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1. Introduction. A square matrix is called circulanti1) if each row after the first

is obtained from its predecessor by a cyclic shift. Circulant matrices arise in the

study of periodic or multiply symmetric dynamical systems. In particular they

have application in the theory of crystal structure [1].

The history of circulant matrices is a long one. In this paper a (block-diagonal)

canonical form for circulant matrices is derived. The matrix which transforms a

circulant matrix to canonical form is given explicitly. Thus the characteristic roots

and vectors of the original circulant can be found by solving matrices of lower

order.

If the cyclic shift defining the circulant is a shift by one column(2) to the right,

the circulant is called simple. Many of the theorems demonstrated here are well

known for simple circulants. The theory has been extended to general circulant

and composite circulant matrices by B. Friedman [3]. The present proofs are

different from his; some of the results obtained go beyond his work.

2. Notations.

Definition 2.1. A g-circulant matrix is an nxn square matrix of complex

numbers, in which each row iexcept the first) is obtained from the preceding

row by shifting the elements cyclically g columns to the right.

This connection between the elements afJ- of the ¿th row and the elements of

the preceding row is repeated in the formula

(2.1) atJ = ai_liJ_f,

where indices are reduced to their least positive remainders modulo n. If equation

(2.1) holds for all values of i greater than 1, it will hold automatically for i = 1.

It is possible to generalize the methods and results of this paper by allowing the

elements au of the circulant matrix to be square matrices themselves, all of fixed

dimension. This extension is outlined in §6 below.

Let A he an arbitrary matrix. If there is a nonzero vector x and a scalar X such

that the relation

Presented to the Society April 23, 1960 under the title Circulant and composite circulant

matrices; received by the editors November 13, 1961.

(!) Rutherford [5] uses the term continuant for circulant.

(2) See the example of a 5-circulant on p. 31.
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(2.2) AX> — XA

holds, then X is called a characteristic root (proper value, eigenvalue) of A, and x a

corresponding vector. There may be several vectors corresponding to the same

root, but no more than one root corresponding to the same vector, for a fixed

matrix A. The significant properties of a matrix are all known when its vectors,

roots, and invariant spaces are found(3). The process of finding these is called

"solving the matrix." The general circulant matrix is solved in this article.

The chief tool used in solving the matrix A is the relation PA = APe which is

established in Theorem 2.1. In this relation P is a certain permutation matrix.

This relation is effective because all the roots and vectors of F can be given.

Definition 2.2. P„ is then x n l-circulant

(2.3)

0,    1,    0,

0,    0,    1,

1,    0,    0,

0

0

Lemma 2.1. Let m = exp {2ni/n}, a primitive nth root of unity, and let

x(h) be the n-vector [l,co\ a)2h, —, co'"-1^]', a column of n numbers^). The

various powers of co, cok, are proper values of F„ and the x(h) corresponding

vectors:

(2.4) F„x(«) = x(h)(oh    (h - 1,2, -, n).

Equations (2.4) may be verified directly. Since the proper values of F„ are dis-

tinct, the corresponding vectors are linearly independent. Thus the matrix M,

whose «th column is x(h), is nonsingular. Combining (2.4) into a single matrix

equation gives

(2.5) PnM = M diag [co, co 2, • -,(ûn~\l].

From this M~lP„M = diag [•••] which solves P„.

Theorem 2.1. The equation

(2.6) PnA = API

characterizes the g-circulant property of A. That is, the matrix Ais a g-circulant

matrix if and only if relation (2.6) is valid.

(3) An invariant space belonging to A is a set of vectors M, closed under addition and

multiplication by scalars, such that Ax is a member of M whenever x is in M. In modern words,

M is a linear manifold which admits A. In older terminology, solving a matrix A means finding

its Jordan canonical form, J, and a matrix N which transforms A into J : N~lAN=J. The

diagonal blocks of/together with corresponding columns of AT exhibit the vectors, roots, and

the invariant spaces of A.

(4) The prime denotes the transpose operation.
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Proof. The matrix PnA is obtained from the matrix A by raising each row of A

and placing the first row of A at the bottom. On the other hand, the matrix AP. is

obtained from the matrix A by permuting each row cyclically, so that API is

obtained from A by g such cyclic permutations. The theorem follows.

3. General theorems. The general theorems of this section seem to be new.

They are easily established from Theorem 2.1, and are used in turn to decompose

a circulant matrix into block-diagonal form. At the end of the section, a recent

theorem of Lewis [4} is rederived.

Theorem 3.1. // A is a g-circulant and B is an h-circulant, then AB is a

gh-circulant.

The first step in the proof is to establish the formula

PgB = BPgh

by induction from the formula P„B = BP^ which is implied by the hypothesis.

The proof is completed by using the other part of the hypothesis, P„A—APg, to

derive the equalities

PnAB = APsnB = ABPgnh.

Theorem 3.2. Let h be an integer, 1 g h ;£ n. // A is a g-circulant, there is a

scalar w(h, A) such that

(3.1) Ax(h) = x(hg)w(h, A).

This theorem states that A carries one vector of P„ into some fixed multiple of

another vector of P„ (possibly the same one). The proof uses Theorem 2.1. First

one establishes the formula

(3.2) Pgnx(h) = x(h)togh

by induction from (2.4). From (2.6) and (3.2) one concludes that

(3.3) Pn{Ax(h)} = {Ax(h)}tog\

and (3.1) follows from this and from the additional remark that every vector

y satisfying P„y = ytogH must be a multiple of x(gh).

When A is a 1-circulant (classical circulant), g = 1 and (3.1) exhibits proper

values and corresponding vectors of A. The solution of A is obtained at once.

Theorem 3.3. Let A be a l-circulant, and let M be the n x n matrix with

hth column x(h): M = [x(l), x(2), •••, x(n)}. Then

M_1AM = diag [w(l, A), w(2, A),-, w(n, A)} = D.

The reader should note that this decomposition (solution) of the matrix A is
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effective, since equation (3.1) actually provides a formula for the quantity wih,A).

This is so because the first element of x(gñ) is 1, so that w(n, A) is the (well-defined)

first element of Axih) :

wih,A) = aLy + al2œh+ ■■■ + alnœ(n~1)h.

A theorem of Lewis [4] is corollary to the above results. The theorem asserts

that, if A is 1-circulant, det A is a symmetric function of the elements of A if and

only if A is of order 1 or 3. A short proof is the following.

If A is of order n 2; 3, det A = w(l, A)w(2, A) ■■■ win, A), as is evident from

Theorem 3.3. This factorization of det A is unique for polynomials in the in-

determinates a¡, the elements of the first row of A. Thus if det A is to be unaffected

by the interchange of a2 and a3 say, then each w(n, A) must be mapped by the

interchange into w(/i', A) for some n'. In symbols,

ay + a3coh + a2co2h + ••• = at + a2œh' + a3œ2h' + —,

whence

n = 2ñ' = 2(2/i) mod n

for every h. If n ^ 3, this implies n = 3. The assertions for n < 3 are subject to

simple verification.

4. Prime circulants. The solution of a g-circulant matrix offers special diffi-

culties if g and n have a common factor greater than unity. In this section, we

show how to handle the case where g and n are relatively prime ; in the next section,

we take up the case g = 0, and finally in §8, a method is developed for the general

case where g and n have a common factor between 1 and n. The method of §8

requires results on circulants, the elements of which are themselves matrices.

These results are natural generalizations of the results of §§2-5; the proofs of the

general results are obtained by a natural extension principle, as will be indicated

in §6.

Lemma 4.1. If A is a g-circulant, the relation

(4.1) wih, A") = wigk~xh, A)wigk~2h, A) - wigh, A)wih, A)

holds.

Proof. From (3.1) the relation Axig'h) = xigt+1h)wig'h, A) follows. From this,

one obtains by induction the relation

(4.2) Akxih) = xigkh)wigk-lh, A)wigk~2h, A) - wigh, A)wih, A).

On the other hand, Theorem 3.1 shows that Ak is a gk-circulant, so that from

(3.1) one also obtains the relation Akxih) = x(g*/i)w(/i, Ak). Combining this result

with (4.2), the assertion of the lemma is obtained.
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The following definition gives an equivalence relation (introduced by Friedman

[3]) on which the solution of a g-circulant matrix depends.

Definition 4.1. Let (g,n) = 1. The equivalence relation "~" on the residue

classes 1,2, —, n mod n is defined as follows:

hy ~ h2 <->• 3q,     hy = h2gq (mod n).

Thus hy, h2 are equivalent if one arises from the other on multiplication by a

positive power of g. This definition is obviously reflexive and transitive; it is

symmetric because of Euler's generalization of Fermat's little theorem :

g*(n) = 1 (mod n). Thus h2 = hygq*{n)-q (mod n).

Since "~" is an equivalence relation, it separates the residue classes 1,2, ••■, n

into equivalence classes (mutually exclusive and exhaustive). The class to which h

belongs is denoted by C(h, g, n); it consists of the numbers h, hg, hg2, ■■-, hgf~1

(mod n), where/is the smallest exponent for which the relation

(4.3) hgf = /¡ (mod n)

holds. One sees that/is the index to which g belongs mod {n/(h, n)}.

The next theorem gives a block diagonal form of a g-circulant matrix. It is

known that the roots and vectors of a block diagonal matrix can be found by

solving the blocks individually (as lower order matrices). Thus, Theorem 4.1

reduces the problem of solving A to the problem of solving matrices of lower

order. The matrices of lower order are then solved explicitly.

Theorem 4.1. Let A beannxn g-circulant matrix, (g, n) = 1. Let {C(h,,g, n)}

(i = 1,2, —, i) be a complete set of equivalence classes under the equivalence

"~ ", where the ith class hasf, elements. Thus hy, h2, ■•-, ft, forms a complete

set of representatives of these equivalence classes. The block-diagonal form of A

is given by

(4.4) N-'AN = diag [_W(hy, A), W(h2, A), -, W(h„ A)} = Dlt

say, where

N   =     [X(hy),X(h2),-,X(ht)},

(4.5) X(h,) = tx(h,),x(gh,\ -,xtgS'-X)} ,

W(h„ A) = PJ1 diag {w(h„ A), w(gh„ A), -, w(gf'-1h„ A)} .

In the statements of this theorem, W(h,, A) is an/ x f, matrix (called a broken

diagonal matrix by Friedman [2; 3]); X(h,) is a matrix with/ columns and n

rows; N is the n x n matrix obtained by writing the matrices X(h,) one beside

the other. Since the columns of N are the vectors of P„ in a particular order, it is

clear that N is invertible. The matrix W(h, A) has in fact the form
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(4.6)

0, 0,

w(h, A), 0,

0, w(gh, A),

0,        w(gf~1h,A)

0, 0

0, 0

Theorem 4.1 is essentially a restatement of Theorem 3.2, using the notation of

Definition 4.1 and the remark embodied in congruence (4.3). Hence Theorem 4.1

requires no proof, but only verification of the relation AN=NDX. This amounts

to a series of equations, of which a typical set is (see Theorem 3.2)

(4.7)

Ax(h¡) = x(ghi)w(hh A),

Ax(gh¡) = x(g2h¡)w(gh¡,A),

Ax(gfi~1hi) = x(hi)w(gf'~1hi,A).

Lemma 4.2. Let p be a root of W(h¡, A), and v a corresponding vector. Then ii

is a root of A, and X(h¡)v is a corresponding vector. Moreover, all roots and

vectors of A arise in this way.

This lemma is also subject to direct verification. Thus a complete solution of A

is obtained from the following sequence of lemmas, which show how to solve

a typical matrix W(h, A).

Lemma 4.3.   Let af af-x ■■■ax #0. Then the roots of the f x f matrix

0,       0,        -,        a,

(4.8) W = •u

o,

o,

«2.

0

0

are theffth roots of a^ af-x ••• ax, and a vector corresponding to the root X is

\Xf~l, axXf~2, a2axXf~3, ■■■, af_xaf_2 ••• ax]'.

This lemma is easily verified directly.

The following discussion is concerned with the case afaf-x ■•• ax = 0.

Lemma 4.4. Let W be the matrix (4.8). Let ar = 0 and ar+xar+2---ar+k =£0.

Let Rr¡k+1 = (E¡j) be the rectangular matrix of (k + 1) columns andf rows with

all elements zero except for the following

Then

Eir — 1, F2r+1 — ar+1, ■■•,Ekr+k-x — ar+kar+k_x ••■ ar+x.

WRr k+x — Rr k+xHk+x,
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where Hs is the square matrix of order s with all zeros except for Vs in its main

subdiagonal:

0, 0,

1, o,

Hs =     0,      1,

0,      0,

The result may be verified directly.

0,

0,

0,

0

0

0

i,    o

,   H, = [0].

Lemma 4.5. Let W be the matrix (4.8) and let [Rri, (l, —, Rr„,,„] be a complete

set for W of the matrices Rr,k+1 introduced in Lemma 4.4, each Rr , being of

maximal size. Then

is nonsingular and

N = lRr,,t,> Rr2,t2< •'"' Rr„.tP_]

WN = Ndiag [Htl,Ht2,-,Htpl

That Rrt is of maximal size means that ar = 0, ar+lar+2 •■■ ar+t_y ^ 0, and

ar+t = 0. Thus if the Rr.(. in JV are in proper order, a certain complete subdiagonal

of N will have all nonzero elements while all other elements of N are zero. It follows

that N is nonsingular as needed. Of course, diag [//,,, —, Z/,J is a Jordan form

for W so that W has been solved.

5. Zero circulants. If g = 0, nth order matrix A satisfies P„,4 = A and all

rows of A are the same. If r is the row vector formed from elements of a row of A,

then

(5.1) A = xin)r, x(n) = [1,1,-, 1]'.

If x is a characteristic (column) vector of A corresponding to characteristic value

X then

Ax = x(n)rx = xX.

If X # 0, since rx is a scalar, x is proportional to x(n) and X = rxin) = win, A).

If X = 0, x is a solution of rx = 0. Assembling x(n) and any (n — 1) linearly

independent solution vectors of rx = 0 to form the columns of matrix N, one

obtains

AN = N diag [win, A), 0,0, • • •, 0]

with nonsingular N; this solves A.
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The same solution of A is valid if A is the zero matrix.

If A is not identically zero but w(n, A) = 0, assemble nonsingular matrix N

from the column vectors x(«), r'/rr', and (« — 2) solution vectors of rx = 0

linearly independent of x(n) and each other. Then one may readily verify by (5.1)

that

AN = NJ

where Jordan matrix J is zero except for a unit element in the first row, second

column.

6. Composite circulants. The solution of «th order g-circulant matrices in

case g and « have common factors between 1 and « can be reduced to the case of

zero circulant composite matrices, a composite matrix being a matrix whose

elements are themselves matrices. It is therefore expedient to inquire to what

extent previous theorems apply to composite matrices.

Unless indicated otherwise, the composite matrices considered are square

matrices of order « with square submatrices of order m as elements. Composite

matrices are indicated by bold-face type.

Matrix P„ is the composiite matrix of the form (2.3) with the zero elements of

that form replaced by zero matrices of order m and the units replaced by unit

matrices of order m. The analogues of equations (2.4),

P„x(«) = x(«)oA       (« = 1,2,-,«),

are valid with to* the scalar matrix of order m, i.e., <oh times the identity matrix,

and x(«) = [1, to*, a>2*, ■■■,(oih~1)h]'. The columns of x(n) are seen to span the

invariant subspace of P„ corresponding to characteristic value coh. Since these

columns are linearly independent and independent of the columns of similar

composite vectors from other subspaces of P„, composite matrix M, whose «th

composite column is x(n), is nonsingular, and the analogue of (2.5) holds

M - 'P,M = diag [<o, ß>2, -, <a""1,1].

The composite analogues of Theorems 2.1 to 3.3 are established by a mere

reinterpretation of the various steps of the proofs. For example, the critical step

in the proof of the analogue of Theorem 3.2 would now be stated as follows. From

P„{Ax(«)} = {Ax(h)}(ogh

one sees that composite vector Ax(«) is in the invariant subspace of P„ corres-

ponding to characteristic value œgH. There exists therefore an m x m matrix

w(g«, A) exhibiting the dependence of the columns of Ax(h) on the basis vectors

in that subspace, the columns of x(gn):

Ax(«) = x(g«)w(gn,A).
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As before w(g/i, A) is constructively given as the first submatrix element of com-

posite vector Ax(n).

The conclusion of Theorem 3.3 now shows that the solution of composite

1-circulant A is obtained by solving the simple matrices w(n, A). For if N,, trans-

forms w(/i, A) into Jordan form then M diag [Nt, N2, —, N„] will so transform A.

No difficulty arises in the extension to composite matrices of the definitions,

proofs, and results of §4 leading to Theorem 4.1. That theorem shows that in

the composite case the solution of prime circulant A has been reduced to

the solution of composite matrices W(n¡, A) of lower order. The result of Lemma

4.2 that roots and vectors of A are obtained from those of the various W(n¡, A) is

also valid. But the detailed decomposition of Wih¡, A) given in the lemmas

following cannot be carried over directly to the composite case.

In the condensed notation of Lemma 4.3, let af stand for w(g,_1n,A) and

a for w(n, Af) = afaf-y •■• Hy. Then W(/i,A) = P^1 diag(a!,a2, •••,a/) and

[W(b, A)Y — diag (a, a, —,a). Let p be a matrix of mth order transforming a

into Jordan form:

p"1ap = diag(j1,j0)

where jt is nonsingular and j0 is nilpotent, i.e., j0 contains those diagonal blocks

of the Jordan form with diagonal elements zero. Then jx has an/th root(5),

a matrix j such that j-*" = jx. Let (p1; p0) be a partitioning of the columns of p

conformai with that in diag (j1; j0). Then if y is the composite column vector

y = [Pi(j0)/_1> aiPi(#)/_2> •", a/_1a/_2 •■• *2*iPi(i<l>)0]'

where <p is an/th root of unity, one has

W(n, A)j> = Pfl diagi2iy,2i2, —.a^y = yj«p.

Since (j> may take any of the / values exp [27t if//] (i = 1,2, •••,/) one may

assemble /composite columns y, one for each <b, into rectangular matrix Y.

The columns of Y are linearly independent, as one may show.

If a is nonsingular then Y is square and nonsingular and

V-1 W(n, A) F = diagWo, Wi, -, W/-i)

where the various <p¡ are the /th roots of unity in the order determined by the

columns of Y. Finally, if p[ is a matrix which transforms j<¿>¡ into Jordan form,

then YD, where D=diag(pó, pi, ••-, p^--1), transforms W(/i, A) into Jordan form.

(5) If g(X) is analytic at Ao then ^(A0 + h) may be written as a power series in h with co-

efficients determined by g and Ao. If matrix M = XqI + H where H is H, of (4.9) for some í

then g(M) is given by the same series with h replaced by H. If matrix A is a direct sum of matrices

of form M, as ji is, then g(A) is the direct sum of the separate summands g{M). Since H, is nil-

potent the various series terminate.
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In discussing the case of singular a it is convenient to label as special vectors

those composite vectors whose elements are simple vectors, all the simple vectors

but one being zero. If a is singular, one or more of the a, is singular. If atis singular

and z is a characteristic vector of ak corresponding to root zero, then the special

vector with z as its fcth element is characteristic for W(/¡, A) corresponding to

root zero. Further every vector annihilated by W(/¡, A) may be written as a linear

combination of such special vectors; for in order that W(/¡, A)x = 0, with x being

some composite vector, it is necessary that the separate elements of x expanded

into special vectors be annihilated. Indeed, vectors brought to zero by a power of

W(ñ, A) may be written as linear combinations of special vectors, as one may

establish by induction. Thus a set of base vectors which lead to the nilpotent part

of the Jordan form for W(ñ, A) can be obtained from the simple vectors anni-

hilated by ak or akak-y or ••■ orakat_1 ••• a^_r where ak is singular, 0 = r 5¡/m — 1

and subscripts are considered to be reduced modulo /

If appropriate vectors annihilated by a power of W(n, A) are assembled in

proper order to a rectangular matrix Z, the matrix (YD, Z) is a square nonsingular

matrix which transforms W(/¡, A) into Jordan form.

7. Composite zero circulants. It is interesting and useful to exhibit what part

of the solution of composite zero circulants can be performed explicitly. The basic

relation is the analogue of (5.1),

(7.1) A = x(n)r,       x(n) = [/,/,-,/]'.

This shows that any composite vector y is carried by A into a composite vector in

the space S spanned by the columns of x(n) :

Ay = x(n) [ry].

Thus a composite vector whose elements are simple mth order column vectors

either lies in S, is carried into S by A, or is a characteristic vector of A not in S

corresponding to proper value zero. If there are fc linearly independent charac-

teristic vectors in this last class, let Z be a fc x nm matrix whose columns span the

space of these vectors.

If N is any nonsingular mth order square matrix the columns of x(n)N span S.

Finally let Y be an [(n — \)m — fc] x nm matrix whose columns span the

remaining space of vectors carried by A into a nonvanishing vector in S. Assemble

these three rectangular matrices into nonsingular square matrix R0.

(7.2) R0 = [x(n)N,Y,Z].

Then

AR0 = [x(n)w(n, A)^, x(n)rY, 0].

Put N~ xw(n, A)N = a to obtain
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ARn Rn

a     N_1rY    0

0 0 0

0        0 0

the elements of the composite third order matrix factor on the right being rect-

angular matrices of proper orders.

One may now specialize N to be a matrix transforming w(n, A) to Jordan form:

a = diag \Wy, W0} where W0 is nilpotent and Wx is nonsingular. If Bx and B2

give a conformai partitioning of N~x rY, then

Wx 0     Bx 0

0 W0  B2 0

0 0     0 0

0 0     0 0

A further transformation using matrix Rx,

io- wr% o

Rö'ARo

(7.3) Rx =

0 /

0 0

0     0

0

/

0

0

0

/

eliminates B, to obtain

R;1 RÖ1 AR0RX = diag[Wy,My,0}

where

(7.4) My   =
Wo

0

B2

0

The transformation of A to Jordan form is completed by solving My. Note that

if w(n, A) is nonsingular, My is vacuous and A has been solved.

If R2 transforms My to Jordan form V0,

(7.5)

then

R21M1R2 = V0

R3 = diag[/,R2,/]

transforms diag [Wy, My, 0] to Jordan form.
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The only proper value of My is zero. If (yu y2)' is a characteristic vector,

y y ¥=0. For if (0, y2) were characteristic for My then the appropriately expanded

vector (0,0,^2,0,0)' would be characteristic for A and would lie in the space

spanned by the columns of Z and not those of Y.

Hence B2y2 = 0 has no nontrivial solutions, and B2 has no more columns

than rows. The dimension k of the space spanned by Y is seen to be no greater

than the dimension of W0. Thus k < m and matrix My is of order no greater

than 2m. The solution of nmth order composite zero circulant A has been reduced

to the solution of mth order matrix w(n, A) and matrix My of order no more

than 2m.

Something further may be uncovered using the nilpotence of W0. Simple

induction establishes

Vws wg-%

so that if W0P~1= Othen M1p= 0. The order of the largest canonical diagonal

block in Jordan matrix W0 is therefore no greater than (p - 1) and the largest

block in the form for My of order no greater than p.

Note that if y,Mty,Mfy, --^Mfy span a canonical invariant subspace of

My then Mty,Mfy, •••,Mly span an invariant subspace of W0. Hence, there is

a correspondence in which the individual blocks in the Jordan form forMt are

of the same order or one order higher than the corresponding blocks of W0.

The above results on simple and composite zero circulants are summarized in

the following theorem :

Theorem 7.1. If the submatrix elements of nth order composite zero-circulant

matrix A are mth order square matrices atJ, and if a Jordan form for

w(n, A) = au + a12 + ••• aln is written diag[W1, W0"\ where Wy is nonsingular

and W0 is nilpotent, then a Jordan form for A is diag [Wy, V0,0] where V0 is

nilpotent, the order of V0 is no more than twice the order of W0, and there is a

correspondence in which the individual diagonal blocks of V0 are either of the

same or one order higher than corresponding blocks of W0.

A matrix transforming A to Jordan form is R0RyR3, the matrices R¡ being

defined in equations (7.2), (7.3), and (7.5) respectively.

It is noteworthy that the statements in the theorem about the relations between

W0 and V0 are precise. For one may readily construct examples of pairs of nil-

potent matrices W0 and V0 with any of the permissible correspondences.

8. Nonprime circulants. There remains the case of nth order g-circulant

matrices with g ^ 0 and g having a factor greater than 1 in common with n. It is
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possible to reduce this case to the case g = 0 by regrouping the submatrix elements

of A into (larger) submatrices. The theory of §7 is then applied.

Let A be a (composite or ordinary) n x n g-circulant with (g, «) > 1. If g = yh

and « = ôh, then ôg = yn, and

Pfr-P^APi-AP*n' = A.

The submatrices needed are ô times as large as the elements of A in the original

partitioning (in which A is a g-circulant), i.e., m' = dm.

9. Generalizations. An immediate generalization of the above theory is ob-

tained by replacing P in the discussion by any similar matrix Q, i.e., any non-

derogatory Q having the same roots as P. For then there exists a transforming

matrix S such that

g = S_1FS.

If A has the g-circulant property with respect to Q, i.e., if

QA = AQ',

then similar matrix SAS'1 is truly g-circulant, i.e., g-circulant with respect to P:
P(SAS~1) = (SAS~l)Pg.

The theory of g-circulant matrices may be expected to remain valid in number

fields other than the complex field provided that unity has k distinct kth roots for

every k, 2 ^ k ^ «.

Since the results of this paper flow almost exclusively from the equation

PA = APg, many generalizations suggest themselves at once.

10. Applications to dynamical systems. The determination of the normal

modes and natural frequencies of oscillation of a lumped parameter electrical or

mechanical system requires the calculation of the roots and characteristic vectors

of an appropriate matrix. If the system is sufficiently symmetrical that matrix may

well be circulante).

For definiteness consider a system of « point masses nij (j = L •••,«) inter-

connected by springs and constrained to having but one degree of freedom each.

If q} is a generalized coordinate locating mass m,- so that the kinetic energy of the

system is

1    "

¿ j = i

and if the potential energy stored in perfectly elastic, massless springs is represented

by_

(6) Similar applications are considered by Egerváry [1 ] and at some length by Rutherford [5].

See also Whyburn [7] for an application of circulants with variable elements.
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4 n      n 1     "

-r- Z  Z kjh(qj-qh)2 +TI kjjqj,
zj = i/i = i zj = i

then the equation of motion for the jth mass is

(10.1) m/qj + Z kjh(qj - qh) + k¡jq¡ = 0.
a = i

Here nonnegative constants kJh are geometrically modified spring constants which

by the Newtonian equality of action and reaction form a symmetric set,

fcy/i = fc*j •

The masses are moving in a normal mode at natural frequency to if

qj = afeim', ; = l,2,-,ft,

with appropriate constants gj0). Here i = <J — 1. Substitution of these expressions

for g^- into equation (10.1) shows that frequency to is the square root of a charac-

teristic root and the qj0) components of the corresponding characteristic vector

of the dynamical matrix

A   = M~\K - S)

where

M = diag(my,m2,---,mn),

K  = diag(Ky,K2,-,K„),

Kj=   Íkjh,

and

5 = (fc;,) - diag(fcn, fc22, -,fc„).

As a first example consider n equal masses constrained to move on a circle,

connected to one another and to fixed points by springs in a completely symmet-

rical way so that, in equilibrium, the masses are equally spaced around the circle

and the system of springs and masses appears the same viewed from each mass.

Small motions of the jth mass are then governed by an equation of the form of

(10.1) with qj the displacement ofthat mass along the circle.

The system appearing the same from each mass means that

kj,j+h = fcj + l,j + Ji+l

for every h and/ Thus S is 1-circulant and, since K and M are here scalar matrices,

A is 1-circulant.

If the constraint of the masses to the circle is removed, the equations of small

three-dimensional motions have the same appearance as (10.1) with q¡ replaced

by (\j = (xj, y¡, zj)', m¡ replaced by m,I3 and the kjh replaced by appropriate
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third-order matrices kJh. It then appears that S and K are composite 1-circulant

and, since M is again a scalar matrix, A is composite 1-circulant also.

One may see that equal masses arranged symmetrically as though strung on a

necklace spiralling around a torus also give rise to a composite 1-circulant dyna-

mical matrix.

For a different example consider two parallel rows of equal and equally spaced

masses, numbered down one row and back up the other, the masses each being

connected by springs to masses in the opposite row. (Lateral oscillation of a truss

might be approximated in this manner.) Away from the ends of the rows, the

spring arrangement being the same as viewed from each mass means

kj,h — kj+ytb-y .

Appropriate connection of the end masses to fixed points permits this relation to

hold for all j and h. It follows that S is (— l)-circulant. As before, K and M are

scalar matrices so that the roots of dynamical matrix A are simple functions of the

roots of S and the vectors of A and S agree.

It is of interest to determine which circulant matrices could arise from dynamical

matrices. More specifically, if S is symmetric and has zeros on its main diagonal,

for what g can S be g-circulant? In answering this question (completely) we shall

show that S is a composite 1-circulant.

Write su for the ii,j)th element of S. The hypotheses are :

Symmetry: s^ = sJt,

Zero diagonal:   sH   =0,

g-circulant: stJ = s»-i,j-f   iUj = 1, •••,»).

With a special notation for elements of the first row of S

su = °~j >

the g-circulant property implies

The zero diagonal property gives

°~g-i(g-i) = 0.

If (g — 1) and n are relatively prime, (g — 1) has an inverse modulo n and every

positive integer no greater than n may be represented as

g - ¿(g - 1)   mod n

for some i. Thus, if S 7e 0, (g — 1, n) = h =£ 1.

In the matrix notation, since S is g-circulant
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SPg = PS

and, for any k,

SP"g = PkS.

In particular, if k = n/h, kg = [«(g — 1)/«] + fc so that

pkg _ pk

and

spk = pks

This last may be interpreted to mean that S is a composite 1-circulant matrix of

order « with submatrix elements of order fc = n/h.

As a composite 1-circulant S is symmetric if its elements are symmetric and if,

for any i,

a¡+i — <*¡-i,

i.e., pairs of elements of the first row at the same distance from ax are equal.

In summary, «th order nonvanishing matrix S can be symmetric, have a zero

main diagonal, and be g-circulant if (g — 1, «) = n # 1. If so, S is also composite

1-circulant of order « with symmetric submatrix elements, pairs of which at the

same distance from the main diagonal are equal.

As a final example consider twelve masses equally spaced around a circle and

constrained to move along frictionless tracks which lie in the plane of the circle

and normal to its circumference. Number the masses 1 through 12 clockwise,

as in the figures.

Let springs of equal modified spring constant fey = x connect the masses

whose representative points are joined by straight lines in Figure 1. Springs with

spring constant y connect the masses joined by the lines of Figure 2, and similarly

for springs with spring constant z and w in Figures 3 and 4, respectively.

Figure 1 Figure 2

Springs with ku = x Springs with ktt = y
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Figure 3

Springs with ku

Figure 4

Springs with k,j

These arrangements of springs look the same from each triple of masses

(1, 2, 3), (4, 5, 6), (7, 8, 9), or (10, 11, 12). Their dynamical matrix S is therefore

composite 1-circulant with submatrix elements of order 3. The first composite

row of S reads

0xw:z0y:0x0:z0y

x0z:0y0:xwz:0y0

wz0:y0x:0z0:y0x.

One may verify that as a noncomposite matrix S is a 5-circulant of order 12.

If the springs of constant w are absent, if w = 0, S is also (— l)-circulant.
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