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Introduction. In the theory of models of a first order predicate logic with

identity we study the relationship between notions from logic and purely mathe-

matical objects, called relational systems, or briefly systems, 31= (A,Rx}x<p,

consisting of a set A and a sequence of relations Rx on A corresponding to the

predicate symbols Px of the logic. In such studies some of the most useful methods

are those which permit us to form systems which have certain model-theoretic

properties. For example, the completeness theorem permits us to form a system

which satisfies a given consistent set of sentences, and the Löwenheim-Skolem-

Tarski Theorem shows that we may take that system to be of prescribed infinite

cardinality.

A more recent tool is the reduced product construction, which is particularly

simple and direct from the mathematical point of view. Speaking very roughly,

a reduced product PD < %x : i e I > of the systems 3I¡, i el, is formed by first taking

their direct product and then forming the quotient system determined in a certain

way by the filter D on the index set /. If D is an ultrafilter we have an ultraproduct

(or prime reduced product), and if each 3I¡ coincides with a fixed system 31 we

have a reduced power, or ultrapower, 3I/D-

Reduced products have recently been applied to obtain new, comparatively

direct mathematical proofs and at the same time stronger forms of a number

of theorems in model theory. An outstanding example is the proof of the com-

pactness theorem outlined in [25]. They have also been used to obtain several

completely new results in the theory of models, for example the theorem of Rabin

[27] stated at the beginning of §4 of this paper. Most of these applications depend

on a fundamental result of Los in [23, p. 105], which in one form states that any

ultrapower of 31 is elementarily equivalent to 31, i.e. satisfies exactly the same

sentences as 31 does.

For some purposes, however, the ultrapower construction does not appear

to be sufficiently general. One question, which may be used as a test problem

for mathematical constructions of systems, is that of obtaining convenient mathe-

matical criteria for elementary equivalence. This question was proposed by

Tarski, and various answers are given in [7; 13; 16; 19; 26 and 35]. In the case
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of ultraproducts we have the following converse (see [16; 17]) of the result of

Los stated above. If the generalized continuum hypothesis is assumed, then 31

and 33 are elementarily equivalent if and only if 31 and 93 have some isomorphic

ultrapowers with cardinality at most that of 2A U2J U2P. Unfortunately, it is

not known whether this result holds without the generalized continuum hypoth-

esis. In order to look at the question from another point of view, we state a

slightly more general form of the theorem of Los. Any ultrapower 93 of 31 has the

following property (*) : for any set of new relations we adjoin to 31, we can ad-

join a set of corresponding relations to 93 so that the resulting systems are ele-

mentarily equivalent. We shall see in Theorem 6.2 that there are systems 93

which satisfy (*) but are not isomorphic to any ultrapower of 31. For some pur-

poses, it would be convenient to have a mathematical construction which would

yield, up to isomorphism, exactly those systems 93 which satisfy (*).

In this paper we shall study a generalization of the reduced power, which we

shall call the limit reduced power. If G is a filter on / x /, the limit reduced power

31 'D | G is defined as the subsystem of the reduced power 31^ consisting of the

equivalence classes of those functions /eA ' which are "almost constant", in

the sense that/(i) =/(;') holds throughout some member of G. The more general

notion of limit reduced product was defined in [13], but for the sake of simplicity

we shall not consider it here. Our main emphasis, in fact, will be on the special

case of limit ultrapowers, where D is an ultrafilter on /. In §2 we shall develop

some basic set-theoretic properties of limit reduced powers, but from §3 on,

we shall restrict our attention to limit ultrapowers. We shall not attempt to

determine to what extent the results can be generalized to limit reduced powers,

or to limit ultraproducts. Our major concern will be the study of limit ultrapowers

for their own sake, although we shall obtain occasional applications to other

problems.

With limit ultrapowers we are able to prove the following result (Theorem

3.10) without the continuum hypothesis. 31 and 93 are elementarily equivalent

if and only if they have some isomorphic limit ultrapowers with cardinality at

most that of 2A U2B. The notion of limit ultrapower is very stable in that there

are at least two other quite different conditions which lead to the same notion

as our original definition of limit ultrapower. One of these is the model-theoretic

condition (*). We shall see in Theorem 3.7 that 93 satisfies (*) if and only if 93

is isomorphic to a limit ultrapower of 31. The other condition is stated without

proof in [14, p. 878] ; it is set-theoretic in nature, and justifies our use of the

adjective "limit".

As an illustration of how the ideas developed in this paper can be applied

to obtain new results in the theory of models, we shall improve upon a theorem

of Rabin [27]. In Theorem 4.5 we shall see that if a is not measurable (see §4),

then every system of power a has a proper elementarily equivalent extension
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of power a if and only if a0 has power a. Rabin proved this result under the

additional assumptions, which we do not need, that the generalized continuum

hypothesis holds and that a is less than the first inaccessible number.

In §5 we shall study briefly the notion of strong limit ultrapower, which was

introduced in [13; 19]. We shall see that the notion of strong limit ultrapower

occupies an intermediate position between those of ultrapower and of limit

ultrapower. In Theorem 5.2 we show that 21 and 23 are elementarily equivalent

if and only if they have some isomorphic strong limit ultrapowers. This result

does not require the continuum hypothesis, but on the other hand it does not

provide a good bound on the cardinality.

In the last section we shall give examples to show that all of the notions of

ultrapower, strong limit ultrapower, limit ultrapower, and elementary extension

are essentially different from each other.

Many of our model-theoretic notions, such as relational system, elementary

equivalence, and elementary class are due to Tarski (see [33 ; 35; 36]). The notion

of elementary extension and some of its basic properties are due to Tarski and

Vaught in [38]. The definition of ultraproduct, and more generally of reduced

product, in the form which we shall adopt here was given by Frayne, Scott,

and Tarski in [11]. For a historical discussion of the reduced product construction

we refer to [29, p. 70].

Frayne, Morel, and Scott give a comprehensive treatment of the basic proper-

ties of reduced products in [9]. In §1 below we shall give a brief account of the

definitions and theorems from [9] which we shall need, and we shall also introduce

the necessary terminology from set theory and the theory of models.

A number of papers which contain additional material on ultraproducts and

applications of ultraproducts to the theory of models can be found in the bib-

liography. In particular, Kochen [20] makes extensive use of strong limit ultra-

powers as well as of the results in [9].

Most of the results of this paper were announced by the author in [13; 14].

The author wishes to thank C. C. Chang, Thomas Frayne, Simon Kochen,

Roger Lyndon, Dana Scott, and Robert Vaught for their interesting and helpful

conversations with him in connection with this paper.

1. Preliminaries. We shall distinguish between sets and classes, where a

set is a class which is an element of some other class. We shall always assume

the axiom of choice, or equivalently the well-ordering principle.

Ordinal numbers will be denoted by the small Greek letters X, n, p, ¿;, £, and

natural numbers (finite ordinal numbers) by m, «, p. We suppose that ordinal

numbers have been defined so that each ordinal number coincides with the set

of all smaller ordinal numbers. Thus in particular 0 is the empty set. We identify

cardinal numbers with the corresponding initial ordinal numbers. The union of

any set of cardinal numbers is again a cardinal number. The letters a, ß, y will
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be used for cardinal numbers. We denote the smallest infinite cardinal number

by co, and call sets of power 5¡ to countable sets. The smallest cardinal number ß

such that ß > a is denoted by a+.

If X and Fare any two sets, we denote the power (or cardinality) of X by | X |,

the set of all functions on X into Y by Yx, the cartesian product of X and Y

by I x y, and the set of all elements of X which are not elements of Y by X — Y.

Functions will be denoted by either small italic or small Greek letters, depend-

ing on the context. Let fe Yx. If xeX, then/(x) is the unique y such that

<x,y>e/. If X0 = X, then fiX0) denotes the set {fix) :xeX0}. It will always

be clear from the context which of the two interpretations of/( ) is called for.

We shall denote by/"\Y0) the set {xeX :fix)eY0)}. The identity function

{<x,x> : xeX} on a set X is denoted by ¿. Whenever we use the symbol i,

it will be clear from the context on which set X, i is to be taken as the identity

function. The composition go/ of two functions fe Yx and geZY is defined

by the condition

igof)ix) = gifix)) for all xeX.

We sometimes denote a function/ with domain / by <Ar¡>¡6/, where X¡ =/(/)

for each i e I. If £ is an ordinal number, we sometimes call a function a = <a£>í<í

a ^-termed sequence. If X is any class, we denote the union of all members of

X by [Jx, and the intersection of all members of X by f}X.

For any set X, let S(X) denote the set of all subsets of X, and let SaiX) denote

the set of all finite subsets of X. D is said to be a filter on X if D £ S(X),

X e D, and for any Yy,Y2eD and Ze SiX), we have Yx r\Y2eD and F, U Z e D.

Let D be a filter on X. D is proper if 0 £ D. Z) is countably complete if whenever

£ £fl and ¡£| g cü, we have Ç^EeD. D is an ultrafilter on X if D is proper

and, for each YeSiX), either YeD or X — YeD. By the filter on X generated

by a subset E ç S(Z) we mean the filter

(F zX: for some FeSa(E),   f]F^Y};

that is, the smallest filter which includes E. D is principal if it is the filter on X

generated by some one-element subset of S(AT). Any principal filter is countably

complete. We now state a fundamental theorem (cf. Tarski [32]) concerning

the existence of ultrafilters.

Ultrafilter theorem. For every set X and every proper filter D on X, there

exists an ultrafilter on X which includes D.

Let p be a sequence of natural numbers whose domain is p; thus pecop.

A sequence 31 = (A,Rx}x<p is said to be a relational system, or more briefly a

system, of type p if A is a nonempty set and Rx is a p(A)-ary relation on A for
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each X < p. Throughout this paper we shall assume that peto" and p'e to"',

that p £ p', that

31 = <A,Rx}x<p,       33 = <B,Sx}x<p,       (£ = <C,TX}X<P

are systems of type p, and that K is a class of systems of type p. The complement

of K, denoted by K, is the class of all systems of type p which are not members

of K.

The function <p is said to be an embedding of 31 into 33 if 4>eBA, tj) is

one-to-one, and if for each X < p and each ax,---,aßWeA, we have

Ra(«i»—.«„w) if and only if Sx(4>(ax),-,4>(aßW)).

31 is said to be embeddable in 33 if there is an embedding of 3Í into 23. We say

that 31 is a subsystem o/23, and that 23 is an extension of 31, if the identity func-

tion t is an embedding of 31 into 23. If C ç B, then 23 \ C will denote the unique

subsystem 31 of 23 such that A = C. If </> is an embedding of 31 into 23, we denote

by 0(31) the subsystem 23 \<t>(A) of 23. Clearly 31 [ A = i(3I) = 31. tp is said to
be an isomorphism of 31 onto 23, in symbols tj> : 31 = 23, if tp is an embedding

of 31 into 23 and the range of tj> is B. We thus have i : 31 = 31. 31 and 23 are said

to be isomorphic, in symbols 31 = 23, if there exists an isomorphism of 31 onto 23.

If K is a set of systems of type p, then we shall denote by [J K the system

(]J{A:S¡íeK},   LK^^ K}>A<P

of type p.

Let 31' = (A',R'xyx<p. be an arbitrary system of type p'. By the p-reduct of

31', denoted by 31' [p, we mean the system (A',R'x}x<p of type p.

Let us denote by L(p) the first order predicate logic with identity symbol =,

an co-termed sequence of individual variables v0, vx, t>2, —, and a p(X)-p\aced

predicate symbol Px for each X < p. We shall use the symbols ~~I, V , *-*> 3, V,

in the usual ways to denote propositional connectives and quantifiers. L(p)

has no function variables or constants, and no predicate variables. By a sentence

we mean a formula of L(p) which has no free variables. We shall let $ denote

an arbitrary formula of L(p).

We assume the notions of a sequence aeAa satisfying a formula <J> in 31,

and of a sentence 0 holding in 31, are known (see [39]). If a e A™ and be A,

we denote by a(n | b) the sequence obtained from a by replacing the ordered

pair (n,a„y by the ordered pair <n,¿>>. Thus whenever a belongs to A™ and

b e A, then a(n | b) also belongs to Aa. K is said to be an elementary class, in

symbols K e EC, if there is a sentence <D of L(p) such that K is the set of all sys-

tems of type p in which <J> holds. 31 and 23 are said to be elementarily equivalent,

in symbols 31 s 23, if every sentence <J> of L(p) which holds in 31 also holds in

23. The relation 31' = 23' can hold only if 31' and 23' are of the same type.
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<p is said to be an elementary embedding of 21 into 23, in symbols (p :2I «< 23,

if cp is an embedding of 21 into 23 and, for any aeAa and any formula i> of L(\i),

a satisfies <P in 21 if and only if <p o a satisfies $ in SB. 21 is said to be elementarily

embeddable in SB, in symbols 21 «< 23, if (p : 21 «< 23 for some (p. We say that 21

is an elementary subsystem o/23, and that SB is an elementary extension of 21,

if A s B and i : 21 -<SB. We see at once that tp :2l=i23 implies </> : 21 «<S8, and

that <p : 2Í <SB implies both 21 = 23 and i : <p(K) <23. Moreover, if 21', 23' are

systems of type p', then <p:2T-<23' implies <p :(2T fpX(23'fp). Another

simple fact, pointed out in [38], is that if 23 is an elementary subsystem of (£

and 21 is an arbitrary subsystem of SB, then 21 is an elementary subsystem of 23

if and only if it is an elementary subsystem of G.

We shall now state two classical theorems in the theory of models which we

shall need.

Löwenheim-Skolem-Tarski Theorem. (See [38].) Suppose that A, a are

infinite and a S: | p |. Then there exists a system SB such that SB = 21 and \ B | = a.

Moreover, if C s A and \C\^La^\A\, then 23 may be chosen so that C £ B

and t : 23 -< 21.

Compactness Theorem. (See [12; 24].) Let 2 be any set of sentences of L(p).

If every finite subset of I, is satisfiable, then S is satisfiable.

Another theorem which will be important for our purposes is the following,

proved in [38].

Theorem 1.1. Let {2I„:« < co] be a set of systems such that ¿ : 2I„-<2I„+i

for each n. T«e«(^Jm<eo2Im is an elementary extension of each 2I„.

We now introduce the notion of a reduced power, which was discussed in the

introduction.

Let D be a filter on the set I. For any element /, geA1, we write

f ~Dg (read fis equivalent to g modulo D) if and only if {ie/ :/(/) = g(i)}eD.

The statement/«Dg has the intuitive meaning that/ and g are equal almost

everywhere. It is proved in [9] that xD is an equivalence relation on the set A1.

For each/e A1, \etf/D = {g :fxDg}, the equivalence class off with respect to

the relation xD. By the reduced power of A modulo D we mean the set

A'D = {fID-.feA1}.

In [9] it is shown that, for each X < p, there is a unique p(A)-ary relation RXD on

A'D which is defined by the condition:

For any fi^-j^eA1, RXD(fi/D,-,fß<JD) if and only if

{iel : R,(/,(0,-,/ma,(0)}6 0.
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By the reduced power 31^ of 31 modulo D we mean the system (A1 D,RXD}x<p

of type p.

A reduced power 31ID is said to be an ultrapower if D is an ultrafilter on /, and

is said to be a direct power if D = {/}.

If   31'   is   a   system   of   type   p',   it   is   clear   that   we   always   have

(3i'jD)rp = (3i'tp)v
We shall state without proof some basic model-theoretic results concerning

ultrapowers; the proofs can be found in [9]. The first theorem is essentially

due to Los [23]. The diagonal function d on A into A'D is defined as follows:

for each a e A,   d(a) = { (i,a > : i e /}//).

Whenever we use the symbol d it will be clear from the context which sets A,

I, D determine d.

Theorem 1.2. // D is a proper filter on I, then d is an embedding of 31 into

3l'D. IfD is an ultrafilter, then d:3I-<3I/D.

Theorem 1.3.   If A is finite and D is an ultrafilter on I, then d : 31 = 31V

Theorem 1.4. If A is countable and D is a countably complete ultrafilter on

I then d : 31 ë 31 'D.

Theorem 1.5.   // D   is   a   principal   ultrafilter   on   I,   then   d : 31 = 31V

Theorem 1.6. (a) //3I = 93, then there is an ultrapower 31^ such that 93 -< 3lV

(b)   If <p : 31 -<93, then there is an ultrafilter 3I/D and an elementary embed-

ding i/í:93<;3Ijd such that \j/o(p = d.

We close this section with a theorem of a set-theoretical nature which states

that a reduced power of a reduced power of 31 is a reduced power of 31, and

an ultrapower of an ultrapower of 31 is an ultrapower of 31. This theorem is

also proved in [9]. Let D, E he filters on /, J respectively. Define

D~xE = {K<=I x J :{jeJ :{iel :OJ>eK}eD}eE}.

D "x E is a filter on / x J, and DxEis an ultrafilter if both D and E are ultra-

filters.

Theorem 1.7.   WD)JE 2 3I/XJI)X-J,

2. Limit reduced powers. In this section we define the limit reduced power

operation, which is the central notion of this paper. We shall develop some

basic set-theoretic properties of limit reduced powers.

Definition. Let A, I he nonempty sets, let D he a filter on /, and let G be a

filter on / x /. For any function feA1, let

eq(/) = {</J>e/x/:/(i) =/(;)}.
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We now define

A'D\G = {ae A'D : for some fea, eq(f)e G}.

We refer to .¿^G as a limit reduced power of the set A. Intuitively, AID\G

is the set of equivalence classes///) of functions feA1 which are "almost con-

stant".

By the limit reduced power St^G of the system 31 we mean the system
3I/D|G = 3iy04/D|G).

The reduced power operation is a special case of the limit reduced power.

In fact, it is easily seen that %* D\ S(I x I) = 3lV

If D is an ultrafilter, 3l/D| G is said to be a limit ultrapower of 31. If D — {/},

then ?XJD| G is said to be a limit direct power of 31.

Limit reduced powers have the following important property : // 31' is a system

of type p', then we always have

(WD\G)\p = (W\P)1D\G.

The diagonal function d on A into AID is also a function on A into A'D \ G for

any filter G on / x /. This is true because I x I eG and for any constant function

feA1, eq(f) = 1x1. In fact, the range of d is exactly the set A1D \{I x /}.

Since, when D is proper, d is an embedding of 31 into %*!, and

31'pK/x/} = 3I/4(^/D|{/x/}),

d is an isomorphism of 31 onto 3I/B|{/ x /}.

If G and H are filters on / x / such that G s //, then it is immediate from the

definition that AID | G çz AlD | //. In particular, we have

A^lil x 1} çz A^lG ^ A!D\S(I x I),

because every filter G on / x / satisfies the formula (/ x /) e G ç S(I x 1). It

follows that %'D | G is a subsystem of 2J/fl | H whenever G S H, that 3IJ„ | {/ x /}

is a subsystem of every 31^ |G, and that WD\S(I x I) is an extension of every

î^n | G. Thus, whenever D is proper, d is an embedding of 31 into 3I1/) | G.

We shall say that a limit reduced power AID | G is trivial ifA'D | G = A*D\ {/ x /}.

3lJn | G is said to be trivial if A1^ is trivial. The notion of a trivial reduced prod-

uct is defined analogously. AID | G is trivial if and only if A1D | G s A1^ {/ x /},

because we always have A1 D\ {I x 1} ç A1^ | G. Thus 31J ̂ | G is trivial if and only

if either d : 31 = 2I/D|G or D = S(/). If G = // and 31JD | H is trivial, then 3I'D | G

is also trivial. If A is finite and D is an ultrafilter, then by Theorem 1.3,

3I/fl is trivial, and so is 3I/n | G. Similarly if D is a principal ultrafilter, then 3IJD

is trivial by Theorem 1.5, so SI^ | G is trivial.

We now give a convenient criterion for a subset B £ y4Jn to be of the form

^D|G.
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Theorem 2.1. Suppose A is infinite. A subset B sA'p satisfies B = A'D\ G

for some filter G if and only if B ^ 0 and for every f/D, g/DeB and every

he A1 such that eq(/) n eq(g) £ eq(«), we have h/D e B.

Proof. First suppose B = AID\G. Then A\\ {I x 1} £ B, so B # 0. Let

f/D, g/DeB and suppose «e/l7 and eq(/)neq(g) £ eq(«). There exists f'ef/D

and g'eg/D such that eq(/'), eq(g')EG. Since eq(/) n eq(g) £ eq(«), there

exists h'e A1 such that h'(i) = h(i) whenever /'(i) =/(/') and g'(¡) = g(i), and

also that h'(i) = h'(j) whenever f'(i) =/'(/) and g'(i) = g'(j). Then h'eh/D.

Also, eq(fc') 2 eq(/') neq(g')e G. Therefore «/De^G = B.

For the converse, suppose that whenever f/D, g/DeB, he A1, and

eq(/) n eq(g) £ eq(«), we have «//J e B. Let

G = {J s I x I : for some fe A1, f/D e B and eq(/) £ J}.

Since A is infinite, it follows that for every/, geA1 there exists he A1 such that

eq(«) = eq(/)neq(g). Therefore J,J'eG implies JnJ'eG, and hence G is a

filter on I x I. Clearly B £ A'D | G, for //D e B implies that for some

f'ef/D, eq(/')eG. Suppose h/DeAID\G. Then for some h'eh/D, eq(n')eG.

That is, eq(/) £ eq(A') for some//FJ e B. Then h/D = h'/D e B, and A1 D \ G £ B.

The conclusion of Theorem 2.1 is true even if A is finite. However, the result

when A is finite seems to require a separate proof involving induction. We shall

not give this proof here, because our main emphasis in this paper is on limit

ultrapowers, which become trivial when A is finite.

If J is an equivalence relation on I, then the equivalence class {j el : </,;> eJ]

of i modulo J is denoted by i/J. Any two equivalence classes i/J, j/J either co-

incide or are disjoint, according as (i,j}eJ or not. We also write

I/J = {i/J :iel}. It is easily seen that if J0, Jx are equivalence relations on /,

then so is J0nJx. In fact, even an infinite intersection on equivalence relations

on / is an equivalence relation on L If J0, Jx are equivalence relations on / and

J0 £ Jx, then |//Jo | = |//Ji |. The largest equivalence relation on / is / x /,

and the smallest is {0,0 '• i el}. Moreover, we have \l/I x 11 = 1 if / ^ 0, and

|//{<i',i> :ie/}| = |/|. Obviously, eq(/) is an equivalence relation on / when-

ever feA1.

Lemma  2.2.   Let G be a principal filter on I x I, let K be the least equi-

valence relation in G, and let J — I/K.  Then there is a filter E on J such that:

(i) 2I'/£S21/D|G; and

(ii) if D is an ultrafilter, then so is E.

Proof. If a e A1 D, then a e A'B | G if and only if there exists fe a such that

eq(/) 2 K.   Let

(1) F = {Xe J:\JXeD}.
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It is easily verified that E is a filter on J, and furthermore that E is an ultrafilter

whenever D is an ultrafilter. For each feAJ, let <j)fhe the unique function geA1

such that, whenever iejeJ, we have gii) =/(/'). Then

(2) cbiAJ) = {geA' :eqig)^K}.

Also, it follows from (1) that, if/, geAJ, then

(3) SIE - g/E if and only if (0/)//) = ((/>g)/ /J».

Consequently there is a unique one-to-one function \¡i on /4Jinto X'D such that,

for each/e yl7, we have

HS/E) = <«/)//>.

By (2), we have

HAJE) = AlD\G.

It remains to prove that 4> '■ 91JE = 3tJD | G. To see this, we observe that for each

X<p and fl,---,fll(X)eAJ, each of the following statements are equivalent:

RxE(Si/E,-,SpW/E);

{jeJ :R,(/i(j);-,/,w0))}e£;

{leJ:JM/i(0,"-,*WO)}el>;

Rxd((<I>Si)/D,-,Wp<^/D);

R>.DiWJE),-MfMJE)).

For any filter G on / x /, let

G = {J ç / x / : J 2 J'e G   for some equivalence relation J' on /}.

Then G is also a filter on / x / and G £ G. It is easily seen that G = G and that

GçH implies G s /7. We always have P)G 2 {<U> : i e /}; in particular, 0$G

and thus S(/ x /) is not equal to S(I x /).

Lemma  2.3.    3IID | G = 31^ | G.

Proof. It is sufficient to show that for every / e A1, eq(/) e G if and only

ifeq(/)eG. If eq(/) belongs to G, then it belongs to G because GzG. Suppose

eq(/)e G; then eq(/) is an equivalence relation on /. Therefore by the definition

ofG, eq(/)eG.

Theorem 2.4 below shows that a limited reduced power of a limit reduced

power of 31 is isomorphic to a limit reduced power of 31. Also, a limit ultrapower

of a limit ultrapower of 31 is isomorphic to a limit ultrapower of 31. The result

obviously extends to finite iterations of limit reduced powers, or limit ultrapowers.

Theorem 2.4 generalizes Theorem 1.7, which concerns reduced powers.
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If G, H are filters on I x I, J x J, respectively, then G x"//, as defined in §1,

is a filter on (I x I) x (J x J), rather than on (I x J) x (I x J). There is, how-

ever, a perfectly natural way of obtaining a filter on (I x J) x (I x J) from

G ~x H; iff is the one-to-one function on (I x I) x (J x J) onto (I x J) x (I x J)

defined by

/«<u'>,</j'>» = «¿j>, w»,
then we define

G®// = {/(R) : KeGxH}.

It is easily seen that G ® // is a filter on (I x J) x (I x J).

Theorem 2.4.   (%'D\G)JE\H s 3I/xJDx-£| G®/7.

Proof. We define the required isomorphism tp as follows. Let//£e(47D | G)JE \ H,

and for each jeJ let/(;') =//De A1 D\ G. For each ieI let g(i,j) =///)• Define

tp(f/E) = g/(D x~£). From the proof of the analogous result (Theorem 1.7) for

reduced products (cf. [9; 20]) we know that 0 is a well-defined embedding of

(3lJD | G)JE | H into 3I/xJDxe- It remains to verify that the range of 4> is

AIXJD*E\G<8)ff. If//£e04rD|G)JE|rZ, then we may suppose that eq(f)eH

and for each j e J, eq(fj) e G. Therefore

{<J»h>*J x J ■ {<h,Í2>e¡ x I -.fj^iy) = fjl(i2)}eG}eH.

This means that eq(g) e G ® H, and hence

g/(DxE) = </)(//£)6^/><JD^E|G®/?.

Conversely, suppose g/(D ~x E)e AIXJDyE\ G®H. Then we may suppose that

eq(g)eG®H, and hence

{<JuJ2>eJ x J : {<i1,i2>6/ x / : g(ix,jx) = g(i2,j2)}eG}eH.

Since any member of H includes the set {(Jjy :jeJ}, we have

{<i1(i2>e/ x / : g(ix,j) = g(i2,j)}eG

for every jeJ. Let///) = g(i,j) for every ieI,jeJ, and let/(J) =/,//) for every

jeJ. Then eq(fj)eG for every je J. For any </i,/2>eJ x J such that

{(iy,i2yel x I :fh(iy) = fJ2(i2)}eG,

we have /,•,(') =//2(0 for every ie/, and hence /,-, =/y2. Therefore <j> has range

4IXJDxE|Ö<S>#.

It is not in general true that (3I/D| G)J£|//^ 3I/XJDxE| G®//; that is, we

cannot replace G ® H by G ® // in Theorem 2.4. In fact, it is not difficult to

see that
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Sil xI)®H = G®SiJ x J) = S((/ x J) x (/ x J)),

and therefore

3IIXJDxE|S(/x/)®// = 3l/xVx£|G®S(Jx J) = 31/XJ0x£.

We shall conclude this section by discussing a special kind of limit reduced

power which arises naturally from the notion of a topological space. This dis-

cussion has no bearing on the remainder of the paper, but it is an interesting

illustration of the limit reduced power notion.

A subset T £ S(/) is said to be a topology on I if 0, / e T, X £ Timplies (JX e T,

and XeS0,iT) implies f^XeT. The members of Tare called open sets. T is

said to be a discrete topology if T = S(I). If T, U are topologies on /, J, a function

fe J'is said to be continuous with respect to Tand UifXe U impliesf~1iX)eT.

Let T be a topology on / and D a proper filter on /. We denote by AT

the set of all functions fe A1 which are continuous with respect to T and the

discrete topology on A. We define ATD = {///> :fe AT}.

It is easily seen that if/, g eÁ1 and eq(/) n eq(g) £ eq(ñ), then n e /4r. There-

fore by Theorem 2.1 we have ATD = A'D\G for some filter G on / x /. Thus the

construction ATDis a special case of the limit reduced power construction.

On the other hand, if T is the discrete topology on /, then ATD = AlD.

Thus the reduced power is a special case of the construction ATD. Conversely,

if A has at least two elements and AT = A1, then Tis the discrete topology on /.

Not every limit reduced power A1 D | G is expressible in the form ATD. For

example, let A and / be infinite sets and let D = {/}. Define

G = {J £ / x / : for some equivalence relation J' on /,

J' £ J and I/J' is finite}.

Then clearly ^V|G *s properly included in A1D. However, if i4/I)|G çAtd,

then Tmust be the discrete topology on /. Therefore A'D | G is not equal to ATD

for any topology Ton /.This shows that the limit reduced power is actually more

genera] than the construction ATD. These remarks are no longer valid if both

A and / have arbitrary topologies.

3. Limit ultrapowers: model-theoretic properties. We now leave the general

discussion of limit reduced powers. For the rest of this paper we shall be con-

cerned with the particular case of limit ultrapowers. In this section we shall

obtain two model-theoretic results about limit ultrapowers. The first result is

that 31 ß | G is an elementary subsystem of 3I/D| H whenever G £ //. The second

result is a model-theoretic characterization of limit ultrapowers in terms of

elementary extensions of complete systems. For the special case G = S(7 x /),

Theorem 3.1 and Corollary 3.3 become theorems on ultrapowers proved in [9].

For each sequence/= </„>„«„eiA'T, let//D = </„//>>„<„, and for each

i6/,let/(0=</„(0>n<Me^.
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Theorem 3.1. Let 21iD|G be a limit ultrapower of 21 and let

fe {geA1 : eq(g) e G}"\ Then f/D satisfies $ in 2l/fl| G  if and only if

J0 = {iel :f(i) satisfies O in 21} eD.

Proof. We argue by induction on the length of the formula 3>. The theorem

is true for atomic formulas by the definition of limit ultrapower.

Suppose the theorem is true for i>x and $2. We shall prove that it is true for

*i A<&2" f/D satisfies <&x A<J>2 if and only if//£> satisfies <!>x and f/D satisfies 02.

This in turn is true if and only if both the sets J<x,l and J&2 belong to D. More-

over, since D is a filter, J<tl e D and J02 6 D if and only if Jli>1 n J<l>2 e D. Finally,

J<D,^J<t,2 = J«, a d>2,so the theorem is true for i>j A ÍV

We suppose the theorem is true for <5 and prove it is true for ~~| <t> and for

3 v„<!>. The theorem is true for ~~10 because [f/D satisfies ~\<b] if and only if

[f/D does not satisfy <E>] if and only if [Jq, $ D] if and only if [J 1(I) e D], in view

of the fact that D is an ultrafilter.

To prove that the theorem is true for 3 ¡;„<P, we shall write a sequence of state-

ments, separated by semicolons which are easily seen to be equivalent.

f/D satisfies 3u„i>;

for some  g e A1, f/D(n \ g/D) satisfies 0 and eq(g) e G ;

for some geA1, {iel :f(n\g)(i) satisfies O in 21}eD and eq(g)eG;

J 3d„ * e D-

The only implication which requires explanation is the implication from the

last statement to the preceding one. Suppose Jlv„^eD. Let vmi,---,vmp be all

the variables which occur freely in 3r„<P. We have eq(/mi),••■,eq(/m )eG, and

since G is a filter,

eq(/mi)n...neq(/mj6G.

Using the axiom of choice, a sequence ge^4Jcan be found such that whenever

<iJ>Geq(/m,) O ••■ Oeq(/m ) and f(k) satisfies 3t;„0 in 21, we have g(i) = g(j)

and /(« | g) (k) satisfies O in 21. Then

eq(/mi)n-.neq(/mr>)£eq(g),

so eq(g)eG. Finally,

{iel :f(n\g)(i) satisfies $ in 21}  = J3Vnq,eD.

This completes the proof.

Corollary 3.2. // D is an ultrafilter on I and G £ H, then %'D \ G is

an elementary subsystem of SR^ \ H.

Proof. We have already remarked that 21^1 G is a subsystem of SH'D\H.

By Theorem 3.1, for any / e (A '„ | G)m, the satisfaction of O by//Din W D\G

and in 2l/J H are both equivalent to the condition
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{/e/:/(0 satisfies O in 31} eD,

and are therefore equivalent to each other.

Corollary 3.3.   // %'d \G isa limit ultrapower of 31, then d : 31 «< 31 "D \ G.

Proof,   d : 31 -< 3IJfl| {/ x /}. By Corollary 3.2, i : 3IJD| {/ x /} < 3l'fl | G.

Limit ultrapowers have the important property that whenever we adjoin new

relations to the system 31, there is a natural way of defining new relations on 31 Iv \ G

such that the diagonal mapping is still an elementary embedding (see Lemma 3.5).

We shall see in Theorem 3.7 below that this property is in a sense characteristic

of the limit ultrapower operation. We now introduce the notion of a complete

system, which was defined by Rabin in [27].

Definition. 31 is said to be complete if for every n < co and every R £ A",

there exists X < p such that Rx = R.

Lemma   3.4.   Suppose 31 is a complete system of type p. Then :

0)  \2A\ = \p\:
(ii)   no proper extension of 31 is isomorphic to 31;

(iii) each elementary equivalent extension of 31 is an elementary extension

e/31;
(iv) i/3t = 93, then 3I<93.

Proof, (i) is obvious, and (ii)-(iv) follow easily from the fact that each one-

element subset of A occurs among the relations Rx, X < p.

Definition. We shall write q>:M« 93 if there is a complete system 31' and a

system 93' such that 31' f p=31, 93' f p = 93, and <t>:M' < 93'. We write 31 «<-< 93
if we have <p : 31 -< -< 93 for some (j).

Lemma 3.5. (i) //<p: 31 -<-<93 and \j/:93 «<-<<£, then i¡/o<t>: 31 «d;
(ii)  i/<£:31<<93, then<b: 31 -< 93;
(iii) t:3I-<<3l;
(iv)d:3I-<-<3IID|G;

iv)   if 31 is complete and cp : 91 -< 93, then <j) : 91 -< ~< 93.

Proof. Conditions ii)-(iii) and (v) follow at once from the definitions involved.

(iv) follows from Corollary 3.3.

Theorem 3.6. // 31/ D \ G is a nontrivial limit ultrapower of 31, then there is

a nontrivial ultrapower 3IJ E of 31 such that 3i/E< 31 ID \ G, | J | _: | /1, and

\J\U\A\.

Proof. Since 3I/ D | G is nontrivial, there exists/e A1 such that eq (J) e G but

f/D does not belong to the range of d. Let H he the principal filter on / x /

generated by eq(/). Then H £ G, and by Corollary 3.2, 3lV| H -< 3If D| G.   Let
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31' be a complete system such that 31' f p = 31. By Lemma 2.2, there is an ultra-

power 3l'J£ of 31' such that J = I/eq(f) and 31'JE £ 3I'JD| H. Then

WE = 3I/D | H, and consequently 31JE -< 3l'D | G. Moreover, |j|g|j|,|vi|.

It remains to show that 21/E is nontrivial. Since///) is not in the range of d,

WD\H is isomorphic to a proper extension of 31', and hence by Lemma 3.4

(ii), 3I'/D | H cannot be isomorphic to 31'. It follows that 31' JE is not isomorphic

to 3Í'. Hence d maps A properly into AJE, and 3tJ£ is a nontrivial ultrapower.

Theorem 3.7. 23 is isomorphic to a limit ultrapower of 31 if and only if

3l-<<23.

Proof. If 23 = 3I7D | G, then 31 -<-< 23 follows at once from Lemma 3.5 (iv).

Assume 31 «< -< 23. Then there is a complete system 31' of type p' and a system

23' such that 31' [ p = 31, 23' ¡ p = 23, and 31' = 23'. By Theorem 1.6, there is
an ultrapower 3I'/D and an elementary embedding 0:23' -< 21'V Let C be the

range of tp. Since B is nonempty, C # 0. We shall apply Theorem 2.1. If A is

finite, then C = 31V and 23' £ WD. Suppose A is infinite. Let f/D, g/D e C,

he A1, and eq(f) n eq(g) £ eq(h). Then there exists a function keAA*A such

that k(a, b) = c whenever f(i) = a, g(i) = b, and h(i) = c for some i e I. Let

R s /I3 be defined by R(a, b, c) if and only if k(a, b) = c. Since 31' is complete,

R = Rx for some X < p'. The sentence

V v0, vx 3 u2 V u3[Pa(d0, fi, f3) «-»»j = v3]

holds in 31', and therefore holds in 3I''D, 23', and 3I'1,, \ C. Since

{ieI:Rx(f(i),g(i),h(i))}=IeD,

we have RXD(f/D, g/D, h/D). Therefore, since f/D, g/D e C, we must have

h/DeC. By Theorem 2.1, C = A'D \ G for some filter G. Then tf>: 23' S 3I'/D | G,

and consequently 0:23 = 3I1D | G. This completes the proof.

Corollary 3.8. // tp is an embedding of 31 into 23, then the following two

conditions are equivalent:

(i)0:3I«<«<23;
(ii) there is a limit ultrapower 31 'D \ G and an isomorphism ip: 23 = 3i/D | G

such that d = ip otp.

Proof. By Lemma 3.5 (iv), we have (ii) implies (i).

Assuming (i), let 31' be a complete system such that 31' [ p = 31, and let 23'

be such that 23' [ p = 23 and tp: 31' -< 23'. By Lemma 3.5 (v), tp: 31' -<< 23'.
Hence, by Theorem 3.7, there is a 1^:23' S 31'd|G. Thus i/r:23 = 3l'D |¡G.

Moreover, since every one-element subset of A occurs among the relations of 31',

we must have d = ip °tp.
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We now give a characterization of elementary equivalence in terms of limit

ultrapowers. We shall apply the following theorem proved by Robinson in

[28, p. 54].

Theorem 3.9. For i = 0,1, suppose p £ piecol'i, £¡ is a set of sentences of

L(p¡), and there is a system 23 ¡ of type p¡ such that Z¡ holds in S8¡ and SB¡ \p = 21.

Then, for i = 0,1, there exist systems (í¡ of type p¡ such that Z¡ holds in (£,-,

d¡ [- p = %and (E0 f p = C^ f p.

Theorem 3.10. 21 = 23 if and only if there exist limit ultrapowers 2I/fl | G,

SB JE | H of cardinality ^ | 2A | U | 2B \ such that 21 'D \ G s 23 JE \ H(2).

Proof. If 2I/D | G s SB-'e I H then 21 = 23 by Corollary 3.3.
Conversely suppose 21 = 23. We may assume without loss of generality that

A is infinite (if A is finite then 21 S 23), and for each X < n < p, either Rx # R„

or SA # S„. Then| p | g | 2^ | U12B \, for there are at most | 2A | distinct relations

on A and | 2B | distinct relations on B. There is a complete system 21' of type p'

such that \p'\ = | 2A | and 21 = 21' h p. Similarly there is a complete system 23"

of type p" such that | p" | = 12B | and SB = SB" f p.

By Theorem 3.9 there exist systems (£', d" such that (£' = 21', G" = SB", and

(£' ^ p = (£" Is p. Since

|p'|u|p"|^|2^|u|2B|,

it follows from the Löwenheim-Skolem-Tarski Theorem that (£', (£" may be

chosen to have cardinality ^ J2^|u |2B|. By Theorem 3.7 and Lemmas 3.4

and 3.5, there are limit ultrapowers 21' d | G ^ £', %"JE | H s (£". Therefore

2iJD|Gsc;'^p = e;''pp^23J£|//,

and the proof is complete.

Theorem 3.10 has the following purely mathematical consequence.

Corollary 3.11. // 21, 23 have any isomorphic limit ultrapowers, then they

have isomorphic limit ultrapowers of cardinality ^ 12A | U | 2B |.

Proof. If 21, 23 have some isomorphic limit ultrapowers, then by Corollary 3.2

we have 21 = SB. Then by Theorem 3.10 21 and 23 have isomorphic limit ultra-

powers of power g | 2A \ U | 2B |.

Frayne, Morel, and Scott have shown in [9] that a great many model-

theoretic notions can be characterized solely in terms of elementary equivalence

and ultraproducts. By combining Theorem 3.10 with the results of [9], we can at

once obtain characterizations of each of these notions solely in terms of ultra-

products and limit ultrapowers. We can also take advantage of the bound given

(2) This result can also be proved by the repeated application of Theorem 1.6 instead of

using Theorem 3.9.
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in Theorem 3.10 on the cardinalities of the limit ultrapowers to obtain charac-

terizations of model-theoretic notions relativized to systems of cardinality at most

some fixed cardinal number. We shall not carry this program through in detail

but instead shall present the single case of elementary classes as an illustration.

Let a be a cardinal number. We shall denote by K \ a the class {31 e K: | A | < a}.

We shall write K e EC \ a if and only if K \ a = L \ a for some L e EC.

Part (a) of the following theorem is proved in [9], while part (b) is implicit

therein.

Theorem 3.12. (a) KeEC if and only if both K and K are closed under

elementary equivalence and ultraproducts.

(b) Suppose a > | 2<aWp |. Then KeEC p a if and only if ¥.\ a = {%:\A\ < a

and 31 = 93 for some 93 e K h a} and both K r- a and K h a are closed under

ultraproducts of power < a.

By combining Theorems 3.10 and 3.12 we obtain the following characterization

of elementary classes.

Corollary 3.13. (a) Ke£C if and only if both K and K are closed under

isomorphisms, ultraproducts, and limit ultrapowers.

(b) Suppose a > to U p and that ß < a implies \ 2ß | < o¡(3). Then Ke EC \ a.

if and only if both Kfa and K \a are closed under isomorphisms,ultraproducts

of cardinality < a, and limit ultrapowers of cardinality < a.

4. On a theorem of Rabin. In this section we shall apply the results of §3 to

obtain an improvement of the following theorem of Rabin [27]. Let \A | > 1.

Rabin's Theorem. // | A" | = | A |, then 31 has a proper elementary extension

of power \A\. Conversely, if 31 is complete, \Aa'\ > | A |, and we make the two

additional hypotheses:

(Rl) the generalized continuum hypothesis;

(R2) | A | is accessible from toi4);

then 31 does not have a proper elementary extension of power \A\.

We shall show that Rabin's Theorem is still valid when the hypothesis (Rl) is

removed and (R2) is considerably weakened. Our proof will be essentially

different from the original proof given by Rabin. We shall begin with two

theorems which are set-theoretical in nature and concern cardinalities of ultra-

powers.

(3) Cardinals a such that ß < a imply \2^ \ < a are sometimes called strong limit cardinals.

It is well known that there are arbitrarily large strong limit cardinals. For example, on page 9

of [31], all the cardinals Nn(£) with £ a limit ordinal are obviously strong limit cardinals.

(4) A cardinal a is said to be (weakly) accessible from w if, whenever co < ß ^ a, there is a

y <ß such that either ß <¡ | V \ or ß < | ß? |. For details see [34].
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Theorem 4.1. Let A, I, and J be infinite sets. Let D be an ultrafilter on I

such that for some function <p on I into Sa(J) and each je J,

j={ieI:jecp(i)}eD.

Then\AID\^\AJ\(s).

Proof. Since A is infinite, there is a sequence < A„y„<(0 of disjoint sets A„ £ A

such that | A„ | = | A | for each « < co. For each « < co, let \j/„ be a one-to-one

function on A" into An. Let < J5 >5< ¡ j| be a well ordering of the set J. If

«1) < {(2) < .» < {(B) < | J | and s = {Jut), - ,}an)}eSm(J),

and iffeAJ, then let

/*(*)=</(W,-,/0W>>-

Thus/ *(s) e A". Define the function 0 of A1 into A1 as follows :

For each/e A1 and i e I, (Of) (i) = ip mi)\(f *(4>(i))).
Suppose/, geA3 and/# g. Then/0') # go) f°r some ;'eJ. It follows that

for every iej, we have f*(<p(i)) i=- g*((p(i)), and therefore (6f)(i) ^ (8g)(i).

Since je D, we have Bf/D ^ 0g/D. Consequently the function 0' on 4J into AlD

defined by 0/ = 0//D is one-to-one, and | A3 | ^ | ̂ ^ |.

Corollary 4.2. For every ultrafilter D on I which is not countably complete,

and every infinite set A, \ A'D \ ^ | A" \ .

Proof. Since D is not countably complete, there exists a sequence (x„)„<0> of

disjoint subsets of / such that [J„<a>xn = / but x„$D for each n < co. Let <p

be the function on / into Sa(œ) such that 4>(i) = {0, •••, «} whenever iex„. For

each n < co, we have, in the notation of Theorem 4.1, that ñ ={J„¿m<u>xm, and

since x0 U ••• U *„_! $ D, we conclude that « e D. It then follows from Theorem

4.1 that | A'D I ̂  | A" |.

We shall say that a cardinal a is nonmeasurable if every countably complete

ultrafilter on a set of power a is principal. In the language of measure theory,

this says that every countably additive two-valued measure on the field of all

subsets of a set of power a is trivial in the sense that there is a one-element set

(5) Assume the hypotheses of Theorem 4.1. The weaker result that | A1 o \ ̂ | 2m |, and also

the fact that A has arbitrarily large ultrapowers, were stated in [8]. The result that | A1 o \ > | A |

if | A ¡ is confinal with co was stated in [14]. D. Monk proved that | A1!, \ ̂  | 2l |. Theorem 4.1 is

an improvement of all these results, and our method of proof was motivated by Monk's argument.

Monk has pointed out that his proof was in turn motivated by the proof of a related result by

Kochen in [20, p. 14]. A subsequent generalization of Theorem 4.1 has been obtained by Chang

and is stated in [9].
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which has positive measure(6). It is known that every cardinal number which is

accessible from to is nonmeasurable (see [39]). Moreover, according to some

recent results (see [37]), the condition that a is nonmeasurable is much weaker

than hypothesis (R2), unless every cardinal number is accessible from to. That is,

the class of nonmeasurable cardinals not only contains all cardinals which are

accessible from to, but also extends far into the heirarchy of inaccessible cardinals.

In fact, it has recently been shown by Scott in [30] that the axiom of constructi-

bility implies that every cardinal is nonmeasurable.

The following simple lemma is known from the literature (see [39]).

Lemma 4.3. // the cardinal number a is nonmeasurable, then so is any

cardinal ß < a.

Proof. Suppose ß has a nonprincipal countably complete ultrafilter E. Let D

= {J £ a: J n ße £}. Then D is clearly a nonprincipal countably complete ultra-

filter on a, contradicting the assumption that a is nonmeasurable. Hence ß is non-

measurable.

Theorem 4.4. Let A be an infinite set and suppose \A\ is nonmeasurable.

If 31JD \G is a nontrivial limit ultrapower of 31, then \A'D\G\ ;> \Aa\.

Proof. By Theorem 3.6, there is a nontrivial ultrapower 31JE of 31 such that

^Je< 3I/ß | G and | J | ^ \A\. By 4.3, | J | is nonmeasurable. Since 3IJ E is

nontrivial, E is nonprincipal, and therefore E is not countably complete. By 4.2,

| AJE | ^ | A" |, and therefore | A'D \ G | = \A° |.

Theorem 4.5. Suppose 31 is a complete system and \A\ is nonmeasurable.

Then 31 has a proper elementary extension of cardinality | A | if and only if

\A\-\A-\.

Proof. If A is finite, then 31 has no proper elementary extension and | A \ < | Aa\.

If | A | = | Ä" |, then 31 has a proper elementary extension of power | A | by

the first part of Rabin's Theorem.

Suppose A is infinite and | A | < | Aa\. By Corollary 3.8 and Lemma 3.5 (v),

any proper elementary extension 93 of 31 is isomorphic to a nontrivial limit

ultrapower of 31. It follows from Theorem 4.4 that | B | ~¿. | A a\, and hence

also | B | > \A\.

(6) In [39] and elsewhere, the term measurable cardinal has been used in a different sense

than we use it here; namely, a cardinal a is said to be measurable if there is a countably additive

real valued nontrival measure on the field of all subsets of a set of power a. However, in [39]

it is proved that the continuum hypothesis implies that a cardinal a is measurable in our sense if

and only if it is measurable in the sense of [39]. In [30] the cardinals which are measurable in our

sense are called two-valued measurable.
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Corollary 4.6. Suppose 31 is a complete system and \A\ is nonmeasurable.

If 23 is a proper elementary extension of 31, then | B | = | A'a\.

Proof. Since 23 is isomorphic to a proper elementary extension of 31, 21 must be

infinite. By Corollary 3.8 and Lemma 3.5 (v), 23 is isomorphic to a nontrivial

limit ultrapower of 21. Then | B | = | A™ |   by   Theorem   4.4.

The situation has not been completely cleared up in the case that 21 is measur-

able. However, the following theorem provides an example showing that, if

there are any measurable cardinals, then we cannot simply remove the hypothesis

"| A | is nonmeasurable" from Theorem 4.5.

Theorem 4.7. Suppose a is a measurable cardinal, ßn = \ßn"\ and ßn < ßn+1

for each n < to, and ß = \^}„<v>ßn. Then ß is a cardinal number such that

ß < \ße'\ but every system 21 of cardinality ß has a proper elementary extension

of cardinality ß.

Proof. Since ß is a union of cardinal numbers, ß itself is a cardinal number.

The inequality ß < \ßm\ follows, e.g., by König's Theorem (see [21]). We also

have a< ß, because a < \ 2" \ <; | ß2 \ = ß2 < ß.

We may suppose without loss of generality that A = ß. Let/) be a nonprincipal

countably complete ultrafilter on a. Consider the ultrapower 2TD. By Theorem

1.2, d:3I-< 3TD. Moreover, we have d(A) # A"D, because it follows from the

inequality a = ß that there is a one-to-one function fe A", and since D is non-

principal we have//D ^ d(A). Therefore 2TD is isomorphic to a proper elementary

extension of 31.

It remains to prove that | A"D \ = ß. For each n < to, we have | (/?„)"„ | = ßn,

because | ß" | = ß„. Consider any/e A", and for each n < to let

XH = {t<x:f(C)eßn}.

Since D is a countably complete ultrafilter and \^)n<taXn = a, we must have

X„eD for some n<to. It follows that f/D = g/D for some geß„". Therefore

\A'D\£\\J{(ßH)'D:n<co}\.

However, the right hand side of this inequality is equal to ß, because | (/?„)*„ | = ß„

for each n <to and ß = \^)n<B>ß„. Hence \A'D\ = ß> ana the proof is complete.

The following lemma is proved (much more generally) in [39].

Lemma  4.8.   // a is the smallest measurable cardinal, then la^^ot.

A cardinal a is said to be confinal with to if there is a sequence <yn)n<(a of

cardinals such that y„ < yn+1 for each n, and a = [J„<toyn.

The next lemma is proved (much more generally) in [31, p. 7],

Lemma   4.9.   If a is not confinal with to, then \am\ =[}ß<x\ß'°\-
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If we assume that the generalized continuum hypothesis holds for all measurable

cardinals, then we shall always be able to answer the question of which complete

systems 31 have proper elementary extensions of power \A\. Theorem 4.5 gives

the answer, without any continuum hypothesis, in case | A | is nonmeasurable.

The following theorem provides the answer in case | A | is measurable.

Theorem 4.10. Assume a+=|2°'| holds for every measurable cardinal

number a. Then every system 91 such that \A\ is measurable has a proper ele-

mentary extension of power \A\.

Proof. Let a be the smallest measurable cardinal, and let /?=|.4|. If

ß = \ßa\, then 31 has a proper elementary extension of power \A | by the first

half of Rabin's Theorem. Suppose ß < \ßa\. By Lemma 4.8, ß # a, and

hence a<ß. From Lemma 4.3 we see that y + = |27| holds for every y 2ï a.

For each y < ß, we then have

Irl^lÍTU^-I^KyU^'^^ívUa)^)?.

Therefore (Jy<J^I = ß> and since ß < l^l»¡t follows that

|p~i>ium
By Lemma 4.9 we conclude that ß is confinal with to. Let (yn}„<01 he a sequence

of cardinals such that yn < y„+1 for each n and ß =[_Jn<eo7„.Then for some m < to

we have a < ym. For each n <to, define ß„ = (ym+„)+. Then all of the hypotheses

of Theorem 4.7 are satisfied, and therefore 31 has a proper elementary extension

of power ß.

5. Strong limit ultrapowers. 93 is said to be a strong extension of 31 if there

is an ultrapower 3I/D and an isomorphism <j> of 3I/D onto 93 such that tb ° d is

the identity function on A. It follows that any strong extension of 31 is an ex-

tension of 31. By Theorem 1.7, any strong extension of a strong extension of

3t is itself a strong extension of 31.

93 is said to be a strong limit ultrapower of 31 if there is a sequence <3I„>I1<C0

such that 3t0 = 3I,each 3I„+y is a strong extension of 3I„, and 93 = [J {31, : n < <u}(7).

Theorem 5.1. Any strong limit ultrapower of 31 is isomorphic to a limit

ultrapower of 31.

Proof. In view of Theorem 3.7, it suffices to prove that if 93 is a strong limit

ultrapower of 31, then 91 -<-< 93. Consider a sequence <3I„>„<(0 such that 3I0 = 3I,

each 3In+1 is a strong extension of 3I„,and93 =(Jn<(03I„. For each n < to, choose

Jn, En, 9n such that

9„:%„\n =• 3I„+1 and fl..d=i.

(7) The author is indebted to T. Frayne for suggesting this elegant form of the definition of

strong limit ultrapower, which considerably simplifies an earlier formulation.
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Let 2IÓ be a complete system such that 3l¿ {p — A. For each n <to, let 2Iñ+1

be the system defined by the condition

"n ' <*n    E„   =    **ti+1>

and let 23' = \Jn<0)%. Then clearly 23' {p = 23. By Theorem 1.2, we have, since

6 °d= «,that í:3I„'«< 3I„'+i for each n. Thus by Theorem 1.1 it follows that

t : 3IÓ < 23', and therefore 31 « 23.

One of the main reasons for considering strong limit ultrapowers is the follow-

ing theorem, which is another characterization of elementary equivalence ana-

logous to Theorem 3.10.

Theorem 5.2(8). 31 = 23 if and only if there is a strong limit ultrapower

of 21 which is isomorphic to a strong limit ultrapower of 23.

Proof. If 21' is a strong limit ultrapower of 31, 23' is a strong limit ultrapower

of 23, and 3t'=i23', then by Theorem 5.1 and Corollary 3.3, 31 = 23.
Now suppose 31 = 23. By Theorem 1.6 (a) there is an ultrapower 3l/D and

an elementary embedding 6 :23 -< 21 'D. It follows that there is a strong extension

2lt of 21 and an elementary embedding \p0 '. 23 -< täy. By Theorem 1.6 (b) there

is an ultrapower 23JE and an elementary embedding 0' : °lx -<23J£ such that

6' ° ipo = d. It follows that there is a strong extension 23y of 23 and an elementary

embedding tp0 :2IX -<231 such that tp0 cip0 = i. By repeatedly applying Theorem

1.6 (b) in this way we obtain a commutative diagram

21 = 210-!-» *i —>3I2 -,
/ /

Íio/<?o     tyl/ $\
y

23 = 230 -J_> 23Í —^ 232

such that for each n < to, 3I„+1 and 23„+1 are strong extensions of 3I„ and 23„

respectively, and tp„ : 3I„+1 -<23„+1 and \pn :23„ -< 2In+1. It follows that \J„<0)tpn

is an isomorphism of 2IW = Un<ü)2In onto 23ro = (Jn<<a23„; moreover, 2I,,, and

23ra are strong limit ultrapowers of 21 and 23. This completes the proof.

In Theorem 5.2 we do not obtain as small a bound on the cardinality of the

strong limit ultrapowers as we did for the limit ultrapowers in Theorem 3.10.

(8) The statement of this theorem as originally given by the author was rather complicated,

due to an awkward definition of strong limit ultrapower. However, Frayne and Kochen soon

discovered more elegant formulations. Kochen's formulation involves the notion of direct limits

of relational systems (see [19; 20]). We adopt here the formulation suggested by Frayne, which

was also used in [13].

The proofs of Theorems 3.10 and 5.2 both depend ultimately on Theorem 1.6, but are

otherwise independent of each other. As we have already mentioned, the results of [9] permit us

to obtain characterizations of many model-theoretic notions whenever we have a characterization,

such as Theorem 5.2, of elementary equivalence. This program is carried out by Kochen in [20],

who goes considerably beyond what is indicated in [9], and also improves Theorem 5.2.
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However, it can be seen from the proof of Theorem 5.2 that, if 21 = SB, then

21 and 23 have strong limit ultrapowers which are isomorphic and have cardinality

at most

,AviB
U 22AUB u 22AUB\¿ i u

6. Complementary examples. For any system 21, we may consider the fol-

lowing classes of systems:

K0(2I) = {SB: SB = 21};

Ki(2l) = {23 : SB is isomorphic to an ultrapower of 21} ;

K2(2I) = {23 : SB is isomorphic to a strong limit ultrapower of 21} ;

K3(21)= {23: 21« 23};

K4(21) = {23 : 21 < 23}.

Recall that by Theorem 3.7, K3(21) is just the class of all systems SB which

are isomorphic to a limit ultrapower of 21. For each system 21, we have the in-

clusions:

K0(2l) £ ^(21) £ K2(2I) £ K3(21) £ K4(21).

K0(21) £ ^(21) because 2Is2I/D whenever D is a principal ultrafilter, by

Theorem 1.5. K^SH) £ K2(2l) because if SB e KX(W), then SB = SB' for some strong

extension 23' of 21, and since 23' = 2Iu[Ji<„<,023', SB' is a strong limit ultra-

power of 21, so 23 e K2(21). Theorem 5.1 tells us that K2(21) £ K3(2I). Finally,

Lemma 3.5 (ii) states that K3(21) £ K4(21).

In this section we shall give examples showing that for a particular system 21

all these inclusions are proper. Thus the notions of ultrapower, strong limit

ultrapower, limit ultrapower, and elementary extension are all essentially dif-

ferent from each other.

Let 2I0 = <4,R > be the particular relational system in which A is the set of

rational numbers and R is the usual order relation on them. Thus 2I0 is of type <2 >.

Theorem 6.1.    K0(2I0) # K^X9).

Proof. Let D be a nonprincipal ultrafilter on co, and let 23 = SS.0mD.

Then 23 e K^o). By Theorem 4.1, \B\ k \Aa\. Since \A\ = co < | Aro|,|B|# \A\

and hence SB £ K0(2I0).

Let 23 = <[B,Sy = 210. We shall say that SB is confinal with co if there is a se-

quence (b„}n<toeBesuch that for each beB there is an m for which S(b,bm).

In particular, 2I0 is confinal with co.

(9) This is a known result for any infinite system 21 (see [8]). We include this theorem here

for comparison with the results which follow.
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Theorem 6.2.   K^o) # K2(3I0).

Proof. We shall first prove that if 93 e K^SIo), then either 93 S 3I0 or 93

is not confinal with to. Suppose 93 = 3I0 fails. Then 93 = SC0JB where 3I0/d

is a nontrivial ultrapower. Let f0/D, fy/D, f2/D, •■■ eA'D. Since \A \ = to

and 3I0ID is nontrivial, Dis not countably complete, by Theorem 1.4. Hence we

can choose X0,Xy,X2,--- eD such that X„+i £ Xn for each n and Ç\n<(0X„= 0.

There exists a function ge^4 Jsuch that for each n < to and ieX„, we have

Rifo(i),g(i))> R(fliÍ),giÍ)),-,RifniÍ),g(Í))-

It follows that for each n < to,

{ieI:Rifnii),gii))}z2XneD,

and hence RDif„/D,g/D). Therefore 3I0/B and 93 are not confinal with to.

We shall now construct a strong limit ultrapower of 3I0 which is not isomorphic

to 3I0 but is confinal with to. We first show that any system 3I' = <^1',R'>,3I' s 3I0,

has a strong extension 31" = (A", R" > such that A' has an upper bound b in

31", that is, R"ia,b) for every aeA'. Let D he an ultrafilter on A' such that

{beA' :R\a,b)}eD for each aeA'.

Let geA'A he the identity function on A', and for each aeA' let faeA'A' be

the constant function at a. Then for each a e A' we have

{beA' :R'iUb),gib))} = {beA' : R\a,b)}eD,

and therefore R'Dida,g/D). Let 31" be an extension of 31' for which there is an

isomorphism tj) of 3I"4 D onto 31" such that </> ° d is the identity. Then 31" is a

strong extension of 31' and tßig/D) is an upper bound of A' in 31".

We may construct a sequence 9I0,9Il5 5t2^"- sucn that, for each n < to, 3In+1

is a strong extension of 3I„ and An has an upper bound b„ in 3I„+1. Let

23 = \JH<JL =  <B,S).

Then 93 e K2 (3I0). However, for every b e B there is an m such that beAm and

thus Sib,bm). Hence 93 is confinal with to. Since A has an upper bound in 3^

but not in 3I0, 3^ is a proper strong extension of 3I0, and by Theorem 4.1,

| B | = | Ay I > to. Therefore 93 £ 3I0 fails, and 93 ¿ K1(3I0).

Theorem 6.3.   // to+ = \2(a\, then K2(3l0) # K3(9I0).

Proof. We first construct a system 93 e K3(3I0) such that 93 is confinal with

to and \B\ = to+. Let 3IÓ be a complete system whose <2>-reduct is 3I0, and

which has to+ relations (this is possible because we are assuming the continuum

hypothesis). Using the Compactness Theorem and the Löwenheim-Skolem-Tarski

theorem, we can easily obtain a sequence 3li,,3Il,3I2,— such that, for each n < to,
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3Iñ+i is an elementary extension of Wn, A'„ has an upper bound b„ in the <2>-re-

duct 3l„+1 of 3i;+1, and |4+1| =to+. Let23'=(J„<u)3t; and let 23 be the
<2>-reduct of 23'. For each beB there is an m such that beAm and hence

S(b,bm). Therefore 23 is confinal with to. By Theorem 1.1, 23' is an elementary

extension of 3I0. Consequently we have 3t0 -<-< 23, and 23e K3(3I0). Finally,

|B|=co+ because |J4n+1|=co+ for each n.

We now show that 23<£K2(3I0). Suppose on the contrary that 23eK2(2I0).

Then there is a strong limit ultrapower (£ = (C,Ty of 2t0 such that 23 =(£.

There is a sequence 310,31!,3I2,— such that li =U„<ro3l„ and, for each n, 3l„+1

is a strong extension of 3In. Since | C | = to+ , we have | Ap | = to+ for some p <to.

We shall show that, whenever p = m <to, Ap is not bounded above in 3Im.

Suppose p = m <to and b is an upper bound of Ap in 3Im. Since 3Im is a strong

extension of 3IP, there is an ultrapower (3Ii,)/D and an isomorphism tp of (31p)7D

onto 3Im such that tp°d is the identity function on Ap. For some ge(Ap)', we

have tp(g/D) = b. 3Ipe K,(3I0) - K0(3I0), so by the first paragraph of the proof

of Theorem 6.2, 3IP is not confinal with to. It follows that there is an a e(Ap)m*

such that the range of a is not bounded above in 3IP and R^a^a^ whenever

C < £, < to+; that is, the range of a is an unbounded well-ordered subset of Ap

of type to+. For each £ < to+ let X( = {iel : Rp(a(,g(i))}. Since g/D is an upper

bound of d(Ap) in 3Im, we have X(eD for each Ç < to+. Moreover,P)ç<(0 + Xt = 0,

and Xi s Xç whenever Ç < £, < to*. Since \Am\ = IO^/dI = to+, we may let

(AP)'D = {f(/D : i < to+}. For each i e I there is a Ç < to+ such that i $ X¿ when-

ever £^¿;<e>+. Also, |C| = w<|^p|, so .4P -{/„(/): n < C} ̂  0. We may

therefore choose a function h e (APY such that, for each £, <to+ and each ¡' e X?,

we have h(i) ¥=f$(i). Then h/D ^fJD for each £ < to+, contradicting h/D e (AP)'D.

This contradiction shows that ^4P is not bounded above in 3Im.

Since G = UPgm<0)3Im, it follows that Ap is not bounded above in G. G is

confinal with to because 23 is. Hence there is a set {b„:n < to} £ C which is not

bounded above in G. For each n < to, there is a b'„eAp such that T(b„,b'n), for

otherwise fe„ would be an upper bound of Ap in (£. Then {b'n : n < to} is not

bounded above in (£. Moreover, {ft¿ : n < to} s 4p and is not bounded above

in 3Ip. However this contradicts the fact that 3IP is not confinal with to. Hence

our assumption that 23 eK2(3I0) is incorrect,andwe must conclude that 23<£K2(3I0).

Theorem 6.4.   K3(3I0) #   K4(3I0).

Proof. It is well known that any dense simply ordered system 23 is isomorphic

to an elementary extension of 3I0 and thus belongs to K4(3I0). This follows, for

example, from Cantor's result that every countable dense simply ordered system

is isomorphic to 3I0, and by the Löwenheim-Skolem-Tarski Theorem 23 has a

countable elementary subsystem; see [1 ; 38]. It can also be proved by eliminating

quantifiers; see [22].
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Now let SB = <ß,S> be a dense simply ordered system of type n0-to¡, that

is, SB is isomorphic to the system <[A x co1,R') where R'((a,Çy,(b,ny) if and

only if either £ < «, or £ = n and R(a,b). Then 23 e K4(210).

SB has the property that, for any beB,

(1) \{b'eB :S(b',b)}\ = co.

Suppose SBeK3(210). Since |ß| > \A\, 23 is isomorphic to a nontrivial limit

ultrapower of 2I0. By Theorem 3.6, there is a nontrivial ultrapower 21 j = 2f0;ß

which has an elementary embedding <p into 23. Let a e A0 and let

C = {a'e^4 : R(a',a)}. Then C is infinite and

\C'D\ ^ |coM| >co.

Since there is a natural one-to-one correspondence between C'D and

{axeAx :Rx(ax,da)}, we have

I {ax e Ax : Rx(ax, da)} | > co.

Then

|{£>'eB : S(b',(da))} \ > co,

which contradicts (1). We conclude that SB i K3(2I0).

The question whether Theorem 6.3 can be proved without the continuum

hypothesis remains open.
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