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In the fundamental work of Postnikov [12](3) and Zilber (see the reference

in [17]), one decomposes a space into a sequence or tower of fibre spaces, each

of which has only a finite number of nonvanishing homotopy groups. A similar

construction in the category of semisimplicial complexes was the basic technique.

The procedure involved choices and was not functorial. In the semisimplicial

case, J. C. Moore [10] described the construction of a natural Postnikov system

for a Kan complex. In practice, his definition involves the following two dif-

ficulties: (1) To reconstruct the geometric case, one must take the singular complex

of a space, perform the construction, and then apply the geometric realization

functor [7]. The resulting objects are not fibre bundles. It is not clear how to

describe them by means of invariants. (2) To obtain useful invariants to describe

the fibre spaces in the construction, one must replace the fibre spaces by twisted

Cartesian products. This process involves choices, and one no longer has a nat-

ural object.

In this note, I consider Postnikov systems from a geometric point of view

(see [5]). The principal result is, roughly speaking, the following: given a map

of spaces f:X -* Y, there is an induced map of Postnikov systems, which sends

each term in a Postnikov decomposition for X into the corresponding term in

a Postnikov decomposition for Y. These individual maps are all compatible.

Furthermore, the invariants (fc-invariants) for X and for Y are related via the

map /. I believe that this construction will serve as an adequate substitute for a

functorial Postnikov construction, which in the geometric case seems unlikely

for technical reasons.

There are three sections. The first is preliminary, while the second is concerned

with the actual construction. In the third section, I give several applications

to //-spaces, including a characterization of //-spaces with finitely many non-

vanishing homotopy groups. In a subsequent note, I plan to study the group

of homotopy equivalences of a space.
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for giving me Proposition 3.1.

1. Preliminaries. In this paper we assume that all spaces have base points.

A map f:X-*Y shall be a continuous map which sends the base point in X

into the base point in Y. Therefore, homotopies will leave the base point fixed.

If X is a space, PX will denote the space of paths beginning at the base point

in X, while ÇIX will denote the subspace of PX consisting of those paths which

also end at the base point. PX is given the compact open topology. If / : X -* Y

is a map, then we have induced maps Pf:PX-y PY and Sif:SlX-+QY.

Definition 1.1. Let £ and B be spaces and p : E-* B be a map. We say that

(E,B;p) satisfies the absolute covering homotopy property (ACHP), and that

£ is a fibre space over B, if for any space X and map G : X x I -» B, and a map

H:X x {0}->£, p-H= G\X x {0}, there is a map H:X x /->£ which ex-

tends H and satisfies pH = G. (Note that we require G and H to map the set

(base point x /) into a point. The base point of X x I will be taken to be (base

point x {0}).)

If we define the map p : pX -> X to send each path onto its endpoint, then

(PX,X;p) is a fibre space (see p. 479 of [14]).

Now suppose (E,B;p) is a fibre space and f:X-yß is a map. Define

f'1E = {(x,e)eXxE\f(x) = p(e)}, and p :f -XE-*X by p(x,e) = x. Then it is

easy to see that (f~1E,X;p) is a fibre space (see, for example, [14]). It is called

the induced fibre space over X. If we define /:/_1£ -» £ by f(x,e) = e, then

it is clear that the diagram

rlE

U     B
is commutative. We say that (/,/) is a map of fibre spaces. If (E,B;p) is a fibre

space, and beB is the base point, then we refer to p_1(ft) as the fibre. When

required for clarity, we write (E,F,B;p) instead of (£,£;p).

Now, let / : X -* Y be a map, and let Y1 be the space of maps / -» Y with the

compact-open topology. We take as the base point the constant map from / to

the base point of Y. Define Xf = {(x,p)eX x Y1 \f(x) = p(V)}, and define

pf : Xf -y Y by pf(x, p) = p(0). It is easy to verify that (Xf, Y; pf) is a fibre space,

that Xf has the homotopy type of X, and that

X\~U/Xf

is a commutative diagram, where i is the obvious inclusion.
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Definition 1.2. lff.X -» Y is a map, we say that iXf, Y;pf) is the fibre space

obtained from/, or that pf is the replacement off by a fibre map.

Notice that in this definition we give an explicit fibre space, and that the base

space is Y.

It is easy to verify that a finite composition of fibre maps is a fibre map, and

that if one replaces a sequence or composition of maps by a fibre map, the result

is homotopic, in a natural way, to the composition of fibre maps obtained by

replacing each map by a fibre map.

For the rest of this paper, we shall consider spaces having the homotopy type

of a countable, 1-connected, CW-complex (with oase point). Denote the category

of all such spaces, with (base point preserving) maps, by c€. Milnor [9] has given

several descriptions of the spaces in this category; his results show that the con-

structions which will be performed in the present paper do not lead us outside

of the category <ë. This point is essential only in considering the classification

of fibre spaces over some given space. An alternative approach would be to use

the theory of numerable bundles, which is due to A. Dold (not yet published).

Lemma 1.1. If X and Y belong to '€, and iff:X^> Y induces isomorphisms

of all homotopy groups, i.e.,f# :n¡iX)= nf/Y) for all i ~¿. 0, thenf isa homotopy

equivalence.

Proof. See [18]. This is an immediate consequence of J. H. C. Whitehead's

theorem, which is the same except that X and Fare taken to be complexes.

Lemma 1.2. Let iE,B;p) be a fibre space, and let X be a space of the homo-

topy type of B. Letf:X-*B be a homotopy equivalence, and let if~1E,X;p)

be the inducedfibre space. Then the mapf:f ~1E-> E is a homotopy equivalence.

Proof. By considering the induced maps, on homotopy, of/and/|p-1(x0), x0

being the base point, we see that /induces isomorphisms in homotopy groups

in all dimensions. The conclusion follows from the previous lemma.

If it is an abelian group, let H\X,n) denote the nth singular cohomology

group of X with coefficients in n.

We will make frequent use of the equivalence between classes in H"iX,n) and

homotopy classes of maps X-*Kin,ri). (See for example, [15].) Let g:Y->X

be a map. Let u e H\X,n) be a class and ü : X -> Kin,n) he the corre-

sponding map (or class of maps). The following lemma is immediate.

Lemma 1.3.   g*(«) = ü o g.

Now let <t> :«-+«' he a homomorphism. Denote by <pc the coefficient homo-

morphism //"(Z;7t)-> H"iX;n') and by <j) a map Kin,n) -* Kin',n) which induces

<p on the nth homotopy group.

Lemma   1.4.   If ueHniX,n), then {<bc («)} = {<p~ ■ u}.



1963] INDUCED MAPS FOR POSTNIKOV SYSTEMS 435

Proof.   Consider the maps

X "  K(n,n) 1 K(n',n).

As H"(n',n ; n') = Hom(7t',7t'), we let i" 6 H"(n', u ; n') be the identity isomorphism.

Clearly tp*(i') is the homomorphism tp. Now consider the commutative diagram

H"(X,n)    <^—    H\n,n;n)     <^—    Hn(n',n;n)

<t>c

u

<PC

4>*
*c

Hn(X,n') <-    H"(n,n;n')   <Z—    H\n',n;n'),

tpc(i) = tp*(i') because both ithese classes identify with the homomorphism tp. Now

fpcü*(i) = ü*tpj(i) by the left square of the diagram. Therefore, <pcü*(i) = ü*tp*(i').

Hence, the class of maps associated with tpcü*(i) = tpc(u) is {tp-ii}.

We now define a Postnikov system.

Definition 1.3. Let XeW. A Postnikov system for X is a family of spaces

X„ i ^ 0 along with maps

Pi ■ X -> X,
n,j:X, -> Xj,   i >j   (if i >j > k, n,¿ = njtkn,tJ)

such that

1. If X is (n - l)-connected, each X,, 0;S i =n-l,consists of a single point,

the base point.

2. p, : X -» X, induces isomorphisms in homotopy in dimensions g i.

3. 7ii+lj¡:X¡+1 -* X, is a fibre map, with fibre R(7ti+1(x),i + 1).

4-   «i+i.i ■ Pi+i - Pi-

For the construction of such a system in the category of semi-simplicial com-

plexes, see [10]. For the method of construction in the geometric case, see [5].

For convenience of notation, we assume that if % = {e}, the trivial group,

then K(n,n) consists of a single point.

Definition 1.4. Let X,X'e^. Let X and X' have Postnikov systems

{X„p„ntJ} and {X'„p'„n[j}. Let f:X-*X' be a map. Then, by an induced

map on the Postnikov systems for X and X',we mean a family of maps/¡ : X, -» X'„

such that for each i,f,-n¡+x¿ = n¡+Xi, -/¡+1 and p',f otf,-p,.

2. Construction of the induced maps.

Definition 2.1. (1) If X is a space, we say that X' is equivalent to X, if X'

has the homotopy type of X.

(2) Iff : X -» Y is a map, and if X' and Y' are equivalent to X and Y(resp.),

then a map/' :X'-> Y' is equivalent to/, if there is a homotopy commutative

diagram
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/ ->   Y

\<Px

X' f

where <px and </>y are homotopy equivalences.

Proposition 2.1.   Given a homotopy commutative diagram

X   -*-—>   Y

P g |4

->   B

inere are spaces X',Y',A,' B' which are equivalent to X,Y,A,B,  and maps

f>g'>P'>q' which are equivalent to f, g, p, q such that (1)

X' /' -*• y

¿ = ,4,    g = «•>   B' = B

is istrictly) commutative and (2) p' and q' are fibre maps. In other words, if, g')

is a map of fibre spaces.

Proof.   Convert the maps p and q to fibre maps, p' : X' -» A, and q' : Y'-*B.

We then easily obtain a homotopy commutative diagram

X' f -► y

,    £ =g »   B'

X B

The map q' • / : X' - B' is covered by the map /: X' -» Y'. But g' • / ai g' • p'.

We cover the homotopy, getting a map/' :X'-> Y' such that q' •/' = g' ' p'.

Now, we suppose that I is (n - l)-connected and Y is (m - ^-con-

nected, with n,m>\. Set p = min(n,m). Let p(x) :X -> KinJ/X),p) (resp.

p(Y):Y-»X(7tp(Y),p)) represent the fundamental classes in X (resp. Y) or the

zero class in X (resp. Y), according as n = p (resp. m = p) or n > p (resp. m > p).

Proposition 2.2.   Let f# : K{n£X), p) -* KinpiY), p) be induced by f:X-*Y.

iSee,for example, [15].) Then the diagram
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/

P(X)

K(np(X),p)

is homotopy commutative.

h
P(Y)

K(np(Y),p)

Proof. Case 1. Either p <n or p < m. Supposing that p <n, then p(X)

and /# are null-homotopic, and as n^X) = 0, i < n, it follows that Hp(X,np(Y)) = 0

so that p(Y) ■ f is also null-homotopic. The case p < m is similar.

Case 2. p = n = m. p(X) and p(Y) induce the identity isomorphism in homo-

topy in dimension p. / and /# induce the same homomorphism in homotopy in

dimension p. By the Hurewicz theorem, p(Y) ■ f and /# • p(X) induce the same

homomorphism in homology in dimension p. By duality, they induce the same

homomorphism in cohomology and also induce the same homomorphism in

cohomology with coefficients in np(Y). Therefore, (p(Y)-f)*(i) = (/# • p(X))*(i)

or p(Y) f * /# • p(X).

Proposition 2.3. With the above notations, there are spaces X',Y' which

are equivalent to X,Y, and maps p(X)',p(Y)',f which are equivalent to

p(X),p(Y),f such that

f

(1)

X'-

p(xy

Y'

h
P(Y)'

K(np(X),p)  —i=-H►   K(np(Y),p)

is commutative,

(2)  p(X)' and p(Y)' are fibre maps.

Proof.   Apply Proposition 2.1 to Proposition 2.2.

Now, let Fx and Fv be the fibres of p(X)' and p(Y)'. Consider the exact

sequence

0- np(Fx)-+ k„(X) -^np(X)^np_i(Fx) - 0

which is a portion of the homotopy sequence of the fibre space (X',K(np(X),p)).

We see that np_i(Fx) = 0, np(Fx) = 0. Similarly, we have n¡(Fx) = 0, i"^ p. The

dentical argument shows 7t¡(Fy) = 0, i ^ p.

Hence, Hp+1(Fx;np+1(Fx)) and Hp+i(FY;iip+i(Fr)) contain fundamental

classes, which we denote by ix and iY. Denote the transgression, in either fibre

space, by t.

Definition 2.2.

T(¿x) = k?x2, the first /c-invariant of X,

i(iv) = fep+2, the first fe-invariant of Y.
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Alternative definitions of the fc-invariant may be given in terms of obstruction

theory.

Notice that np+liFx) x np+yiX), 7cp+1(Fy) x 7tp+1(Y), and that if we identify

these groups, (/'|FX)# :np+yiFx)-+itp+yiFY) is identified with/*.

Proposition 2.4.   Let f* denote the coefficient homomorphism  induced by

f# :np+yiX)^np+yiY).    Then,

ñkv1 = (/*m+2.

Proof.   Consider the commutative diagram

x „*-i

Hp+1iFx;np + yiX))

Hp+\Fx;np+yiY))

-» Hp + \X',Fx;np+yiX))

/;

■+ Hp+2iX',Fx;np+yiY))

r

>Hp+¿inpiX),p;np + yiX))

„*-i
f!

->Hp+\npiX),p;np+yiY))

,*-i
(/*)*

Hp+1iFY;np+yiY)) —¿+ Hp+2iY',Fy;np+liY)) ^—> Hp+\npiY),p;np+1iY)).

By Lemma 1.4,/*i'A6//p+1(Fx;7ip+1(X)) corresponds to the map /* • lx :

Fx -> K(7tp+ ,(X),p + 1) -» X(7tp+ iiY), p + 1). Hence, as an element of

Hom(7Tp+1(Y),7tp+1(Y)), it is the map np+yiX)-+np+yiXJfzz>np+yiY).

By Lemma 1.3, f'*iY corresponds to the homomorphism 7tp+1(X)-> 7tp+1(Y)

" nr+1(Y), so that f*cix = /'%

Now  by the  diagram, f*ckp+2 - /*t(ix)   = ftp*-là(ix)   =   p*"1^/?«*)

= P*_1¿(/'*ir) = (/*)V_1<5(iy) = (/#W+2-

Proposition 2.5.    There is a homotopy commutative diagram

KinpiX),p)

r.P+2
Kx

Kinp+liX),p + 2)

KinJY),p)

/•

+ 2

K(B,+1(y),p + 2)

and an equivalent commutative diagram, for which we keep the same notation.

Proof. By Lemmas 1.3 and 1.4, and Proposition 2.4, the compositions

/* o Jcpx2 and £?/2 o/* are homotopic. To obtain an equivalent commutative

diagram, replace the lower /* by an equivalent fibre map. Then, by the ACHP

we may find a map homotopic to k~x+1, which makes the diagram commutative.

The main interest in the above proposition is the following:

Proposition 2.6. There are fibre spaces iXp+y,KinpiX),p);npi+y) and

iYp+1,KinpiY),Pyyp+i) with fibres Kinp+1iX),p + 1) and X(^p+1(Y),p + 1),

and a commutative diagram
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ip+i

V+i

lp + i

Jp ~ /#•*p+i

R(^W,p)      JjL>      K(Kp(Y),p)

The k-invariants (or characteristic classes) are kpx+2 and kp+2.

Proof. Consider K(itp+1(X),p + 2) and K(7tp+1(Y),p + 2) as classifying

spaces for principal bundles with fibres K(np+l(X),p + 1) and K(7tp+1(Y),p + 1)

(resp.) (see [8]). Then the maps £p/2and k~py2 induce bundles over K(np(X),p)

and K(np(Y), p). For our purposes, it is preferable to consider the induced fibre

spaces over K(np(X),p) and R(7tp(Y),p), which are obtained by pulling back

the corresponding path spaces rather than the universal bundles (see Exposé 1

in [2]). Denoting the path space functor by P, we have

Xp+i = {(a,p)eK(np(X),p) x PK(np+l(X),p + 2) \Jcpx+2(a) - p(l)},

Yp + 1 = {(a,p)€R(7tp(Y),p) x PR(7Tp+1(Y),p + 2) \kpY+2(a) = p(l)}.

Since the diagram in Proposition 2.5 may be assumed to be commutative, we may

define fp+x =(/#,P/#). P/# being the map induced on path spaces, and the

diagram is then clearly commutative. The assertion about the /c-invariants fol-

lows immediately from the naturality of the transgression.

Remarks. Proposition 2.6 represents a map from one 2-stage Postnikov

system into another. Furthermore, np+1 :XP+1 -» K(np(X),p) is a part of a Post-

nikov system for X, because P(X)' may be lifted to form a commutative diagram

(see [5])
Xp + i

PÍX)

Pixyx
\

«•p+i

K(np(X),p+l).

A similar lifting may be performed for 7tJ+1 : Yp+1 -» R(7tp(Y),p). In general,

we would like the diagram

X' f ->  y

P(X) PÍY)

lp+i
./p+l     .   v-' Jp+1

to be commutative, up to homotopy. As the matter stands, this would not be true

without some rather strong assumptions (for example, if Ext(7tp(X),7ip+1(Y)) = 0).

The basic point of the following theorem, which is the principal result of this

paper, is that we may change the map/p+1 in such a way that
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Xp+
fp+i

p+i" + Yp+X

p+i.p

K(np(X),p) = Xp

remains commutative, while

X'

fp
KP+Í,P

f

-y   Yp = K(np(Y),p)

-> y

p(X)

jp+i

P(Y)\

-+Yp+XXp+i

becomes homotopy commutative.

Theorem 2.1. Let X,Ye<£ and let f:X-+Y be a map. Then there exis

Postnikov systems {JV¡,pi^,7r£+ x ¡} and {Yi,p],ni\x^ for X and Y (resp.) and

a diagram

f

ft*i

ft

K(Kp(X),p) = Xp
fp

Yp = K(np(Y),p)

p = max„ {« | iZi(X) = 7i;(y) = 0, i < «},

in which all rectangular subdiagrams are (strictly) commutative, and all other

subdiagrams are homotopy commutative. For « 5; p + 2, denote the k-invariants

(images of the fundamental classes under transgression) by k\ and k"Y. Then,

J cKX   —  J n-2KY-

Proof. By Propositions 2.3 and 2.4, the theorem is true for one-stage Postnikov

decompositions. We shall proceed by induction. Assume that we have constructed

Postnikov systems for X and Y consisting of « terms, along with the desired

diagram and relation between k-invariants. We shall construct spaces Xn+X and
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Yn+i and a map/„+1 so that the desired conditions are met. The parts of the

proof will be marked by letters.

Remark. At certain places in this proof, we shall need to use the action

of the fibre on a fibre space. As all of these fibre spaces are induced from path

spaces, they all have the structure of principal fibre spaces (see [11]). The fibres

are all topological monoids with homotopy inverses. In order to avoid addi-

tional complication, we shall treat these fibre spaces as principal bundles. Actually,

it would be possible to carry out the entire discussion using principal bundles,

if we were to use a weaker (and more complicated) covering homotopy property

than the ACHP. The details of the argument for principal fibre spaces are straight-

forward, and are left to the reader.

(A)   By induction hypothesis,

X f

PXn

fn

Pn

is homotopy commutative. By Proposition 2.1, we may construct an equivalent

commutative diagram

/ .X'

fn

Y'

y
Pn

Y„

in which the vertical arrows represent fibre maps. Also, by inductive hypothesis,

p* and pi induce isomorphisms in homotopy in dimensions ^ n. Denote the

fibre of px' by Fnx. Then we have the following exact sequence:

• • • -> 7t„+ y(Xn)- n„(Fx)-+ nn(X)% nn(X„) -+ 7t„_y(Fx)-+ 7r„_y(X)5 ....

It follows that n,(Fx) = 0 for i ^ n; nn + i(Fx) x nn+1(X). Similarly n,(F^) = 0 for

i á n; nn+y(F*) « 7t„+1(Y). We identify these two groups, and denote the funda-

mental classes in Hn+1(Fx;nn + 1(X)) and Hn+1(F^;nn + 1(Y)) by i„>x and i„>y. Of

course, one defines fe-invariants as before ; in this case kx+2= t(í„x), fc?+2=T(i„y).

(B) f*(knx2) =f*(k"y+2). Exactly as in Proposition 2.4 one sees that/'*(i„>y)

corresponds to the homomorphism nn+l(X) f->n„+í(Y)^> nn+l(Y), while

f*ii„,x) corresponds to the homomorphism 7tB+1(X)-> 7r„+1(X/-> 7t„+1(Y).

Hence, /'*i„r =f*in,x- Now, by the naturality of the transgression, one con-

structs a diagram as was done in Proposition 2.4. The assertion follows

immediately.
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(C)   As in Proposition 2.5, relation (B) above may be interpreted as a homo-

topy commutative diagram

X„ fn

/.

JE"/2

»     K(nn+x(Y),n + 2).

rn+2
KX

K(7tn+x(X),n + 2)

By taking /# to be a fibre map, we may use the ACHP to change k"x 2 into an

equivalent map which makes the diagram commutative.

Now, we consider the path spaces over K(n„+x(X),n + 2) and X(7tn+1(F),n-l-2),

and define Xn+X and Yn+X to be the induced fibre spaces over X„ and Y„. The

respective fibres are K(nn+x(X), « + 1) and K(7rn+1(y),« + 1). The formula

fn+x(x,a) = (fn(x),Pf\(a))

defines a fibre map, so that the diagram

v Jh+1_. v
An+1 * 'n+i

'■n+l.n

X. fn

'ln+l,n>

-> Y„

Ttn+Í¡n denoting projection, is commutative.

(D) By the standard argument (for example, obstruction theory, as in [5]),

define liftings px'+x :X'-yX„+x and pl'+x :Y'-* Y„+x subject to the conditions:

1- ™n+í,n - Pn+1 - Pn   ',      nn +1 ,n ' Pn+ 1 - Pn   ■

2- (p*+ i ] F*)* and (p„Y+ x \ Fny)* map the respective fundamental classes

onto one another.

Now, consider the exact ladder(4)

0

II
-  7tn + 2(Xn) -»  7tn+1(FnX) -  7l„+x(X) - 7l„+l(Xn) -  Ba(FÍ) -   -

Q&i).    II II
f

nn + 2(Xn) -* nn + x(X) -* n„+1(X„+1) -» 7t,1+1(Xn) -  0 -> •■•.

e see that (pni'x)# : nn+x(X) ~ n„+1(Z„+1). More generally, we have

tâlùt'-nlX) Z k,(*„+i)> iún + l; similarly, (pl'+i)# : n0) ~ niYn+x),

iSn + V
Hence, the addition of the terms X„+x and Y„+x to the (finite) Postnikov sys-

tems {X,Xn,---,Xp} and {Y, Y„, ••>, Fp} gives us new Postnikov systems, each

containing one more term.

(4) By the ACHP, we may assume p** x and pj¡+ x to be fibre space maps.
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(E)   It remains to arrange matters so that

/'     __

%n+ 1
/n+1

->~Yn+y

is homotopy commutative.

In the diagram

X'-
f

443

all diagrams, except possibly the top are commutative(s). Thus, we have

nn + l,n 'fn+1  ' Pn+1   = fn ' Pn     ~ Pn    '/'  =  ^n + l.n * Pn + i '/'•

It follows that there is g :X'-+Kinn+1iY),n + 1) such that if xeX',

g(x) • if„+y ■ pflyix)) * p*'+1 -/'(x)(6),

and correspondingly a unique element ueHn+1iX',nn+1iY)), ü ~ g. The map

p*ly induces isomorphisms in homotopy in dimensions a« 4-1, so that by

Whitehead's theorem and the universal coefficient theorem (see [13] and [4])

it induces isomorphisms in cohomology with coefficients in nn+1( Y), in dimensions

^n + 1. Now choose ^6//"+1(Xn+1,7rn+1(Y)) such that ip%'+l)*v = u. By

Lemma 1.3, we have a homotopy commutative diagram

-^n+l ->K(7r„+1(Y),n + l).

Define a new map/M'+1(x) = ¿(x) 7„+iW- In other words, /;+1 is the composition

(5) We may assume that the triangular subdiagrams are (strictly) commutative, as the

fibrations satisfy the ACHP.

(6) The multiplication in the left term is the action of the fibre.
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Proof. By converting p„_j into a fibre map, we get a homotopy commutative

diagram

*„+i-^—>Xn+1 x Xn+1 VXf'+i)K(na+1(Y),n + 1) x Yn+1 Ü Yn+1

where A is the diagonal and p is the action of the fibre. Then we see immediately

that fñ+y is also a fibre map in the sense that the rectangular diagram above

is still commutative. Also,

/„'+!   • Pnil(x)   =   Vipïllix))  ■fn+y(pXíy(x))

while

Pníi  'fix)  ~  g(x) ■ (fn+y ■ PXly(x)).

Since g sa v-Pníu we have fx'+í • p'n+t a pj+t •/', as desired.

(F) To complete the proof, we rename/„'+1 as just/„+1. Notice that X' was

obtained from X by replacing a map by a fibre map, that is points in X' consist

of pairs (x,p). Projection onto the first factor gives a canonical homotopy equiv-

alence hx : X -* X'. Similarly, hY : Y-+ Y'. Of course,

hx
yfx'   _i_>.     y

is homotopy commutative, so that we may replace X' by X, and Y' by Y, com-

pleting the induction step and the proof of the theorem.

Remarks. In the proof of the above theorem, certain choices were made.

These occurred in the construction of the Postnikov systems for X and Y, at the

point where we chose liftings of px' to pxiy (and similarly for Y). Apart from

these choices, and up to suitable homotopies, the construction of the induced

maps is uniquely defined. The next theorem is similar to Theorem 2.1, except

for the fact that the Postnikov systems for X and Y may be specified in advance.

First we need a lemma.

Lemma 2.1. Let Xe^ and {X,,p„n,j} be a Postnikov system for X. Con-

sider the diagram

X

/     \
Pn/                      \P.-\

/ \

-yXn->*„_!-►■••.

Suppose p„_x is converted into a fibre map, and write the characteristic class

(image of the fundamental class under transgression) as cn+1. Then

c"+1 = k"+1eHa+1(X^y,n„(X)).
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X     -L->   X
\ /

A-i\       //p«-i
\  /
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in which p„_! is a fibre map, and/ is a homotopy equivalence. By the ACHP,

we may then assume

~  \
Pm-l    \ "•n.n-1

^n-1

to be commutative, and we get a map of exact sequences :

it
0->   n„iFly)-

||               |Gv/|f£i)<

0 -►   n„iX) -

-* *„(*) -> 0

(p. 7).    II
n„iX)-> 0

where F*_j denotes the fibre of p„-y. It then is immediate that pB 7|-rv-i

induces an isomorphism in homotopy in dimension n. We identify these two

groups ;_ as the Hurewicz homomorphism is natural, it follows that

ÍPn'f\Fn-i)* maps the fundamental class onto the fundamental class. Since the

transgression is natural, it follows that cn+1 = k"+1.

Theorem 2.2. Let X,Ye^, and let j':X-*Y be a map. Suppose we are

given Postnikov systems {X„,p*,7t*„_y} and {Y„,p*,n*¡n-y} for X and Y. Then

there is a diagram

f
-*-   Y

/.
I

n-l

I     ''"'       I

/, i
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in which the rectangular diagrams are commutative, and all other diagrams

are homotopy commutative. Furthermore, we have

f*ckx=f:-2ky,   n^p + 2.

Proof. The proof will follow Theorem 2.1. First choose a map

fp : Xp = K(np(X), p) - K(rzp(Y),p) = Yp

so that the following is homotopy commutative:

X      —L>       Y

Xp     -LL+      Yp

This may be done by choosing/p such that the two compositions induce the same

map on homotopy in dimension p. By Proposition 2.3, the theorem is true for

this system.

Now assume that it is true for the first « — p terms of each system. The proof

that the theorem is true for the first « — p + 1 terms is also in steps.

(A) Same as Theorem 2.1.

(B) By Lemma 2.1 above, this is the same as in Theorem 2.1.

(C) Same as Theorem 2.1.

(D) Define the liftings toX„+1 and Yn+X to be the liftings given by our original

Postnikov systems.

(E & F)   Same as Theorem 2.1.

Remark. Theorem 2.2 may be related to the question of when two maps

are or are not homotopic. By way of an example, consider two spaces X, Ye <€

which are finite CW-complexes. Fix Postnikov systems {X„, pnx,nxt„-x}

and {Y„,pnY,n*„-x}. Then two maps f,g:X-y Y are homotopic, if and only if

the maps /„ and g„, considered as simplicial maps of simplicial complexes

X'„, Y„', which are equivalent to X„ and Y„, are homotopic when restricted to

being maps of the «-skeleton of X'„ into the «-skeleton of Y„\

3. Applications to //-spaces. In this section, I apply the results of §2 to //-spaces.

We need the following lemma which follows immediately from the above

material.

Lemma 3.1. Let X have a Postnikov system {X„,p„,n„tn^x}, with k-in-

variants kx. Then {X„ x X„,pn x p„,n„,n-x x nn¡„-x} is a Postnikov system for

X x X, with invariants i%pxkx + i%cptkx, where Pj'.X x X-y X are the projec-

tions and where iXc and i2c are induced by the inclusions i¡ : X -* X x X,j = 1,2.

In the definition of an //-space, one ordinarily imposes some condition on

the existence of a unit or homotopy unit. These conditions are equivalent for

Pi
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complexes. For what will follow, we will use a slightly different definition given

below. Such spaces will be called almost //-spaces (/IH-spaces). Proposition 3.1

shows that they are the same as //-spaces in the cases which are of interest to us.

These spaces were essentially considered in [1].

Definition 3.1. A space X is called an AH-space if there is a map p:Xx X-*X

so that if we denote by i} :y-»IxI, j' = l,2, the inclusions, then p-it and

p ■ i2 are homotopy equivalences. If X and Y aïe AH-spaces, then a map/ : X -> Y

is called an AH-map, if the diagram

X x X

f*f
y

Yx Y

Px

pY

X

f

is commutative.

Theorem 3.1. Let Xef be an AH-space, {X„,p„,n„n_y} be a Postnikov

system for X. Then each space X„ may be given the structure of an AH-space

in such a way thai the maps n¡ ¡, i > j, are then all AH-maps.

Proof.   By Theorem 2.2 and Lemma 3.1, we have a diagram

X lj' >    XxX    -J->      X

I
X.

i

1
X. x X„

lJ   „   y        v y         l1"-
1 -> -*n-lx An-1   -

1

i
X.

W       Xn_y

i

7 = 1,2,

where /" designates the inclusion as the jih factor (j = 1,2) in the product, and

where all subdiagrams involving the top row are homotopy commutative, while

the other subdiagrams are strictly commutative. I have omitted the maps p„,

etc. from the picture. Now the map p ■ ij induces isomorphisms in homotopy

in all dimensions. From the diagram,

or thus

iPn • <")#  ' (Pn)*    =   (Pn)#  ' 0»'»j)»-

In dimensions = n, (pj* is an isomorphism. Hence, (p„ • i")* is an iso-

morphism in this range. But if j > n, itjiXn) = 0. Hence, p„ • i] induces isomor-

phisms of all homotopy groups. As X„ has the homotopy type of a complex,

we conclude that p„ ■ i" is a homotopy equivalence. The diagram shows that n¡j

is an AH-map.
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The principal interest in ^//-spaces is perhaps the following proposition

which is due to A. Dold.

Proposition 3.1. Let X be a O-connected AH-space. Then X is an H-space

for some possibly different multiplication.

Proof.    Let e he the base point of X, and denote

L = p- i2 R = p • iy.

By hypothesis, L and R are homotopy equivalences. Let a left homotopy inverse

for Lbe written L~ and a right homotopy inverse for R be written R~.

Define

v : X x X -* X by v(y,z) = L~[p(R~ L(y),z)}.

Then

v(e,z) = L-[p(R-L(e),z)} = U[p(R-1p(e,e),z)} = U\p(R~ R(e), z)}

a L~[p(e, z)} = L~L(z) =¿ z

while

v(y,e) = L-[p(R~L(y),e)} = L-[RR-L(y)} a L~L(y) a X7)-

Corollary 3.1. Let Xe<ë have a Postnikov decomposition {X„,Pn,n„ „_j}.

// X is an H-space, then each Xn is an H-space.

Corollary 3.2. Let Xe'ë have a Postnikov system {Xn,pn,nn¿,-.y}. Let k

be a perfect field. If X is an H-space, then for each n, H*(X„;k) is a tensor

product of (possibly truncated) polynomial algebras on one generator.

Proof.   Apply Borel's theorem [1, Theorem 6.1] to Corollary 3.1.

Our final application will be to characterize //-spaces with finitely-many non-

vanishing homotopy groups (compare [3]). Let X be an AH-space with multi-

plication map p : X x X -» X. Consider the natural splitting

H"(X xX;G) x H"(X \/X;G) 0 H"(X x X, X VX;G)

for any Abelian group G.

Denote by o:H\X x X;G)-+H"(X x X,X \/X;G) the projection onto the

second summand. We make the following definition:

Definition 3.2. A cohomology class u e H"(X ; G) is called G-primitive, if

o- • p*(u) = 0.

Theorem 3.2. Let X be a space with finitely-many nonvanishing homotopy

groups, nni, ■■■,n„k, where nn. = n„.(X) and nt < ■■■ <nk. Then X is an H-space,

if and only if it admits a Postnikov decomposition for which each k-invariant,

k",+1, is it„-primitive, with respect to the map p„. (as in the previous theorem)(a).

(7) For convenience, we write the maps acting on elements of X x X.

(8) This is, of course, an inductive condition for such a space to be an .//-space.
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Proof. Suppose, first of all, that each fc-invariant is primitive in the above

sense. We shall show that if the term Xn.-y is an //-space, and the element k"'+1

is 7i„.-primitive, then Xn. is an //-space. Since X„. = Kin„., nx) is clearly an //-space

the first part of the theorem will follow by induction.

Consider the diagram

Xn¡xXn¡  -J±i->    Xni

n x n n;n = nn¡,Ht-v

Xn¡-y  X -X^Bi-1   —->    X„._y

We desire to fill in the top row. Without destroying the homotopy commuta-

tivity of the final diagram, we may suppose that Xn.xX„. is a CW-complex,

with the Xn. VX„. a sub complex. Furthermore, we may suppose n:XH(-+XHl-t

to be a locally trivial fibre map.

It is easy to see that we may lift the map p„t-y -(it x 71) over the n¡-skeleton to

p„. :iXn¡ x Xn)ni-» Xnr The obstruction to extending pn. to the (n¡ + l)-skeleton

ís(ti x n)*- p*-yiknt+1). Since p„t-y is an //-space map, and kn, + 1 is nn .-primitive,

p*_1(fe'"+1) lies in Hn,+1iXni-y \jXni_y;nni) and in fact is k"i + 1'vfc"' + 1 in

H">+1iXni„y,nni)®H">->iXni_y;7int) identified with H"**^^ V *„,-i,bJ-

As n*ikni ^ = 0, we see that in x ^)*p*_1(fc"i+1) = 0. Hence, pn¡ may be ex-

tended over the (n¡ + l)-skeleton, and hence, to all of X„.. Denote this map by

p„.. Now, p„. need not be an //-space map. However, we may require that p„.

restricted to the subcomplex Xni\jXn. he homotopic to the folding map

AT„(©X„.^X„.i9), and then the compositions

xn¡-!Uxni x xn¡J^xn¡

will be homotopic to the identity.

To prove the converse, let {Xn,p„,n„t„-y} be the Postnikov system and consider

the corresponding AH-space structure on each X„ given by Theorem 3.1.

We have immediately

PntKX —   PcKX x X

and applying Lemma 3.1,

PntKX —   Pc     'le    PlKX +   Pc     »2c     PlKX

As p-iy and p-/2 are homotopy equivalences, we see that the last expression

belongs to

Hn'+2iXn¡;   nn¡+l) e H"'+2iXn¡;   nn,+í) = Hn'+\Xn¡ yXn¡;nni + í)

and is thus annihilated by o.

(9)   AS      H">+¡(.Xn¡_yX   Xn._y,Xn¡_y    V Xn . _ y ¡ 7l„ ( ) ^    H<" + 1 (Xn¡ _ y X X„ f _ t ', »„, )    ¡S   a

monomorphism, the (relative) obstruction must also vanish.
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Remark. The first part of the theorem (sufficient condition for such a space

to be an //-space) is well known (compare [16]). The second part is true without

the assumption of finitely-many nonvanishing homotopy groups. If one could

express X as a limit of the X„, then one could prove the first part without the

assumption of finitely-many nonvanishing homotopy groups(10).
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