV is a solution of Piy) = Dy - JV = 0, an equation to which the

entire Strodt theory may be applied. It is easily seen that M is the (unique) prin-

cipal monomial for P. Writing ¡X0N = M(l + Z), we see that Z satisfies ß(Z) = 0,

where ß(z) = z - i~DM/M)~1Dz — (JV — DM)/DM. Thus for some complex

number g, the general solution

zig,x) = gexp(  i-DM/M)dt +  Í  (((JV - Z)M)/M)exp Í i~DM/M)ds)dt
J XO J xo J t

becomes Z(x). Now ß(z) = 0 may be written Wz = G, where

W= —DM/M-(m¡ + l)x~1 (logx)~1 •••(log¡x)_1, which belongs to the diver-

gence class; and G = iN - DM)/DM < 1. Furthermore, [IF]~iW, 9) = -1 in

case (a), and = + 1 in case (b). By [2, §§95-97], accordingly, every choice of g

makes z(g, — )<1 in Fia,ß) in case (a), and just one choice of g makes

z(g>— )~<1 m case (b). In case (b), if g* is that choice, we have

zig, — ) = zig*, — ) + ig — g*)M(x0)M-1. (a) and (b) follow immediately from

this and from the relation JX0JV = M(l 4- Z).
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