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1. Introduction. The Cameron-Martin translation theorems [1] have proved

useful in the evaluation of various Wiener integrals. The analogue of one of these

theorems for the integration of continuous functionals in the Wiener space of

functions of two variables was considered by Kitagawa [2]. The present author

has proved that the Wiener measure in the space of functions of two variables is

indeed a measure [3]. In this article we give a rigorous statement together with a

proof for the theorem of Kitagawa and then prove the translation theorem for

Wiener measurable sets and Wiener integrals of arbitrary measurable functionals.

The Wiener space C of functions of two variables is the collection of real

valued continuous functions f(x,y) defined on the unit square Q: 0 — x, y — i

satisfying f(0,y) =f(x,0) = 0. A subset / of C defined by

(1.1)       I{xx,-,xm,y¡,-,yn,E} = {feC;[f(xx,yx),-,f(xm,yn)}eE}

where 0 = x0 < xx < ■■■ < xm = 1, 0 = y0<yx<---<yn = l and £ is a

Lebesgue measurable set in the mn-dimensional Euclidean space Rmn is called

an interval in C. The points (xx,yx),---,(xm,y„) are called the restriction points

and the set £ the restricting set of /. The collection 3 of all such intervals con-

stitutes an interval class.

If we define for every / e 3

m(I) = K{xy,—,xm,yy, -,y„}

■ \(mn) \W{xy,—,xm,yy,—,y„,Uyy, -,umn}duyy,-,dumn

where

K{xy,-,xm,yy,---,y„}

(1.3) í

{nmn[xyix2 - xy)-(xm - xm.y)J[yy(y2 - yy)-(yn - yn-y)}m}112
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W{Xy,—,Xm,yy,-,yn,llyy,--,U

(1.4)
=  exo \ — Y,    T.   —y — "••'-! ~ Ui-U + ui-ij-i)

i  j = i (xt-x,-iù(yj-yj-i)

with u0J = ui0 = 0, then m(/) is a measure on 3, i.e., it is a countably additive

extended positive valued set function defined on 3 with m(0) = 0. The factor

K is so chosen as to make w(C) = 1. Let us denote this measure space by (C,3,m).

As a measure on an interval class, m can be extended to be a measure on a

Borel field of sets in the usual way. Let 0 = {Ù} where Í2 is an O-set of 3, i.e.,

it is the union of countably many members of 3. The Carathéodory outer measure

of an arbitrary set T c C is defined to be

(1.5) m*(r)=   inf to(Q).
n=r

A set T c C is called Carathéodory, and in our particular case Wiener, measur-

able if for every set A <zz C

(1.6) m*iA) = m\A - T) + m*iA n T).

The collection (£m of Wiener measurable sets, the Carathéodory extension of 3,

is a Borel field and if we define m(T) = m*(r) for T e(£m, m is a Lebesgue measure

on (£m. Let us denote this measure space by (C,dm, m).

The subset 3° of 3 consisting of intervals of the type

/°{x,-,y},«¡j,ßij, i= 1,2,—,m, j = 1,2,—,n}

= {feC; a,j<f(xt,yj)<ißtj, i« 1,2,— ,m, j = 1,2,—,»}

where — oo ^ au < ßu z% + oo is called the restricted interval class. It is an inter-

val class by its own right and if we define m°(/) = m(/) for every /° e3°, m° is

a measure on 3°. If we now construct (C,(£mo, m°) from (C,3°, m°) the way we

constructed iC,(im,m) from (C,3, m), we have a Lebesgue measure m° on the

Borel field (£mo. In §6, Theorem IV, we show that (C,(£mo, m°) = (C, (£m, m).

This will enable us to express any re£m in terms of members of 3°.

Our main results are the following theorems:

Theorem I. Let //(un, —,tim„) be a Lebesgue measurable function of mn

real variables. Let 0<Xj < ••• < xm á 1» 0 < yx < ••• < y„ ^ 1. Then the

functional H[fixy,y{), —,/(xm,y„)] defined on C is Wiener measurable and

L
J*0O /*00

imn)      H(uií,~,umJW{[x¿,[yJ'],[«y}}dun, »,âu,
— c» J — CO

H[fixy,yy), ■■;fixm,yH)]dwf

(1.8)
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where the existence of one side implies that of the other and the validity of the

equality.

Theorem II. Let F[g] be a functional defined and Wiener integrable

over C. Let F[g] be bounded in every uniformly bounded subset of C and let

F[g] be continuous in the sense that for any sequence {g(k)} <= C which converges

uniformly in the unit square QtogeC

(1.9) lim F[gw] = F[g].
ft-* 00

Let /o 6 C, let d2f0/dydx exist and be of bounded variation on Q,

(d2/dydx)fQ(0,y), (d2/dydx)f0(l,y), (d2/ÔyÔx)fo(x,0), (Ô2/dydx)f0(x,l) be of

bounded variation on the respective unit intervals. Then under the translation

(1.10) g(x,y) =f(x,y) +f0(x,y)

the Wiener integral undergoes the transformation

(...., i F[8K«-e-p{- r |£«y.}jr *r+/d«p HQB/>f)ij-

The Riemann-Stieltjes integrals appearing in Theorems II and III are defined

in §3. In case d2f0/dydx is Riemann integrable on Q, 5Q(d2f0/dydx)d2f0

= J" jQ(d2f0/dydx)2dxdy. Also d2f0/dydx may be replaced by d2f0¡dxdy throughout.

Theorem III. Let f0eC satisfy the conditions in Theorem II. Let T a C

be Wiener measurable and

(1.12) Tr = {/eC;/=g-/0,ser}.

Then

(1.13,       „(0 = «p [-1 Hä%)/rr«p [-»fjfc*) äj.
Moreover if F[g] is a Wiener measurable functional defined on T

(1.14) JrFkKs = «p{-|(¡0//o}/r/[/+/o]exp{-2j!!   *£äf]äj

in the sense that the existence of one side implies that of the other and the validity

of the equality.

2.   Proof of Theorem I.   Let 0 < xx < ••• < xm ̂  1, 0 < yx < ••• < ya ̂  1 be

given and let H(uxx, ••-,«„„) be a Lebesgue measurable function defined on Rmn.

We begin with the case where H is the characteristic function %e of a Lebesgue

measurable set E <= Rmn. Let / be an interval in C defined by (1.1) with our {x(},

{yj} and E. Then H[f(xx,yx), ■■■,f(xm,y„)] = Xi and
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mil)= \dj=     x¡dj=     //[/(xi,yi),-,/(x,„,y„)]dw/.
Ji Jc Jc

On the other hand, according to (1.2)
/• /» /»OO /»OO

mil) = K\imn)\Wduyy,---,dumn = K\     imn)\    xEWduyy,---,dumn
J        E     J J — QO J — oo

= /Ci       M      //(«!!,••■,«„„) Wduyy,---,dumn.
J — oo »/— 00

These two equations imply the validity of (1.8) for this special case.

The result now easily follows when H is any finite linear combination of char-

acteristic functions of disjoint measurable sets of Rm„.

If H is a measurable extended positive valued function on Rm„, there exists a

nondecreasing sequence of non-negative integrable simple functions Hk which

converges to H at each point in Rmn. For each Hk, (1.8) holds. The limit may

be passed under the integral sign by Levi's theorem on monotone convergence

and (1.8) holds for H.

Finally when H is a measurable extended positive valued function on

Rm„, we define //+(wn, -, umn) = max {//(«„, -, um„),0}, H~(ulu—,uJ)

= max{-//(u11, —,um„), 0}, so that// = //+ - //-.Then (1.8) holds for each of

H+ and //". In case the integrals of H+ and H~ are not both infinite, the integral

of H exists and (1.8) holds.

3. Riemann-Stieltjes integral. We define Riemann-Stieltjes integrals of func-

tions of n variables and state a few theorems which can be proved more or less in

the same way as in the one variable case.

Let fix1, ■■■,x") he a function of n real variables xp, lz^pz^n. For each

p and prescribed values of xp and Axp, the operator Ap is defined by

(3.1) A"/=/(x1, -,x") -fix1, -,xp-\xp - Axp,xp+1, -,x").

Then for py ^ p2, OS Pi, P2S n, API and AP2 commute, and

(3.2) A^A^-A^A'A^-.A"

whenever ÍPy,p2, —,p„) is a permutation of (1,2, —,n).

Let fix \—,x") be defined on an n-dimensional interval/ =[~[p = i{xp|ap= xpS b"}.

Let ^3 be a partition of / into [TjJ=y Mp n-dimensional intervals by partition points

satisfying a" = xj <xf< ••• < x^ = b", p = l,2,—,n. Let AxpP = xfP—xPP^y and

let Afp be the operator defined by (3.1) with the fixed values xfP and Ax,? for

i'p= 1,2, ...,Mp and p= 1,2, —,n. Consider

Mi M„

(3.3) i -y |a¿...a¿4
¡» = 1     i" = l
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Definition 1. If the collection of numbers (3.3) corresponding to the col-

lection of all partitions {33} of /is bounded above we say that / is of bounded

variation on /, write/e B.V.(Z), and call the least upper bound the total variation

of / on / and write V(f,I) for it.

Let if, satisfy xf, _ y = {£ = xf„ for i" = 1,2,-,MP and p = \,2,-,n. Con-

sider the Riemann-Stieltjes sum of g(x1,---,x") with respect to f(x1,--,x"),

S{%m =  I   -   Ï g(^,-,^)Al,-A,^f
¡1 = 1      ¡« = 1

Let   |33|,  norm  of 'iß,  be  the  greatest  diagonal  length  of the   £p = iMp

rectangles resulting from 33\

Definition 2. We say that g is Riemann-Stieltjes integrable with respect to

on / if there exists a number J such that for every given e > 0 there corresponds

some ô > 0 in such way that | S{33,{£}} — J \ < e whenever | 331 < ô. The number

J is called the Riemann-Stieltjes integral of g with respect to / on / and is

denoted by J/gd"/.

Theorem 1. A mean value theorem for A1A2---A"f. Let A1A2---A"f

be defined for some fixed values of xpand Ax p for p = 1,2, •••,n.Lei(p1,p2,---,p„)

be a permutation of (1,2, —,n). // the partial derivative /PlP2...p„ exists on the

open interval np = i(xP— Axp,x") then there exists a point (i,1,^2, —,£*) in the

open interval such that

A'A2 -Ay=fPiP1„.Pn(e,e,-,C)Ax1Ax2 -Ax".

Corollary. If f is defined on a closed n-dimensional interval and if

fpiP2—p„ exists and is bounded in the interior of the interval then f is of bounded

variation on the interval.

Theorem 2. An existence theorem. // g is continuous and f is of bounded

variation on a closed n-dimensional interval I then ¡igdnf exists.

Theorem 3. Reduction to riemann integral. If g(x1,x2,--,x") is defined and

fptP2...pn where (plfp2, —,pn) is a permutation of (1,2, —,n) exists at every point

ofI= l\p = i{xp\ap=x"= b"} and if g and fPíP2...p are Riemann integrable

on I, then g is Riemann-Stieltjes integrable with respect to f there, and

¡ gdj= f - f gffiP1 ...„„d^-dx".
Jl Ja1 Ja"

This theorem is based on the following statement: If ^(x1,—,x") and

^(x1, ■ ■,x") are integrable on / = F[p = y {xp \ ap = xp g bp} then for every given

£ > 0 there exists some ô > 0 such that whenever 1331 < ö and x,l_ y ̂  $,*,,

nfp^xf,
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,   Mi M„ f bl        /•  b"

II   -. I c6(6,-,^)1A(nJ1,...,^)Axi1,-Axi"„-      ...       ^dxx-dxn  < e,
1(1 = 1 ¡>i = l J„l Jan

where the integral in the inequality is the «-tuple Reimann integral of c6i/¿ on /.

4. A lemma on rearrangement of multiple series. We begin by defining a few

operators. We use «(i1, •••,'") rather than a(i...p, to mean the term at the

(i1, ■■•,?) position of an «-tuple series. Consider two such series a(ix, •-•, i") and

ß(i\»>,f), ip = 0,l,2,-,p = l,2,-,n.
Definition (1). For every integer k,0^k^n, and every subset {piP2, -sP*}

of {1,2, •••,«} the operator Dk(px, •■•,pk) is defined by

D\px,-,pk)a(i\-,in) = a

with

ip',-,ip*

replaced by
iPl-l,.-.,iPk-l.

D*(Pi, "-.pj operates on ß(ii,---,in) exactly in the same way as on «(i1, •••»F).

When there is no ambiguity we will write Dk for Dk(px,---,p„). For a given fc, we

use !D* to mean the collection of all Dk operators, CnJl in number.

Definition (2). For every integer k,0^k^n and every division of {1,2, • • •, «}

into three subsets, some possibly empty, {px,p2, ••■,ps}, {qx,q2, '",1t} and

{rx,r2,---,ru}   with   s + t = k,   k + u = «, the operator

Ä*(Pi.—»A|iit—.««|ri,"',rJ,

or simply R*(Pi, •••,ps | ¿21, •••,#') or R* is defined with preassigned integers

MX,—,M„ by

Ä*(Pi,— .ftlfli.—,««)«^1»— ,¿") »«
with

replaced by 0 and

replaced by

and

with

¿pi ... ¡P'

I". •...*••
replaced by 0 and

replaced by

Mqi + l,-,Mqt+L

For a given k we use 91* to denote the collection of C„>Jt2* R* operators.
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Definition (3).   oiR\py, •••,ps|ii, •••,9,)) = t.

Lemma.    With the notations defined above

Mt m„ r    " n
I   -    1 ßH\-,in)\   I    K-irVaíí1,-,/")

¡! = 1 ¡" = 1 L  * = 0    $" J

Mr Mr

t~fr(Rn-k\

(4.1) =   I      2(_ir"*"->     S   ...     IR-Vi1,-,/.)
* = o  9t"-k ¡r'=o        ;rk = o

i zc-iyD'Ä'-'Ä^+i.'-.'■+1)
í = 0    $'

The proof is by straightforward induction and is left to the reader.

Integration by parts. Consider the n-dimensional interval

/n= fi{*PK= x" = b"}-
p = i

Let 0 ^ k ^ n. If we choose n — /c of the n variables and set each xp of

this subcollection to be equal to apor b" and let each xpof the remaining k

variables satisfy ap ^ xp zi bp then we have a /c-dimensional interval. Such an

interval will be denoted by /*[**, —,x"] with the appropriate variables replaced

by the appropriate constants ap or bp. For fixed k there are C„ik2"~k such inter-

vals. Let the collection be denoted by 3* and let 3 = lj£=o3*. For each /*e3

let a(/k) be the number of bp's appearing in the square bracket which indicates

the position of Ik.

Let/ and g be defined on /". If Z*e3 and the Riemann-Stieltjes integral off

with respect to g on Ik exists we write ¡¡kfdkg for it. Hereby it is understood

that if F3 e 3, then ¡¡ofd0g always exists and is the product of the values of/

and g at that point which enters in 3 as the O-dimensional interval /°.

Theorem 4. Let f be Riemann-Stieltjes integrable with respect to g on each

member o/3, then g is Riemann-Stieltjes integrable with respect to f and

(4.2) f gdj = î S(-ir*(/fc)f Mr-
Jr> * = o zsk Jik

Proof. Consider a partition of /" defined by ap = xp < xp2 < — < xM = bp

for p = 1,2, -, n and let x£ S if, = xfP, ip = 1,2, -,Mp, and ¿0P= ap,^Mp+\ = b"

for p = 1, 2, -, n. Letaii1, -, i") =/(xi1„ -.xJOandjBr/.-.i") = *#.,-,&).

Then the Riemann-Stieltjes sum of g with respect to / and /" becomes the left

side of (4.1). To each R"~k in the right side of (4.1) there corresponds in the

obvious way an /*e3. Furthermore,

Mrt Mrk k

I   -    I *"-*a(i1,-,¿") I I i-iy/J'R"-*^!1 + 1,-,/"+ 1)
¡ri=0 iFk = 0 1=0   D>
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is the Riemann-Stieltjes sum of/ with respect to g on Ik corresponding to 33

and {£}. It is obvious that a(R"~k) = a(Ik). From the existence of jykfdkg for

every / k e3, (4.1) becomes (4.2) as | 33 | -► 0.

5. Definition. Let n be a positive integer and consider the division of Q

into n2 squares by means of the division points x, = i/n, y¡=jln, i,j = 0,1,2,---.n

of the unit intervals. Divide each square with corners (xj-i.J'j-i), (x,,y¡-y),

ix„yj),(x,_y,yj) in two rectangular triangles by the diagonal with the endpoints

(x,-.y,yj-y) and (x,,yj). For/e C, L„[/] is defined to be equal to f(x,y) at each

ix,,yj), i,j = 0,\,2,---,n and linear on each of the 2n2 rectangular triangles. In

other words if (x,y) is in the triangle with (X|-i, Jty-1), (x¡, y¡-y), (x¡, y¡) as corners

^>-i(4¥)-'(^))R

and if (x,y) is in the triangle with (x,_y,yj_y), (xt-uyj), (x„y¡) as corners

w^-.M'^-'^K*-^)
(5.2) ^m-^mi'-^m)

Lemma 1. Let £[/] be a functional defined onC. Let £[/] be continuous

in the sense that limt^œ£[/(k)] = £[/(0)] whenever {/w} <= C converges uni-

formly on Q to f°eC. Then the functional £[£„[/]] defined on C is Wiener

measurable and there exists a continuous real-valued function H(uyy,---,u„„)

defined on Rm such that

(5.3) F[Ln[f}} = H[f(xy,yx),-,f(xn,yn)}.

Proof.   Since L„[/] depends only on the n2 values of / at (x¡, y¡), there exists

a real-valued function H for which (5.3) holds.

To show the continuity of//, let limt_00u('t)= u(0)where

uw=[uyky\-,u%}fork = 0,l,2,-.

Let f(k)eC, k = 0,1,2, —, be linear on each of the 2n2 triangles in the definition

of L„ and satisfy

fik)(x„yj) = u\k\       k = 0,1,2,-.

Since limt^00u('l) = t/(0), we have limi_00/(*)(.x,v) =/(0)(x,3;) uniformly on Q and

hence lim^^f [/(t)] = /[£(0)]. Now L„[/(k)] =/(i) for k = 0,1,2, - and
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F [fk)] = F[Ln[fw]-] = H[fXxy,yy),...,fkXxn,yn)-] = H[u[% -, u£>]

for k = 0,1,2, •••. Thus limt_>00//(u('t)) = //(u(0)) and // is continuous.

To prove the Wiener measurability of F[L„[/]], we note that for any real

number a

Tx = {feC; F[LT/]]>a}

= {/eC; //[/(x1,y1),-,/(x„,y„)]>a}

= {feC; [fixy,yy),---,fixn,yn)']eE}

where £ = {u eR„„; //(u) > a} which is a Lebesgue measurable set since H{u)

is continuous and measurable. Thus rae3 and is Wiener measurable. The ar-

bitrariness of a implies the measurability of F[L„[/]].

Lemma 2. Let f0, feC and let fo satisfy the conditions in Theorem II.

Let % be a partition of Q by 0 = x0<x1 < ••• <xm — 1, 0 = y0<yi < ••• <y„= 1,

and let

AiAJ-/=/(xi,y;) -/(x,_!,yj) -/(x,-,y;_i) +fixi-1,yJ-1);

then

,im  £ ¿ MtWJW¡    f w&ft
I « i—o i = i 7 = i l   A¡xAyy A¡xAjy        j      JQ dydx JQdydx

where the convergence is bounded in f for all f in any uniformly bounded set.

In case d2f0/dydx is Riemann integrable on Q, SQid2fo/dydx)d2f0 reduces to

SJQid2f0/dydx)2dxdy.

Proof. By Theorem 1.

n |7«n _ (Wo)2  ,  2(Wo) (A,Aj/) _   a2
AvLZ-MJ -   j^   + j^--d-^Jo(^,rij){AíAjJo + 2AiAjj},

where x¡_! < i^j < x¡, yj^y<ijj< y¡. Since d2f0/dy8x is of bounded variation

on oo» /o> / are continuous on Q and (d2/Sydx)/0(0,y), (d2/3ydx)/0(l,y),

iô2/dyôx)foix,0),id2/dydx)foix,i) are of bounded variation on the respective unit

intervals, Theorems 3 and 4 apply and

lim     f    ÎD^m =  í   Pl-d2f0 + 2¡ p±d2f.
ispi-o   ¡ = i 7 = 1 Jq 5^ Jq dydx

For an arbitrary M > 0, let T = {feC; |/(x,y) | ^ M on (2}. It follows easily

from the lemma of §4 that £/>¡j[/,p] is bounded on T.

Proof of Theorem II. Let M be a positive number and n be a positive integer.

Define
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CM    = {geC; \g(x,y)\ S M on Q)

[June

CM.n = [geC;   gU,^    gM, f,/ = 0,1,2,...,»!.

ThenCW(B3CM>2",lim1I^00CMj2" = CM, CM c CM. ifM<M'andlimM^00 CM = C.

Let

TCM = {feC;f=g-f0, geCM}.

By (5.3), (1.8)

J       F[Ln[g]]dwg

= 1     H[g(xx,yx),-;g(x„,yB)]dwg

~M,n

-M,n

J- M r-M
(««)     H[[v^]w{[xUyM^}dvn...dvnn.

-M J -M

Since L„[g] = L„[/] + L„[/0], if we write

^¡; = g(xi,yj),

«y = f(x¡,yj),

"u = fo(x¡,yj),

A¡AjU =    My - «,-_!,; - By.,  4" Ui-lJ-1

and similarly for A,A/j, and apply (1.8),

(5.4) J      F[LB[rf]dwg
CAf,n

/•Aí-flii í»M — a„

= K{[xi],[yJ]}\ (««) H[[«u+«U]]»r{M,l>y].[«y + «y]}d«ii-d«1„1
•/—M— an -J —M — a„„

=exp   -1     I    ̂ J- (««) ff[[«y+ fly]]

exp    - £   ¿
(A;A,")21

¡ = i j = i  A¡xA^ J
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Equation (5.4) is valid for any CMt„, and in particular for every one of the

sequence {CM2n},n = 1,2, —.

Now for any geC, lim„_œL„[g] = g uniformly on Q. This follows from

(5.1), (5.2) and the fact that for any e>0, there exists a positive integer n such that

|g(x',y')-g(x",y")| <e/3 whenever |x'-x"| < 1/n and |y'-y"| < 1/n.

If we let n-> oo in (5.4) over the sequence of sets {CM; 2/}, then from the bound-

edness of F and the sum under integral sign in the right side of (5.4), the limiting

process may be passed under the integral signs. By Lemma 2 and the continuity

of F, we have

j^WU-t {-/o£fy/.}J"c/[/+/„]e>P {-2/s gfcflf}«
If we let M approach infinity, we have (1.10).

6. Theorem IV.   (C,Gm0, m°) = (C,Gm, m).

Lemma 3. Let £>° = {Í20} be the family of O-sets o/3°. For every Y <zzC,

let

m°*iT) = inf m°(fi°).
n°=>r

Then m°*(r) = m*(T).

The proof is left to the reader.

Lemma 4.   Cmo* = Cm..

This lemma is an obvious consequence of Carathéodory's theory of measure.

Proof of Theorem IV. It is well known that for any a-finite measure on an

interval class, there exists uniquely a countably additive extension of the measure

to the Carathéodory extension of the interval class. Now since m° on (£m° and

m on (£m are both a countably additive extension of m on 3° to (£m° = (£m, we

have m° = m on (£m° = (£m.

7. Definition. By Ooi we mean the class of limits of decreasing sequences

of members of 0°.

Lemma 5. If Y <zz C is Wiener measurable, we can write T = G — N where

GeD01   and NœG with m(N) = 0.

Proof. Let T he Wiener measurable. Since (C,(£m,m) =(C,(£m° m°), there

exists some Q° e £>° such that Ü0 z> T and m(ii° - T) < 1/n for any positive in-

teger.LetG„ =f|* = AThenGB e£) ?For ifweletQ^U^i /?.fc,OS=U"=i !l
where /°>t, /^,6 3°,

n°nn2° = (Ü'°*WÜ'2°,i)=Ü Ü(/i°*ní^6 0°
\» »1       /       \I-1        /       k = l   1 = 1
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because /?,tn/2,e3°. By repetition we see that Gne5D° for all n. Also

G„ => G„+1, C.dT for all n. Thus if we let G = lim,,^ G„, then Ge Ooi , Gz> F

and

m(G - T) ^ m(G„ - T) ^ m(Ü„° - T) < -.

If we let n tend to infinity, we have m(G - F) = 0. Let N = G-F. Then

r=G-N,JVcGand m(/V) = 0.

Proof of Theorem III. To prove (1.13) we consider first the case where

T = /° as given by (1.7). Let fp¡jtk(u) be a continuous trapezoidal function which

equals one on [afJ. + \/k,ß,f\, equals zero on (- oo,aiy] and [ßtJ + 1/k, + oo)

and is linear on [ay,ay + l//c] and [ßipßij 4- l//c]. If a,}, ßfj are infinite so are

au + 1/k, ß,j + 1/k. Let

m n

x¡<>,kíg} = n n 'pij.kigixi^j)},   gee.
¡=i j=i

Each <p¡jik[g(x„)>j)} is Wiener measurable by Theorem I and so is Xi°,k[g}-

Since 0 = Xio.kig} = 1> X/°,t[g] ls uniformly bounded in C. If {g(n)} c C and

lim,,^ g(B)(x,.y) = g(x,y) on g, the continuity of tpijJt[u} implies

um ^l7,t[g(n)(xi,}'J.)] = <p,j,k[g(x„yj)}
n-*co

and

lim X¡o,k[glH)} = Zro.tCrf-

Thus Xt°,k\_g} satisfies the conditions on F in Theorem II and (1.10) holds with

F[g} = Xi°,k[g}- Since limk^œXi°,klg} = Xi°[g} monotonically, (1.10) holds wih

F[g} = xi[g}, which is the validity of (1.13) when F = /°. The equality (1.13)

holds when F = Q° e O0, since both sides of it are completely additive functions

of T. Finally when F is an arbitrary measurable set, it can be written as F = G — N

where GeO0i , N <=. G, m(N) = 0 according to Lemma 5 so that by monotone

convergence, (1.13) holds.

The equality (1.14) can be proved exactly in the same way as in the one

variable case.
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