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1. Introduction. Let K be the class of all closed plane convex sets K with given

area v and CK be the centroid of K. If the line l(P, 9) lies in the plane of K through

the point P and with direction 9, 0 = 9 ^ 2n, we denote the moment of inertia

of K about the line l(P, 6) by I(K, P, 9). The maximum moment of inertia

IM(K,P) and the minimum moment of inertia Im(K,P) about the point P are

defined by:

IM(K,P)= max I(K,P, 9) = I(K,P,9M),

Im(K,P) = min/(K,P,0) = I(K,P,9J,
6

where 9M and 9m are called the principal directions of the moments of inertia

of K with respect to the point P. It is known [1] that IM(K,P) and Im(K,P)

exist for a given K and a fixed point P, and \9M - 6m\ = n/2.

The isoperimetric inequality to be established in this paper arises from the

problem proposed by Truesdell and formulated by Keller, namely: find the

shape of the strongest column with convex normal sections and with a given

volume and height. To solve this extremal problem it is necessary to solve the

following isoperimetric problem first: determine the shape of the convex set

RA e K such that

/m(RA,CKA) = max Im(K,CK) = max min I(K,CK, 9).

This problem was investigated previously by Keller and others [2]. It was con-

jectured by Keller and Ungar that the solution figure is an equilateral triangle

RA e K. Keller also pointed out that "there is little doubt" about the correctness

of their conjecture and he used it to solve TruesdelPs problem [2]. It is the pur-

pose of this paper to give a proof of the conjecture. We now state it as

Theorem. If K e K then

In(K, CK) = min I(K, CK, 9) Ï -~.

The equality sign holds, if, and only if, K is an equilateral triangle RA e K.
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As ImiK, CK) is small if the diameter of K is too large, we may consider only

the sets of K with diameter less than a fixed number. Hence, the existence of

solution follows from the Blaschke's compactness theorem [3]. The difficulty in

proving our theorem is that convexity is a necessary condition for the existence

of solution, but it is difficult to give it an analytic characterization so that Euler's

variational technique would become applicable. Accordingly, the present proof is

carried out by direct comparison of ImiKA,CKA) with /m(X,CK) for XeK,

Therefore, this proof does not depend upon the existence proof of solution.

It should be mentioned again that without loss of generality we shall restrict K

to be the class of closed bounded plane convex sets with given area v.

2. Moment of inertia and area-preserving affine transformation. Since an affine

transformation is linear, it preserves convexity. As we shall see, the area-preserving

affine transformation will play an important role in this proof. First, we prove the

following lemma which is simple and essential to further developments.

Lemma 1. // A is nonsingular affine transformation, then AiCK) = CA(K).

That is, the centroid is affinely invariant.

Proof. Let the matrix of A relative to a fixed rectangular Cartesian coordinate

system be

/    «1 by\

\ a2  b2 y

If (xc , yc ) are the coordinates of CK, hen the coordinates of AiCK) are given by:

(1) XcK = ayXCfl + bxyCK,  yCf. = a2xCjc + b2yCjf.

On the other hand, the coordinates of CA{K) are defined by :

*«*« = vçmSi *d*d*= too if{aiX+biy)dxdy
A(K) K

(2) = ayXcK+byyCK,

ycAiK) =   y{\{K)) ) j   ydxdy = a2xCK + b2yCK,

A(K)

where ViAiK)) and F(X) denote the area of AiK) and K respectively. Now (1)

and (2) indicate that AiCK) and CA(K) coincide and the lemma is proved.

To see the effect of an area-preserving affine transformation A upon the moments

of inertia /(/C, CK, 0) of a given set K e K, we prove the following two lemmas :

Lemma 2. If KeK and /M(/C, CK) > ImiK, CK), then there exists a set

AiK)e K such that
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Im(A(K),CAW)>Im(K,CK).

Proof. Choose CK as the origin of a rectangular Cartesian coordinate system

and choose the x- and y-axes coincided with the principal directions of I(K, CK, 6)

so that

Let

(K, CK) = J  jx2dxdy,     IM(K, C,d =  f   \y2dxdy,      [ jxydxdy = 0.

(ax   bx   |

\ «2   b2 /

be the matrix of an area-preserving affine transformation A relative to the fixed

coordinate system. It follows from Lemma 1 that

(3)

(4)

and

I(A(K),CA(K),0)   =   j jy2dxdy= j j(a2x + b2y)2dxdy

A(K) K

= a2Im(K,CK) + b22lM(K,CK),

l((AK), CA(K),^j  = j j x2dxdy = | j(axx + bxy)2dxdy

A(K) K

= a2Im(K,CK) + b\lM(K,CK),

i i
(5) J  J     iydxdy m axa2lm(K, CK) + bxb2IM(K, CK).

A(K)

So far A is only restricted to be area-preserving, i.e.,

(6) det(4) = - bxa2 + axb2 = 1.

We may, therefore, require that

(7) axa2Im(K, CK) + bxb2IM(K, CK) = 0.

That is, the x- and >>-axes of the same coordinate system are also the principal

directions of I(A(K), CA(K), 6). From (6) and (7), we have

W °2    a\ + b\ß'   b2-a\ + b\ß>

where

(9) ß = IM(K, CK)/Im(K, CK) = 1 + e,   £>0.

It may be noted that ß > 1 and the denominator in (8) does not vanish, if

a\ + b\± 0.
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From (3), (4) and (8), we see that the affine image A(K) of K will be the set

A(K) to be exhibited if, and only if, the following two inequalities are satisfied:

a\ + b\ß >  1,

b\ß2 + a\ß > (a\ + b\ß)2,   or ß > a\ + b\ß.

That is, if

(11) 1 4- 8 > a\ 4- b\ 4- bfe > 1,

where we have made use of (9) and the fact a2 + bxß > 0. Now if we put

a2x + bx2=l,       0<b2x<l,

then the inequalities in (11) are automatically satisfied and hence our lemma is

proved.

From now on we denote by J(K, P) the polar moment of inertia of K about

the line through the point P and perpendicular to the plane of K. Also we note

that

(12) J(K, P) = I(K, P, 9) + i(k, P, 9 + y),      0 g 9 ^ 2n.

Lemma 3.  If Ke K, Im(K, CK) = IM(K, CK) = I, then for every area-preserving

affine transformation A with CK as fixed point,

J(A(K), CA(K)) ̂  J(K, CK).

Proof. Let

Uy        by    \

a2    b2 ;

be the matrix of A relative to a fixed coordinate system with CK as origin. Pro-

ceeding precisely in the same way as what we have done in the previous proof,

we obtain

— bxa2 + ayb2 = 1,

(13) I(A(K),CMK),0) = (a\ + b22)l,

i(a(K),caw,y) = («î + *>î)J-

It is geometrically clear that J(K, P) is invariant under any rigid rotation about

the line through the point P and perpendicular to the plane of K. Furthermore

J(K,P) = Im(K,P) + IM(K,P).

Thus to evaluate J(A(K), CA(K)), we may assume that the x- and y-axes are also

the principal axes of I(A(K), CA(K), 9). Hence, by (5)
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aya2 + byb2 = 0,

ImiAiK), CA(K)) = ia\ + b\)I,

lMiAiK), CA(K))  = (a2 + b\)l.

425

Solving the first equation in (13) and the equation (14) for a2 and b2, inserting the

resulting expressions for a2 and b2 into the first equation in (15) and then adding

the corresponding sides of the equations in (15), we obtain

JiAiK), CA(K)) = (^p-p + a\ + b\ ) JiK, CK)/2.

This shows that

JiAiK), CA(K))^ JiK, CK),

and the lemma is proved. It may be noted that the equality sign holds, if, and

only if, A is a rigid rotation about CK. We shall also use this fact in proving the

theorem.

3. An extremal problem in polar moments of inertia. In proving the theorem we

shall use Lemma 6 heavily. However, to prove Lemma 6 the following two

lemmas are going to be used.

Lemma 4. Let (— s, 0), ib,h), ic,h), (s, 0) with s > 0, c > b, ñ > 0 be res-

pectively the coordinates of the vertices A, B, C, D of a quadrilateral. If the point

E with coordinates (£, h) and the point Ps with coordinates (a, ß) are given and

if c > £ > b, ß z% 0, then either

JiAABD, Ps)   > J(A AED, Ps), or

(16)

J(A ACD, Ps) > J(A AED, Ps).

/  &AED, Ps,

Figure 1
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Proof. First, we compare the moments of inertia of the three triangles about

the line through the point Ps, and perpendicular to AD. To this end we consider

how /(A AED, Ps, jt/2) varies with the abscissa ¿j of the point E when E moves

along the segment BC. To simplify computations we are going to use the following

known results [1] : If a particle whose mass is one-third that of the triangle be

placed at the middle of each side, the moment of inertia of the triangle about

any line is the same as that of the system of the three particles. Clearly, the areas

of the three triangles, A AED, aABD, and AACD, are all equal. Without loss

of generality, we may assume the mass of each triangle to be 3. Thus

,(^D,/>,¿)-^ + (.-^)%(«-^)'.

That is, /(A AED, Ps, n/2) as a function of £ for a fixed value of a is a concave-

upward parabola. It achieves minimum at £ = 2or. Consequently, on any closed

interval of £ its maximum is at the end point of the interval, so that we always

have either

l( AABD, ¿wy \ > I ( AAED, Ps,^\  , or

(17) .        ,    .
/( AACD, P„— \ > I Í AAED, P„^-\ .

Since the segments AD and BC are parallel,

/( AAED, A, 0) = /( AABD, A, 0) = /( AACD, A, 0).

Moreover, the centroids of AAED, AABD, AACD are collinear and they are on

the line parallel to the segment AD. It follows from the "parallel-axis" theorem

[1] that

(18) /( AABD, Ps, 0) = /( AACD, Ps, 0) = /( AAED, P„ 0).

Now (16) is a direct consequence of (17), (18) and (12). The lemma is now proved.

Lemma 5 is an approximation theorem of a special convex set by convex

polygons, but the approximation polygons have to satisfy certain constraints.

Since a theorem precisely of this form is not available, we state it as a lemma and

omit the proof which is similar to those as given in [3]. In what follows, we use

dK to denote the frontier of K and F(X) the area of K. If A, B are two points or

one of them is a point, we use p (/I, B) to denote the usual distance between A and

B. If K is a set, we use l/(K, 8) to denote the set:

UiK,S) = {X\piX,K)<ô}.

Let Ky, K2 he two convex sets. Let ôy be the lower bound of the positive numbers

ô such that UiKy, ô) zo K2 and <52 be the lower bound of the positive numbers ô
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such that U(K2, ô) => Kx. The distance p* between the two convex sets Kx, K2 is

defined by the formula :

p*(Kx,K2) = ôx + ô2.

Lemma 5. // Ke K, dK contains the segments PSPX and PSP2 and no larger

segments PSP[*, PSP* and if Sx, S2 are support lines of K at Px, P2 respectively,

then for every e > 0, there is a polygon H with the properties: (i) p*(K, H) < e,

(ii) dH contains PSPX, PSP2, (iii) Sx, S2 are lines of support of H at Px, P2

respectively.

Lemma 6. Let APSAXA2 be a triangle with p(Ps,Ax) > p(Ps,A2) and let A*

be the point on PSAX and p(PsA*) = p(Ps, A2). If K is a convex set with area

equal to that of aPsAxA2 and dR=> PSA2, dK z> PSA*, then

J(K,PS)<J(APSAXA2,PS),

unless K is the triangle PSAXA2 or its mirror image.

Proof. First we show that the triangle PSAXA2 has greater polar moment of

inertia than that of any other triangles which have the same area and which

contain PSA2 and PSA* in their sides. Consider any such triangle PSAXA2. Put

p(Ps,A2) = b,     p(Ps,Ax) = c,     p(Ps,Al) = b",     p(Ps,A"i) = c",

and ¿_ AXPSA2 = 6. By hypothesis

(22) b" ̂  b,       c" ̂  b,

and

(23) be sin 0 = b"c" sin 6.

Figure 2

Straight-forward computations analogous to what has been done in Lemma

4 give



428 T. W. TING [June

J(APsAyA2, Ps) = — (b2 + c2 - 2bccos6),

(24)
J( APSA'ÎA2, Ps) = -j(b"2+c "2- 2b"c" cos 9).

It follows from (23) and (24) that

J( APsAxA2, Ps) ^ J( APSA¡'A¡', Ps),
if, and only if,

(25) b2 + c2 ^ b"2 + c"2.

In view of (23), the inequality in (25) holds, if and only if,

b + c ^ b" 4- c".

That is,

b" £ c.

But this inequality is a direct consequence of (23) and the second inequality in (22).

Thus our lemma is proved for the case of triangles.

If if is not a triangle, let PSA[, PSA2 be the maximum linear segments of ÔK

through the point Ps. By hypothesis, we have

p(Ps, A'x) 2; p(Ps, A*),       p(Ps, A'2) ̂  p(Ps, A2).

Let the point A e d K be such that a line of support of K at A does not meet PSA'X

and PSA2. If both the arcs AA[, AA2 of dK are linear segments, then the lemma

follows by a single application of Lemma 4. For if we move the point A along the

line parallel to the segment A\ A'2 until it just meets the extension of PsA'y or

PSA'2, then K is deformed into a triangle with the same area and the polar moment

of inertia of this triangle about Ps is greater than J(K,PS) but less than

J(APsAyA2,Ps). Otherwise, we assume first K to be a polygon. Now PSA separates

K into two convex polygons Ky,K2 which contain the points A'y,A'2 respectively.

If £y has more than 4 vertices, we repeatedly apply Lemma 4 to reduce Ky to

new polygons in such a way that (i) each of the new convex polygons with PS,A{,

A as vertices and with area equal to V(Ky), (ii) each of the new polygons has

greater polar moment of inertia about Ps and has one vertex less than the previous

one. Similarly, if A^2 has more than 4 vertices, we apply Lemma 4 to make the

same reduction. In this way, we shall arrive at the single convex polygon

K', PsA'yAyAA';A'2Ps, such that

V(AA'yA'lA) = V(Ky - aPsA\á), V(aA'2A'¡A) = V(K2 - aPsA2A),

and the points Ä[,A'2 lie somewhere on the segments B'yB'lf/A'yA, B2B2//A2A

respectively. From the very method of reduction, we have

J(Ê,.)<J(K',PS).



1963] AN 1S0PERIMETRIC INEQUALITY 429

Figure 3

In the general case, we apply Lemma 5 to approximate Ky, K2 by convex polygons

with sufficient accuracy and then repeatedly apply Lemma 4 to these polygons in

the way as just described. This will lead to a similar polygon K'. Furthermore,

a limiting process based on Lemma 5 ensures that

JiÊ,Ps)z%JiK',Ps),

provided the approximations of Ky, K2 by polygons are sufficiently close. Since

K' has at least 4 vertices and at most 6 vertices, we apply now Lemma 4 to K'

once, twice or three times and we come to a triangle PsAy'A2 such that

piPs, A'y") = piPs, A'y),    piPs, A¡') ^ piPs, A'2),     Vi APSA¡'A2) = F(K),

and

JiK,Ps)<JiAPsA'y"A'2",Ps).
The lemma now follows from the proof for the case of triangles.

4. Proof of theorem. By establishing the previous lemmas we are now ready

to prove the theorem. By Lemma 2 the solution figure to the isoperimetric problem

must have the property that its moment of inertia about all lines in its plane and

passing through its centroid are all equal. Accordingly, we may restrict K to be

the class of convex sets with this additional property.

Let Ke K with ImiK, CK) = IMiK, CK). The convexity of K implies the exis-

tence of a six-partite point [3; 4; 5]. We denote this point by Ps. If CK is a six-

partite point, we always choose CK as the point Ps under consideration. Also we

choose CK as the fixed point of an affine transformation. Under an area-pre-

serving affine transformation A, the image Ps = AiPs) will be the six-partite point

of K = AiK). Furthermore, we adjust the transformation A so that the three

division lines, which pass through /s and divide the area of K into six equal

parts, will make an angle n/3 with one another.
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We are going to compare J(K, Ps) with J(KA, CK^) where K¿ is an equilateral

triangle in K. To this end we denote in the clock-wise order the vertices of K.

by Ax, A3 and As, the intersection points of dK and its division lines by

Px, P2, P3, P4, P5 and F6, and the three medians of KA by AXA4, A2A5, A3A6.

Figure 4

It may be noted that CKa is a six-partite point of K¿ and the three medians

divide the area of XA into six equal parts. Place ZCA upon K so that CK coincides

with Ps and the three medians AXAA, A2A5, A3A6 coincides with the division

lines PXPA, P2P¡, ^3^6 respectively.

Now we assert that

(26) p(Ps,Pi)^h/3,       i = 1,2,- -,6,

where « denotes the height of XA. To prove this assertion we denote by Kii+X the

the sector of K bounded by segments PsPi,PsPi+l and dK for i = 1,2, ".,5,

and denote by Kx 6 the sector of K bounded by segments PSPX and PSP6 and

dK. Suppose now p(Ps,P2) < ft/3. Since V(KX<2) = ^(A^^),

V(K2>3) = V( APSA2A3), there are a point PX2e KX2 but not in aPsAxA2 and

a point P2>3 e K23 but not in aPsA2A3. Now the convexity of K implies that the

triangle ^sFli2F23 is contained in K. But A/3sFli2F2|3 contains P2 in its interior.

This contradicts that P2edK. Hence p(Ps,P2) ^ ft/3. Similar arguments prove

that (26) holds for i = 4, 6. To prove (26) for i = 1,3,5, we rotate KA about the

point Ps through an angle n/3 and then apply the same arguments.

Consider now the triangle PSAXA2 and the convex set Rx2. The inequalities

in (26) and the relation V(aPsAxA2) = V(Kxa) imply that KX2 satisfies all the

conditions in Lemma 6. Hence

J(Kx,2,Ps)^J(aPsAxA2,Ps),

where the equality sign can hold only when Kx 2 is APSAXA2 or its mirror image.
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Since Lemma 6 can be applied to any one of the six equal areas of K, it follows that

Jit, Ps) ^ J( AAyA2A3, Ps) = J(XA, CKJ,

where the equality sign can hold only when K is KA. If K is KA, then

K = A-1 it) is a triangle, CK,PS, Ps coincide by our choice of the transfor-

mation A. Hence, by Lemma 3,

JiK,CK)z%JiK,Ps) = JiKA,CKJ,

where the equality sign can hold only when K is KA. We need to consider the

only case:

JiK,Ps)<JiKA,CKA).

By "Parallel-axis" theorem for polar moment of inertia,

JiK,C£)èJiÊ,Ps),

and the equality sign holds only if Ps is C£. Hence

JiK,C«)<JiKA,CKc).

Since K is such that Im(K, CK) = IM(K, CK), we have, by Lemma 3,

JiK,CK) z^ Jí£,Ck) < JiKA,CKf).

Thus,

UK, CK) = 1 J(K, Cx) < 1 J(KA, CKa) - /m(XA, CKa).

Clearly, K is not/CA in this case. For if K were /CA, then the transformation A

becomes a rigid rotation and we must have JiK, Ps) = J(/CA, CK ). The proof to

our theorem is now completed.
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