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1. Introduction. During the past three decades, Professor J. L. Walsh of

Harvard University has proved a number of interesting theorems about the

location of the critical points of the Green's function, with pole at infinity, for an

infinite two-dimensional region with a finite boundary(2). Among these is the

following :

Theorem 1.1 (Walsh(3)). Let R be an infinite region whose boundary B is a

finite Jordan  configuration and let G(x, y) be the Green's function for R with

pole at infinity. Then the critical points of G(x, y) in R lie in the convex hull

H(B) of B, with none on the boundary of H(B) unless the points of B are col-

linear.

This result is analogous to the well-known theorem on polynomials:

Theorem 1.2 (Lucas(4)). The critical points of a polynomial f(z) lie in the

convex hull H of the zeros of f(z) with none on the boundary of H unless it is a

multiple zero off(z) or unless the zeros off(z) are collinear.

One of the generalizations of Lucas' theorem is the following:

Theorem 1.3 (Marden(5)). If an nth degree polynomial f(z) has p zeros

(2 ^ p g «) in a circle C of radius a, it has at least p — 1 critical points in the

concentric circle C of radius a csc [n/2(n — p + 1)].

This raises the question as to the possibility of an analogous generalization of

Theorem 1.3. In the ensuing sections we shall investigate this question and deve-
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lop several such analogies. They will involve a linear combination of Gix, y)

with the Green's functions for infinite lemniscatic regions whose poles lie in R.

The theorems will be of the following type.

Theorem 1.4. Let R be an infinite region bounded by a finite Jordan con-

figuration B. Let pkiz) be a polynomial of degree nk with all its zeros in R and

let L denote the intersection of the m lemniscatic regions

(1.1) Lk:\pkiz)\> pk,      pk>0,       k = l,2, -,m

where the pk are chosen so that L nfi^O. Let the Green's function with pole

at infinity be denoted by Gix, y) for R and by gkix,y)for Lk. Then the linear

combination

m

(1.2) <IXx,y) = G{x,y)+  ¿ZXkgkix,y),       all Xk> 0,
*=i

has at most N = ny + n2 + — + nm critical points icounted with their mul-

tiplicities) outside a certain star-shaped region S containing //(B), dependent

upon N, but not upon the location of the zeros of the pkiz).

In §§3, 4, 5, we shall prove this theorem for various cases and further specify

the region S. The proof in each case is made possible by the establishment of an

identity which relates G(x, y)to any N + 1 critical points of <P(x, y).

2. Function Wiz). For the development of theorems like 1.4 we need the

followingi6).

Theorem 2.1. In Theorem 1.4, let

Pk(z) = (z - Ci*) (z - C2k) — O - £„„*)•

Then the critical points o/í)(x, y) in R n L are the zeros of the function

(2.1) 'W-fÎi+ïfÎTT'Jb z ~ l      * = i  "* j = i z ~ >>jk

where

dp = (1/2b) iôG/ôv)ds > 0,

and where v is the interior normal to B.

As its form suggests, the conjugate imaginary of *P(z) may be interpreted as the

force due to a distribution dp on B plus the forces due to N discrete particles of

(<>) Generalization of Theorem 1, J. L. Walsh, ibid., p. 247.
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mass (XJnk) at the points (,Jk, the force attracting according to the inverse

distance law.

To establish the lemma, we use the representations^)

(2.2) G(x, y) =    log rdp 4- y,      y = const.,

(2.3) g¿x,y) = (i/nk)log[\p¿z)\/p¿

where r is the distance from point (x, y) to a variable point on B. Thus

*(*, y)l= y +\    log rdp + Z  (Xk/nk) log [|p*(z)|/p*].
Jb * = i

On adding to $(x, y),  y/— 1 times its harmonic conjugate and taking the deriva-

tive, we obtain the function *P(z).

3. Case m = 1, Ly : circular region. We begin with the computationally

simplest case in which we shall obtain the following result.

Theorem 3.1. Let R be an infinite region bounded by a finite Jordan con-

figuration B and containing the point Ç. Let the Green's function with pole at

infinity be denoted by G(x, y) for R and by g(x, y) for the circular region

C:\ z — £| > p, where the radius p is taken so that R r\ C ^ 0. Then at most a

simple critical point of the function

<5(x, y) = G(x, y) + Xg(x, y),       X>0,

lies outside the star-shaped region S comprised of all points from which H(B)

subtends an angle of at least n/2.

In this case g(x, y) = log (\z — t\/p) so that (2.1) reduces to

(3.1) y(z)=r_^L
Jb z ~ f 2-C

Let us assume, contrary to Theorem 3.1, that 0(x,y) has two distinct critical

points z0 and zt outside S. Then

(3.2) Ij + —~ = 0,       j = 0,1,

where

O J. L. Walsh, ibid., p. 246 and p. 248.
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On defining

(3 4) /..= í_^_

we find

(3.5) Ii-Ij = (Zj -zdltj-

By eliminating Ç from equations (3.2), we obtain the equation

(3.6) I0IX + XI0X = 0

which is a relation between G(x, y) and any two critical points z0 and zx of

4>(x, y).

If <5(x, y) has a multiple critical point at z0, the corresponding relation

(3.6)' Il + XIoo = 0

may be obtained from (3.6) by allowing zx -► z0, or equivalently by eliminating

£ from the equations ^(zo) = 0 and 4*'(z0) = 0.

Let Tj denote a point such that

(3.7) arg (T¡ — z¡) = sup arg (í - zj),       mod 27t.
leB

Since z0 and zx lie outside S, B subtends an angle less then 7t/2 at z0 and zx and

thus

Hence, the vectors

have the property

0<argjC—Z-J-<~,       forallieB.
- 6    t     -    Z; 2

vi   = [(T0 - z0)/0] [(Ti - zO/J ,

»2   = (To -z0)(Tx - zx)I0X

0^argvj<n,      j = 1,2

and hence vx + v2 # 0. That is, the assumption that two critical points z0 and zx

lie outside S implies that (3.6) or (3.6)' is not satisfied and thus leads to a contra-

diction. Therefore, at most, a simple critical point may lie outside S.

Immediate consequences of Theorem 3.1 are:

Corollary 3.1. IfB lies inside a circle of radius a, then the $(x, y) of Theorem

3.1 has at most a simple critical point outside the concentric circle of radius

Corollary 3.2. IfB lies on a line segment A, the function <&(x, y) of Theorem

3.1 has at most a simple critical point exterior to the circle C having A as

diameter.
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4. Case Xk = X nk, all k. We shall next prove the following generalization

of Theorem 3.1.

Theorem 4.1. Let R be an infinite region bounded by a finite Jordan con-

figuration B and let pkiz) be polynomials of degree nk with all their zeros in R.

Let L be the intersection of the m lemniscatic regions

(4.1) Lk:\pkiz)\> Pk,       pk>0,       fe = l,2, m

where pk are chosen so that R n L ^ 0. Let the Green's function with pole at

infinity be denoted by Gix, y) for R and by gkix, y) for Lk. Then the linear

combination

m

(4.2) <D(x, y) = Gix, y) + I Xnkg¿x, y), X>0
Jt=i

has at most N critical points icounted with their multiplicities) outside the star-

shaped region S comprised of all points from which //(B) subtends an angle of

at least Ji/(JV + 1).

Proof. Let us assume on the contrary that 3>(x, y) has N + 1 distinct critical

points z0, Zy, —, zN outside S. These critical points satisfy the equations obtained

from (2.1):

N 1

(4.3) /P + Al-r = 0,       p = 0,l,-,iV
/-izP~"tj

where the £,- (;' = 1,2, —, N) are the t,jk relabelled with a single subscript and Ip is

defined by (3.3).

We shall now establish three lemmas involving the integrals

(4.4) /• -    - = f _^_
^     ' ",2-'k   JBi^-t)izh-t)-izik-t)-

Lemma 4.1. Under the hypotheses of Theorem 4.1, the distinct critical

points z0, Zy, —, zN o/<D(x, y) satisfy the equation

(4.5) y PkXk = 0
k = 0

where

Pk= IVfcM-VA-^-/».
(4.6)

Df.m iÔ/dZj),
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(4.7) 'v — ^01.../r —

A
zl

4

X
N-l

Zl

-ft-1
zft

and where in (4.6) the sum is taken with the set (i0, ix, —, iN) running through

all possible permutations of the set (0,1, —, N).

The proof of Lemma 4.1 involves eliminating d,£2,—,£n fr°m equations

(4.3). To facilitate this step, we introduce the function

<t>(z) = (z-l.y)(z-i2)-(z-l.N)

= <rnz   — a,z
ft-i 4-(-l)%,       o0 = l,

so that after multiplication by tp(z¡) equations (4.3) become

Xtp'(Zj) + Ijtp(zj) = 0,      j - 0,1, -, JV.

Thus, with X, = X for i # N and XN = 0,

(4.8) Z(-iy[/JZi4-A¡(N-i)>ri"1°r¡ = 0'      .7 = 0,1,-, AT.
i = 0

It is sufficient now to eliminate the a¡, requiring that

(4.9) A = det || [IjZj +X,(N - OK"1-1 II = ° >       W = 0,1.-.N.

But A may be written in terms of the derivative operators Dj and the Vander-

monde determinant "KH as

(4.10) A = (/0 4- XD0)(Iy + XDy)-(IN + XDN)rN.

As (4.10) is the same as (4.5) and (4.6), Lemma 4.1 has been established.

Lemma 4.2. In the notation of Lemma 4.1, let

(4.11) £|ii,...i* - -r*

Then

(4.12)     £;ii2..,k=Z

O^k^N,       0^iy<i2<-<ik^N.

ky\(k2-ky)\-(kp-kp.y)l

ñ(*t-«j.) n i^-zh)- n (*fc-«i)
r=l r=*!+t r=*„-i + l
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where the sum is taken for all kr and jr such that

0 = k0 < ky < k2 < ••• < kp = k;

and such that j y ,j2, ";jp run independently through all the values 0,1,2, —,,/V

with the exception of iy, i2, —, ik.

In the proof of Lemma 4.2, we may use the symmetry of E¡i¡2 ik in the sub-

scripts. It is sufficient therefore to compute £0i2...*- After cancellation of the

factor Vk+ltk+2.N from the numerator and denominator, equation (4.11) re-

duces in this case to

F _ DqDi -Dk [PJz0)Pizy) - Pjzk)rk-\

*012...* Piz0)PiZy)...PiZk)-rk

where

Piz) = (z - zk + i)iz - zt + 2)-..(z - zN).

Equation (4.12) now follows from equations (5.2) and (3) of a previous paper(8)

in which the Lagrange Interpolation Formula was extended to functions of

several variables.

Lemma 4.3. Under the hypotheses of Theorem 4.1 and in the notation of

Lemma 4.2 the distinct critical points z0, zlt —, zN o/<p(x, y) satisfy the equation

(4.13)    bzn(fcJ+1-^)!/VA/trt     ft 'iu = o.
*=o        ;=o '     ' ,+1     u=k+p

This is an identity connecting G(x, y) with any JV-f-1 distinct critical points of

0(x, y).

To prove this lemma, we may substitute from (4.12) into (4.6) and then both

interchange the summation order and renumber the indices so as to obtain :

(4.14)    Pk = I kylik2 - ky) ! -ik - kp.y) ! Jfe+_/Wj - VoFi - Fp-x

where for j = 0,1, —,p — 1,

«¡7 + I+J + l T

v = kj + j + l<Pj\ziJ

and

fc^+i+j+i

d>jiz) = -   n (*i.-*).
v=kj+j+l

(8) M. Marden, Kakeya's problem on the zeros of the derivative of a polynomial, Trans. Amer.

Math. Soc. 40 (1939), 355-368.
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On the other hand, the function

_f   dp
JbZ-̂

7

has, due to (4.4), the successive divided differences :

z2 — zx

rzzz1 - (- J») - (- Aa) _ jLzlz2z3j    — , _ — J123>
Z% Z7

[zxz2-zk] = (-1)*  lIX23...k.

By a well-known formula for divided differences,

h
\zxz2-zk] =

(Zi - Z2)(Zi - z3)—(zx - zk)

u+
(z2 - zx)(z2 - zA) — (z2 - zk)

h+ •■■ +
(zk - zx)(zk - z2)  -(zk - zt_t)

Hence, from (4.15) follows

F- I

and from (4.5) and (4.14) follows (4.13).

Proof of Theorem 4.1. Let us suppose contrary to Theorem 4.1 that 0(x, y)

has 7Y+ 1 distinct critical points z0, zx, •••, zN outside S. Then at each

zj (j = 0,1, ...,W), B subtends an angle less than 7t/(iV+l). This means that, if

points Tj be introduced as in (3.7),

TJ- ZJ *
0 ^ arg —-'- <

nk

t-Zj       N + 1

for j = 0,1, •••, N and for all teB. Thus

=     g      (z,, - i)(z¡2 - i) ... (zik -t)     ^ N + 1 - " •

Hence,

0 ^ arg [(z,, - r,,)^,, - T,.2) - (z¡t - rj/llfa„.,J < nkj(N + 1).

Multiplied by the factor (z0 - To)(z! - Tx)--(zN - TN), each term in (4.13)
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therefore represents a vector which, if drawn from the origin, would lie in the

sector

0 ^ 9 < n

and the same would hold for their sum Pk. Each term in the sum on the left side

of (4.13) would consequently also be represented by a vector in this sector, so that

equation (4.13) would not be satisfied. In view of this contradiction, the assump-

tion that <D(x, y) has at least N + 1 critical points outside S has been shown to be

incorrect and that therefore at most N critical points may lie outside S as was

to be proved.

If <D(x, y) has multiple critical points, an identity connecting G(x, y) with

critical points of <t>(x, y) of total multiplicity N + 1 may be derived from (4.13)

by allowing the appropriate z¡ to coalesce. This identity has the same form as

(4.13), with the subscripts not necessarily distinct, and hence the proof of

Theorem 4.1 remains valid when the critical points are not necessarily simple.

When N is specialized to be zero, the region S reduces to //(B), the convex hull

of B. Thus Theorem 4.1 is a generalization of Theorem 1.1.

5. Arbitrary Xk. In the general case, we may try to proceed as above. On

assuming that <S(x, y) has N + 1 critical points z0, zlt —, zN outside S and by

substituting the zk into 'P(z) of formula (3.1) we may obtain a system of JV + 1

equations in the N unknowns, the (,jk. Our next step would be to eliminate the

Cjk from these equations, thereby to get a direct relation between the configuration

B and the critical points zk. From this relation we should expect to determine S.

However, the elimination of the (,jk is in practice quite involved. We therefore

limit our discussion of arbitrary Xk to the case m = 2, n¡ = n2 = 1. For this

case we shall establish

Theorem 5.1. Let R be an infinite region bounded by a finite Jordan con-

figuration B and containing the two distinct points Cy and Ç2. Denote by Gix, y)

the Green's function with pole at infinity for R and by gt(x, y) that for the

circular region

Ck- \z - Ck\> Pk,       Pk > 0,       k = 1,2,

where pk is chosen so that RCt C¡ n C2 ¥= 0. Then the function

(5.1) <I>(x, y) = Gix, y) + Xygyix, y) + X2g2ix, y),       Xy > 0,   X2> 0,

has at most two critical points icounted with their multiplicities) outside of the

star-shaped region S comprised of all points from which //(B) subtends an

angle of at least n/6.

As a first step in proving Theorem 5.1, we shall establish
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Lemma 5.1. Any three distinct critical points z0, zly z2 of Q>(x,y), defined

by (5.1), satisfy the equation

IoIyI2  + XyX2(I0Iy2 + IyI2o + -T^Ol) + (^1 4" X2)  XyX2I0y2

4- (Xy + X2)IQIyI2(Ioh2 + hho + Voi) 4- 4XyX2I0IyI2I012

(5.2) 4- (X¡ + X22) (I0IyI02I12 4- IyI2Ioxh2 + hhhoh2)

4- 2(XX 4- X2)XyX2(I0Iy2 4- IyIo2 + ^2^01)^012

+ (¿2 - ¿i)2(A 4- A2)/01/12/20 = 0.

We note that equation (5.2) is an identity connecting G(x, y) with any three

distinct critical points of 0(x, y).

If Xy = X2 = X, equation (5.2) reduces to the equation

{I0lyl2 + X(I0Iy2 + /2/01 + hho) + 2^/012}2 = 0

which is essentially the special case N = 2 of equations (4.5) and (4.13).

To derive equation (5.2), we begin with the equations

(5.3) h + —^jr- + —^y- = 0, j -0,1,2,
Zj -  il Zj -  Í2

satisfied by the critical points z0 , zx, z2 and   eliminate £¡. This leads to the

quadratic equations

where i # j, i, j = 0,1,2. If now we eliminate £2 from a pair of equations (5.4),

we obtain (5.2).

To prove Theorem 5.1, we suppose <S)(x, y) to have three distinct critical points

z0, zx, z2 outside S and choose the points 7} as in (3.7) so that

0^arg^-^-<^-,        j = 0,1,2.
t — Zj o

If every term in (5.2) is multiplied by

(To-z0)2(Tx-zx)2(T2-z2)\

each resulting product will have an argument in the range 0 _ 6 < n and hence the

sum cannot vanish. Thus, at most two critical points of $(x, y) may lie outside S.

Relations corresponding to (5.2) may be derived for any critical points of

<P(x, y) having a total multiplicity of three if the appropriate z¡ are allowed to

coalesce. The new relations are however of the same form as (5.2) and hence

the proof of Theorem 5.1 remains valid for multiple critical points.
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It is to be noted that for the region S, comprised of all points from which H(B)

subtends an angle of at least t/>, the angle <j> is 7t/6 in Theorem 5.1 but is n/3 in the

case N = 2 of Theorem 4.1. The region S of Theorem 5.1 therefore contains the

region S of case N = 2, Theorem 4.1. This is to be expected since the Xx and X2

are arbitrary for Theorem 5.1, whereas Xx = X2 for Theorem 4.1.

6. Extensions. We may extend Theorems 3.1, 4.1, and 5.1 to certain infinite

regions R with a finite boundary B, not necessarily a Jordan configuration, in the

same manner as Walsh has extended Theorem 1.1.

If R possesses a Green's function with pole at infinity, we may approximate to

B by the level curve

Bp: G(x,y) = p, p > 0,

and apply the above theorems to locate the critical points of the function

m

%(x, y) = [G(x, y) - p] + I Xkgk(x, y).
k = l

If Sp denotes the corresponding region S, we find that

H(Bp) - H(B),   S^Sas^O.

If R does not possess a Green's function with pole at infinity and if its gene-

ralized Green's function with pole at infinity is not the infinite constant, we may

approximate to R by regions R' contained in jR, possessing Green's functions and

monotonically approaching R.

Further extensions are possible to Green's function with a finite pole aeR,

by inverting in a circle about a. For example, Theorem 4.1 may be transformed

into the following.

Theorem 6.1. Let R be a region bounded by a finite Jordan configuration

and containing the distinct points a and Çjjt where

j = 1,2, ■-,nk; k = 1,2, -^m; N = nx + n2 + ■■■ + nm.

Let M be the intersection of the m regions

Mk: \pk(z)\ > pk\z - a\n",       pk> 0,

where pk(z) = (z - Çu)(z - Ç2t) ••• (z - Ç„kk), k = 1,2, •••, m and the pk are

chosen so that R n M ^ 0. Furthermore, let the positive constant co and the

point ß be so chosen that the circular region

K: \z - ß\ S (o\z - a\

contains point a but not configuration B. Then at most N critical points (counted

with their multiplicities) of the function
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<I>(x, y) = Gix, y) + I Xnkgkix, y),       X>0,
t = i

lie in M n R outside the circular region

K': \z~ß\ ^ ß> I z - a I ese [>/2(JV + 1)] •

Proof. Let us make the transformation

w = (z - ß)/iz - a).

The region R is mapped into an infinite region, the regions Mk are mapped into

the regions Lk and the regions K and K' are mapped into disks with the origin as

common center and with radii m and œ csc [n/2iN + 1)] .

The Green's functions with pole at a are transformed into those with pole at

infinity. We may now apply Theorem 4.1 and then apply the inverse transforma-

tion to complete the proof of Theorem 6.1.

7. Interpretation. In order to obtain a clearer view of the analogy between

Theorems 1.3 and 1.4, we shall now show that 3>(x,y) is essentially the Green's

function, with pole at infinity, for a certain region R' containing (R t~\L).

Let us suppose that R is the lemniscatic region L0: |p0(z)| > p0 where p0 is a

positive constant and p0iz) is a polynomial of degree n0. (If R is not a lemniscatic

region, we may approximate to it by means of a lemniscatic region.) In this case

G(x,y) = g0ix,y) = (l/n0) log (| p0iz) |/p0).

After choosing the lemniscatic regions Lk: |p*(z)| > pk, /c = l,2, — ,m, as in

Theorem 1.4, we form the function

m

£2(x, y) = A -1 $(x, y) = A"l £ Xkgkix, y)
it = o

where X0 = 1, Xk> 0 all k, and A = T,k=0Xk. The function Í2(x,y) is harmonic at

the finite points in f>\k = 0Lk and behaves for large | z | like log | z |. Thus Q(x,y) is

the Green's function, with pole at infinity, for the infinite region R' bounded by

the Jordan curves fi(x, y) = 0.

To study the relation of the regions R' with R and L, we choose any point

(xi>yi) on the boundary of any region Lk but not simultaneously on the bound-

aries of all Lk. Since Çlixuyy) > 0, such a point ixy,yt) lies in R'. Let us denote

by Tk that subset of curves iî(x,y) = 0 which lies exterior to region Lk. If we set

MJk = max gjix, y) for all (x, y) ¿ Lk,

P'k   = P*exp

we may say further that Tk lies interior to the lemniscatic region

- nkXk l     I     XjMjk
] = 0.j*k
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L\:\pk(z)\> p'k.

Thus R n L is contained in R'.

In particular r0 lies exterior to L0 and so lies in H(B), where B is the boundary

of jR = L0 and therefore lies also in the starshaped region S of Theorem 1.4.

Thus, by Theorem 1.4, the location of all but at most N critical points of the

Green's function Cl(x,y) of region R' is determined relative to just the part T0

of the boundary of R'. This result is analogous to Theorem 1.3 whereby the loca-

tion of all but at most n — p critical points of an « th degree polynomial of f(z)

is determined relative to just p of the n zeros off(z).
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