ALMOST LOCALLY POLYHEDRAL CURVES IN
EUCLIDEAN #»-SPACE

BY
J. C. CANTRELL anD C. H. EDWARDS, JR.(1)

Fox and Artin [2] have given examples of wild arcs and curves in E3 which
fail to be locally polyhedral at only one or two points. It is shown in this paper
that no such ‘“‘simple’’ examples of wild curves are to be expected in dimensions
higher than three. In particular, it is proved that a wild simple closed curve in
Euclidean n-space E", n > 3, must fail to be locally polyhedral at each point of
a Cantor set. Examples of such wild curves in E"have been given by Blankin-
ship [1].

A set K in E" is called tame if there is a homeomorphism h of E" onto
itself such that h(K) is polyhedral (relative to the standard triangulation of
E"). Otherwise K is wild. K is said to be locally polyhedral at the point pe K
if there exists a neighborhood N of p such that CI(N N K) is a polyhedron. The
map h:E"— E" is said to be locally semilinear at x if there is a neighborhood
N of x such that h|N is semilinear.

In this paper, S(p,¢) denotes the set of points x € E* whose distance p(x, p)
from p is less than e.

The local connectivity of an arc gives the following lemma.

LeMMA 1. Suppose that A is an arc in E" with p an interior point of A.
Given ¢ > 0, there exists 5 >0 such that, if L is any subarc of A whose endpoints
lie in S(p,d), then L = S(p,¢).

LeMMA 2(?). Suppose that C is a simple closed curve in E", n >3, and that
B is the set of points at which C fails to be locally polyhedral. If p is an isolated
point of B, then, given & > 0, there exists a homeomorphism h of E" onto E" such
that

(@) h is the identity on E" — S(p,¢),

(b) h is locally semilinear except at p,

(©) h(C) is locally polyhedral at h(p).

Presented to the Society, January 22, 1962; received by the editors July 9, 1962.

(1) This research was supported in part by the National Science Foundation, Grants 8239
and 11665.

(2) The authors are indebted to Professor O. G. Harrold for suggesting the Problem solved
in Lemma 2.

451



452 J. C. CANTRELL AND C. H. EDWARDS, JR. [June

Proof. Let g, and g, be two points of C — S(p,¢) and let L,, L,, L, be the
three subarcs of C with endpoints g, and p, q, and p, g, and gq,, respectively,
such that C = L; UL, U L; and each subarc meets either of the other subarcs
in a single endpoint.

Let ¢, = ¢ and let N, be the closed cubical neighborhood of p of diameter ¢,.
Let 8, be given by Lemma 1 for¢, /3, p,and A = L, U L,. Lete, = min[d,, p(p,L3)]
and let N, be the closed cubical neighborhood of p of diameter ¢,. For i > 2
let §,_; be given by Lemma 1 for ¢_/3, p, and A=L; UL,. Let ¢ =06;_,
and let N, be the closed cubical neighborhood of p of diameter ¢;.

By making use of a semilinear deformation in a small neighborhood of Bd N,
if necessary, we may assume that C 1 Bd N,; is a finite set of points, and that
no pair of components of C — N,; share a common endpoint. For each positive
integer i, let u,y, -+, u; ) be the closures of those components of C — N,; which
have both endpoints on Bd N,;. Observe that each of these sets is contained in
the half open annulus Int N,;_, — Int N,;. Let w;; be a polyhedral arc in Bd N;
which connects the endpoints of u;, and, except for those two points, is disjoint
from C. The resulting simple closed curve d;; = u;; U w;; bounds a polyhedral
2-cell D;; in IntN,;_,, since n >3 [3, p. 32]. Hence we may assume that D
intersects C only in w;;. We may further assume that D;; and Bd N,; are in rel-
ative general position, so that each component of Int D;; "Bd N,; is either a
simple closed curve or an open arc (whose closure may be either an arc intersecting
w;, in its endpoints or a simple closed curve intersecting w;; in a single point).

Let e be a simple closed curve component of Int D;; N\ Bd N,; which contains
no other such component in its interior (relative to D;;). Let Y be the subdisk
of D;; bounded by e. Let E and F be the components of E"—Bd N,; and labeled
so that Y < Cl E.

Let r be a point in F, sufficiently close to Bd N,; for X (the join of r and e) to
meet D;; U C only in e. Define Dj; = (D;; — Y) U X and deform D;; semilinearly
away from Bd N,; in a sufficiently small neighborhood of e so that no new inter-
sections are introduced. The disk D,} thus obtained is bounded by d;; and inter-
sects Bd N,; in exactly those components, other than e, in which D;; intersected
Bd N,;. Since the open arc components of Int D;; NBd N; can be eliminated by a
similar process of exchanging disks, after a finite number of steps we obtain a disk
DY, which, except for w;,, is contained in the open annulus Int(N,;_; — N;) and
intersects C only in u;,.

Let #>0 be such that the #-neighborhood S;; of D} is contained in
Int(N,;—; — N;4,) and intersects C — N,; only in u;,. By a sequence of simplicial
moves across the 2-simplexes of D;} the arc u;, may be moved onto the arc w;;.
By making use of a corresponding space homeomorphism [5, Lemma 3], we
may deform u;; onto w;; and then into IntN,; by a semilinear space homeo-
morphism which is the identity outside S;;.

The components u;,, -+, Uy ;, are successively moved into Int(N; — Ny;4y) by
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a technique similar to that used on u;,. We are careful in each move to leave
the remaining components fixed. This is to keep from introducing new inter-
sections with Bd N,;. We denote the composition of these moves by f; and ob-
serve that f; is a semilinear space homeomorphism which is fixed outside
Int(Ny;_y — N4 ). Also, if a; is the first point of L, 1 Bd N,; relative to the
order of L, from ¢q, to p and if b; is the first point of L, n Bd N,, relative to
the order of L, from ¢, to p, then f(C) BdN,;, = a; U b,.
We define a mapping f of E" onto E" by the equations

f(x)=x if xeE'— N,
f(x) =fi(x) if x€Np_y— Nyyy, i=12,-,
f(p) = p.

It is clear since, for each i, f; is fixed on Bd N,;_, UBdN,,;,, and f; eliminates
all but two points of intersection of C and Bd N,;, that f is a homeomorphism,
semilinear except at p, and that f(C) BdN,;=qa;Ub, i=1,2,---.

We now consider the curve f(C). Let L;; = f(L,) n CI(N,; — N,;4,) and
Ly;=f(L,) N CI(N,; — N,;4+2). Let x; be the point of intersection of the linear
segment a,;p with BdN,; and let y; be the point of intersection of b,p with
Bd N,;. Let ¢, be a semilinear space homeomorphism which is fixed outside
Nji—1 — N,y and which carries BdN,; onto BdN,;, with ¢,(a;) = x; and
¢i(b;) = y;. Since a, = x, and b, = y,, we will assume that ¢, is the identity
homeomorphism. The simple closed curve Xx;x;,, Y ¢;,,9.(L,;) bounds a poly-
hedral disk D;, which may be taken to be disjoint from y;y;,; U ¢;s104(L,))-
Furthermore, in the light of the elimination o compo=ent scheme u:ed atove,
D; may be selected so that D;n (BdN,; UBdN,;.,;)=x;Ux;,,;. The arc
¢;+19:L;;) is then moved across the disk D, onto the arc X;x;,; by a semilinear
space homeomorphism ;;, which is the identity outside N,; — N,;;, and on
i+ 104(L,;). Similarly ¢,,,¢,(L,;) is moved onto y;y;,, by a space homeomor-
phism ;,, which is fixed outside N,; — N,;,, and on Xx;x;,,. The composition
V¥, is denoted by y;

A mapping g of E" onto E" is defined by the equations

g(x) =x if xeE"-N,,

8(x) = Vi 19i(x) if xeNy;— Npyyy i=1,2,-,

gp) = p.
The fact that y,¢,,,¢; and ¥, ¢;,,0;,, agree on Bd N,;,, (each reduces to
¢,.,) insures that g is a homeomorphism. It is clear that g is semilinear except
at p and that the subarc of f(L,) from a, to p is carried onto the segment a.p
and that the subarc of f(L,) from b, to p is carried onto the segment b, p.

Finally the desired homeomorphism h is taken to be the composition h = gf,
so that the proof of Lemma 2 is complete.



454 J. C. CANTRELL AND C. H. EDWARDS, JR. [June

Notice that the essential point upon which the proof of Lemma 2 depends
is the fact that polyhedral simple closed curves cannot knot or link in E "if n > 3,
whereas the construction of the typical example of a wild curve in E3, locally
polyhedral except at a single point, involves knotting or linking in a neighbor-
hood of the exceptional point.

The following lemma will serve as the first step in an inductive proof of the
principal theorem.

LeMMA 3. If C is a simple closed curve in E", n > 3, denote by B the set
of points at which C fails to be locally polvhedral, and by B’ the derived set
of B. Then, given ¢ >0 and a compact set F not meeting E= B — B’, there is
is a homeomorphism h of E" onto itself such that

(@) h(x) = x if xe B" U[E" — S(B,¢)],

(b) h is locally semilinear on E" — B,

(c) h(C) is locally polyhedral at each point of h(C) — B’,

(d) p(x,h(x)) < min{e,e* p(x,F)} for each xeE".

Proof. Since the discrete set E is at most countable [4, p. 62] enumerate its
points in a sequence {a;}7 (assume that E is infinite since otherwise Lemma 3
follows immediately from Lemma 2). Choose a sequence {U;}T of mutually
disjoint open sets with a;e U;, U;nB’=[1, and diam U, < {¢" p(U,, F)} for each i,
and a monotone decreasing sequence {¢,}T of positive numbers with each ¢;< &/2
and lim,, , & = 0, such that ClS(a,,&;) < U; for each i.

Using Lemma 2, choose for each i = 1,2,--- a homeomorphism h; of E" onto
itself such that hy(x) = x if xe E" — S(a;,¢,), h; is locally semilinear except at
a;, and hy(C) is locally polyhedral at h(a;).

Then define

x if xeE"— U S(a;, &),
h(x) = i=1

h(x) if xeS(a;e¢).

Obviously h(x)=x if xeB U[E"— S(B,e)] and the fact that diam U;
< &'p(U,F) for each i implies that p(x, h(x)) < min {e,e'p (x,F)} for
every x e E". Since h;|S(a;¢) is 1-1 onto, it is clear that h is a 1-1 map of
E" onto itself. Since h is the identity outside some n-cell, to show that h is a homeo-
morphism it suffices to show that it is continuous.

If xeClS(a;,¢;) for some i, then there is a neighborhood U of x such that
Un S(aj,e;)) = O if i # j. Therefore h = h; on U so that h is continuous at x
and is also locally semilinear at x, unless x is a;.

If xe E"—CIE —U[‘°=1Cl S(a;,e;), then there is a neighborhood V of x such
that V' U;";l S(a;,&;) = O. To the contrary, suppose that for each positive in-
teger k there is an integer i, such that S(x,1/k) N S(a,,,¢;) contains a point Xx,.
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Since x is not in any ClS(a;¢), it follows easily that lim, i, =0, so
that lim,, , &, = 0. ’

Because p(x;,a;) <eg;,, while lim,,,x, =x, it therefore follows that
lim, , ,a; = x, contradicting the fact that x ¢ CI1E. Consequently h agrees with
the identity in some neighborhood of x, so that h is both continuous and locally
semilinear at x. It is now clear that h is locally semilinear on E"— B.

It remains to consider the case of a point x in Cl E —U‘,f°=1Cl S(a;,¢;). Let
{x,}1" be an arbitrary sequence of points converging to x. Since h(x) = x and
h(xy) = x, if x,¢ Uf‘;, S(a;, €;), suppose that for each k there is an i, such that
x, € S(a;,,¢e;,). Since x is not in any ClS(a;,¢;), it is clear that lim,_, i = co
so that lim,_, ,, &, = 0. Now h(x,) € S(a;,,¢;,), since h carries S(a;,,¢;,) onto itself,
so that p(x;,h(x;)) <2¢,. But lim,,x, =x and lim, ¢, = 0. Hence
lim,, ,h(x,) = x = h(x) so that h is continuous at x.

Consequently h is a homeomorphism of E" onto itself. Since it is clear from
the construction of h that h(C) is locally polyhedral at each point of h(C) — B’,
this completes the proof of Lemma 3.

THEOREM. Let C be a simple closed curve in E", n > 3, and denote by B,
the set of points at which C is not locally polyhedral. If B, is countable then C
is tame.

Proof. Obviously B, is a compact subset of C. Denote by B, the derived set
By of B,. Supposing that B, has been defined for every ordinal number « pre-
ceding the ordinal number f, B, is defined as follows: If f is an ordinal of the
first kind, i.e., f =« + 1 for some «, define By = B,; while if f§ is an ordinal
of the second kind, define By = ﬂa<,Ba. Since {B,} is a decreasing transfinite
sequence of compact subsets of C, there exists a first ordinal number y preceding
the first uncountable ordinal Q, such that B, = B; for every 6 >y [4, p. 67].
If the compact perfect set B, were nonempty, then it would be uncountable
[4, p. 92], thereby contradicting the hypothesis that By, is countable. Consequent-
ly B, = [J. It therefore follows that, in order to prove the Theorem, it suffices
to show that the following lemma holds for every countable ordinal a.

LEMMA A,. Let C and B, be as in the Theorem. Given a compact set F not
intersecting By — B, and a positive number ¢, there is a homeomorphism h of
E" onto itself such that

(a) h(x)=x if xe B, U[E" — S(By,¢)],

(b) h is locally semilinear on E" — By,

(©) h(C) is locally polyhedral at each point of h(C) — B,

(d) p(x, h(x)) < min{e, e p(x, F)} for each x € E".

To prove Lemma A, for every ordinal number a of the first and second classes,

it is sufficient by the transfinite induction principle to show that
(1) Lemma A, is true.
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(2) The truth of Lemma A, implies the truth of Lemma A, , for every a < Q.

(3) If {o;};~, is an increasing sequence of countable ordinals, with
lim;, ,, a; = a,, such that Lemma A,, is true for each i = 1,2, .-, then it follows
that Lemma A, is true.

Lemma A has already been proved as Lemma 3. Now suppose that Lemma A,
is true and let ¢ > 0 and a compact set F not meeting B, — B,,, be given.
By Lemma A, there is a homeomorphism h; of E"onto itself such that
(@) hy(x)=x if xeB, U[E"— S(By,¢)], (b) h, is locally semilinear on E"
— By, () hy(C) is locally polyhedral at each point of h(C) — B,, and (d)
p(x, hy(x)) < min{e/2,¢- p(x, F)/3}. Then since the simple closed curve h,(C) is
locally polyhedral except at the points of B,, by Lemma A, there is a homeo-
morphism h, of E" onto itself such that (a) h,(x) = x if xe€ B,,, U [E" — S(B,,¢)],
(b) h, is locally semilinear on E" — B,, (c) h,h,(C) is locally polyhedral at each
point of h,h,(C) — B,,4, and (d) p(x, h,(x)) < min {e/2,¢" p(x, F)/3}. It follows
that h = h,h, satisfies the requirements of Lemma A,,,, so that the truth of
Lemma A, implies the truth of Lemma A, ;.

Now suppose that {«;}7" is an increasing sequence of countable ordinals, with
lim;, , a; = &y, such that Lemma A, is true for each i =1,2,3,---. Let ¢>0
and a compact set F not meeting B, — B, be given. Using Lemma A,,, let h,
be a homeomorphism of E" onto itself such that (a) hy(x) =x if xeB,,
U [E" — S(By,¢/2)], (b) h, is locally semilinear on E"— By, (c) h,(C) is locally
polyhedral at each point of h,(C) — B,,, and (d) p(x, h,(x)) < min {¢/2, &* p(x, F)/3,
p(x, B,,)/4)}. In general, having defined h,,h,, --,h;_ such that h;_, --- h,h,(C)
is locally polyhedral except possibly at the points of B,,_,, use Lemma A,
to define a homeomorphism h; of E" onto itself such that (a) h(x)=x if
xeB, U[E"—S(B,,_,¢/2)], (b) h; is locally semilinear on E"— B, _,,
(c) h;h;_; --- hy(C)is locally polyhedral except at the points of the a;th derived set
of B,,_,, and (d) p(x,hy(x)) < min{e/2',¢" p(x,F)/3’, p(x,B,,)/4}. Notice that
(B D)y = Bay_ +4; < By, since a;_y + «; = a;, so that h;--- hy(C) is locally poly-
hedral except possibly at the points of B,,. Finally define h(x) = lim;_, ,h; - hy(x)
for each x € E™ The map h is well-defined because h; moves no point more than g/2*
and X2 ,¢/2'=¢< 0. Routine series calculations show that p(x,h(x))
< min {¢, ¢ p(x, F), $p(x,B,,)} so that condition (d) of Lemma A,  is satisfied.
It is obvious from the construction that h satisfies condition (a) of Lemma A,,.

To show that h is continuous at each point of E" —B,, consider an arbitrary
point xe E"—B, . Since p(x,h(x)) <}p(x,B,), and since {CIS(B,_,, &/2'}¥
is a decreasing sequence of compact sets intersecting in B,, there exists an integer
j(x) such that h(x) € E" — C1S(B,,,., _,,1/2’). Therefore there is a neighborhood
U of x such that h = hj,,--- h,h; on U, so that h is continuous at x, and is also
locally semilinear at x if x¢ B,. It follows also, if x € C, that h(C) is locally poly-
hedral at h(x), since x¢B;.,-;, so that conditions (b) and (¢) of Lemma A,
are satisfied.
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To see that h is 1-1 on E", consider any two distinct points x and y of E".
If x, y€B,,, then h(x) = x # y = h(y) since h is the identity on B, . If xeB,,
and ye E" — B, , then h(x) = x while h(y) € E" — B, as above, so that h(x) # h(y).
Finally suppose that x,yeE" — B,,. Then denote by k the maximum of j(x)

“and j(y). It follows that h(x)=h,---h,(x) and h(y)=h,---hy(y), so that h(x)# h(y)
because the h; are homeomorphisms.

Now suppose that ze E" — B,, and choose an integer k such that
zeE"— S(B,,,¢/2**"), so that h(z)=z if i>k, and let y=hi'-h '(2).
Then h(y) = z so that h maps E" — B, onto itself. Since h is the identity on B,
it follows that h maps E" onto E".

In order to prove that h is a homeomorphism of E" onto itself, it remains to
prove that h is continuous at each point of B, (h being the identity except on
a compact set). Since h is the identity on B, it suffices to show that, given a
point xe B, and an arbitrary neighborhood U of x, there is a neighborhood
V of x such that h(V) < U. First choose y > 0 such that S(x,y) = U, and let
V= S(x,2y/3). Then, given y e V, p(y, B,,) < 2y/3 and p(y, h(y)) < 3p(y, B,,) <7/3
so that p(x, h(y)) < p(x, y) + p(y, h(y))<2y/3 + y/3=7, and hence h(y)eS(x,y)=U.
Thus (V) < U. Therefore h is continuous at x.

Consequently h is a homeomorphism of E” onto itself satisfying the conditions
of Lemma A,,. It now follows by transfinite induction that Lemma A, holds
for each countable ordinal number «. This completes the proof of the Theorem.

COROLLARY. If the simple closed curve C in E", n > 3, is wild, then C fails to
be locally polyhedral at each point of some Cantor set.

Proof. If B denotes the set of points at which C is not locally polyhedral
then, by the Theorem, B is uncountable. As in the proof of the Theorem, choose
a countable ordinal number « such that B; = B, if § > a. Then B, is an uncount-
able compact perfect set, at each point of which C fails to be locally polyhedral.
If B, is totally disconnected, then it is a Cantor set. Otherwise B, contains an
arc, which in turn contains a Cantor set.
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