
MINIMAL TOPOLOGICAL SPACES(')

BY

MANUEL P. BERR[(2)

Given a set X and the lattice of all topologies on the set. We will investigate

properties of the various minimal topologies on this set, namely, minimal Frechet,

minimal Hausdorff, minimal completely regular, minimal normal, and minimal

locally compact. A subsequent paper [1] written with R. H. Sorgenfrey will discuss

minimal regular spaces.

In general, the terminology of this paper will coincide with the terminology

found in [2]. Specifically, regular spaces, completely regular spaces, normal

spaces, compact spaces, and locally compact spaces will be topological spaces

automatically satisfying the Hausdorff separation property. Frechet spaces and

Ti-spaces are identical. In the comparison of topologies, a topology ST will be

weaker (coarser) than a topology 9~' if T is a subfamily of 3r'.

Definition 1. A filter-base J5" on a set X is said to be weaker than a filter-base

0on X, if for each Fef, there exists some Ge? such that G c F. This relation

defined on the family of filter-bases on a set X is a partial ordering.

Definition 2. A filter-base J* on a set X is said to be equivalent to a filter-

base <§ on X if J5" is weaker than IS and ?S is weaker than 3P'. This relation is a

genuine equivalence relation.

Definition 3. Given a topological space X. An open filter-base on X is a

filter-base composed exclusively of open sets. A closed filter-base on X is a filter-

base composed exclusively of closed sets.

1. Minimal Hausdorff spaces.

1.1. Definition. A topological space (X,2T) is said to be minimal Hausdorff

if ¡F is Hausdorff and there exists no Hausdorff topology on X strictly weaker

than &~. Thus this minimality property is topological.

The following theorem is a useful characterization of minimal Hausdorff spaces

as given in [2, pp. 110, 111] and [4]. Another characterization may be found in [7].

1.2. Theorem. A necessary and sufficient condition that a Hausdorff space

(X,3~) be minimal Hausdorff is that £T satisfies property S:
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(i) Every open filter-base has an adherent point;

(ii) // an open filter-base has a unique adherent point, then it converges to

this point.

At this point, the reader may inquire whether either S(i) or S(ii) alone on a

Hausdorff space will guarantee the minimality of the Hausdorff topology. This

inquiry is answered in the following results.

1.3. Theorem. A Hausdorff space X which satisfies S(ii) also satisfies S(i).

Hence such a space is minimal Hausdorff.

Proof. Assume there exists an open filter-base <& which has no adherent point.

Take and fix some point p e X. Let W be the filter-base of open neighborhoods

of p. Let tf = {VU GI V e W and G e ^}.Then p is the unique adherent point

of the open filter-base <3f. By S(ii), Jf converges to p. Since^f is weaker than (§,

then 3? converges to p. Hence p is an adherent point of <&. This contradicts the

assumpion that ^ has no adherent point.

1.4. Remark. A Hausdorff space satisfying S(i) does not necessarily satisfy

S(ii). As an example, we use a special case of a result in [2,p. 111]. Let (X, 3~) be

the closed interval [0,1] with the natural topology. Let A be the set of rational num-

bers in [0,1]. Hence, A and X — A are dense in (X,F) and A is not an open set

of (X, T). Now define ^~* on X in the following manner : 3~* is the smallest topol-

ogy on X such that 9~ is weaker than 5"* and A is open in (X,3~*). Clearly

3~ is strictly weaker than the Hausdorff topology 9~*. By [2,p. Ill], 3~* also

satisfies S(i).

1.5. Remark. Any compact space is minimal Hausdorff. In [4;7; 8], an

example due to Urysohn is given of a minimal Hausdorff space which is not

compact. (Since this example is necessary for later results, we will now describe

this space.

Let X = {aij,bij,ci,a,b\i = 1,2, — ; / = 1,2,—} where all these elements are

assumed to be distinct. Define the following neighborhood systems on X :

Each au is isolated and each by is isolated;

&ic¡)= ¡Hei) =   Û   {au,by,c,}   | n = 1,2,3,-},

@ia) = \v\a)   =   Ü    Ü {au,a}   \ n = 1,2,3,-) ,
(. J = l   i=n I

38(b) = lv(b)  =   Û   LJ  {bi},b} | n = 1,2,3,-1.
I j=l  l=n I

Let us denote this topology by 9". {X, 3) is minimal Hausdorff but not compact.
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Another question the reader might ask himself is whether the minimal Hausdorff

property is hereditary, i.e, is a subspace of a minimal Hausdorff space necessarily

minimal Hausdorff? This question is partially answered in the following theorem.

1.6. Theorem, (i) Any minimal Hausdorff subspace of a Hausdorff space

is closed.

(ii) If a subspace of a minimal Hausdorff space is both open and closed, then

it is minimal Hausdorff.

Proof, (i) Let X be a Hausdorff space and let A be a minimal Hausdorff

subspace. From [2, p. 110], property S(i) is a necessary and sufficient condition

for a Hausdorff space to be absolutely closed, i.e., any continuous image is closed

in a Hausdorff co-domain space. Since the injection map of A into X is contin-

uous, then A is closed in X.

(ii) Now let A be an open and closed subspace of a minimal Hausdorff space X.

Let 'S be an open filter-base on A with a unique adherent point p e A. We wish

to prove ^ converges to p in A. Since A is open in X, then 'S is an open filter-base

on X. Since A is closed, then p is a unique adherent point of 'S on X. But X is

minimal Hausdorff. Thus 'S converges to p on X. Since peA, then 'S also converges

to p on A.

1.7. Remarks, (i) The example of 1.5 will serve to disprove the converse of

1.6(1), namely, any closed subspace of a minimal Hausdorff space is minimal

Hausdorff. Let C = {ct \ i = 1,2, •••}. The reader will observe that C is a closed

infinite subset of X whose subspace topology is discrete and hence not minimal

Hausdorff.

(ii) The converse of 1.6(a) is not always true. For example, let X be the closed

interval [0, 2] with the natural topology. Then X is compact and hence minimal

Hausdorff. Let A = [0,1]. A is compact and hence minimal Hausdorff. But A

is not an open subset of X.

(iii) Finally we observe that a minimal Hausdorff space which is also regular is

necessarily compact (cf. [2, p. 111]).

1.8. Theorem. A Hausdorff space X in which every point has a fundamental

system of minimal Hausdorff neighborhoods is locally compact.

Proof. By 1.6(i), any minimal Hausdorff subspace of X is closed. Thus every

point of X has a fundamental system of closed neighborhoods. Hence X is regular.

Now any subspace of a regular space is regular. Thus each point has a fundamental

system of regular, minimal Hausdorff neighborhoods. By virtue of 1.7(iii), each

point of X has a fundamental system of compact neighborhoods. Hence X is

locally compact.

1.9. Corollary. A minimal Hausdorff space X in which every point has a

fundamental system of minimal Hausdorff neighborhoods is compact.
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Proof. By 1.8, X is locally compact and hence regular. Thus by 1 7(iii), X

is compact.

1.10. Theorem. Let {(Xx, &~x)} be a family of nonempty Hausdorff spaces.

If the product X = Y\XX !S minimal Hausdorff, then each factor space is minimal

Hausdorff.

Proof. Let S~ denote the product topology on X. Assume there exists an a0

such that (X,?~xo) is not minimal Hausdorff. Then there exists a Hausdorff

topology 2t~(, on Xxo such that T^ is strictly weaker than J~xo. Let {(Xß, ^¡¡)} be

the family of topological spaces

{(Xx,.Tx)\a*a0}u{(XX0,^e)}.

Then the topology of the product X = Y\Xß is a Hausdorff topology strictly

weaker than 2T. This contradicts the minimality of £7~.

1.11. Remark. The converse of the above theorem, namely, the product of

minimal Hausdorff spaces is minimal Hausdorff, is neither proved nor disproved

in this paper. To the writer's knowledge, this question is still unanswered.

By virtue of 1.2 and 1.3, a nonminimal Hausdorff space has at least one open

filter-base with a unique adherent to which this filter-base does not converge.

The following theorem gives us a method for constructing a Hausdorff topology

strictly weaker than a given nonminimal Hausdorff topology. The proof of the

theorem is left to the reader.

1.12. Theorem. Let (X,!T) be a Hausdorff space. Let 'S be an open filter-

base with no adherent point (or possibly 'S has a unique adherent point to which

'S does not converge). Take and fix some point peX(ifS has a unique adherent

point, let p be this point). Define the following family of filter-bases on X:

| i^(x), the ¿T-neighborhood system of x for x ^ p;

\ {VU G | F is an open ^-neighborhood of x and G e 'S} for x = p.

Then for each x e X, 3S(x) determines a fundamental system of neighborhoods

for a Hausdorff topology 3~* which is strictly weaker than 3~.

2. Minimal Frechet spaces.

2.1. Definition. A topological space (X,3~) is said to be minimal Frechet if

■^ is Frechet and there exists no Frechet topology on X strictly weaker than 3~.

The following theorem reveals the structure of a minimal Frechet topology on

any set.

2.2. Theorem. If X is any set and ¿T is the family of subsets

{A czX\X — A  is finite] U {0}, then X and ^ have the following properties:

(i)     2T defines a Frechet topology on X;

(ii)    &~ is the weakest Frechet topology on X; consequently,

(iii)   a Hausdorff topology on X is minimal Frechet if, and only if, X is finite.
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Proof, (i) and (ii) are well-known results (cf. [6, p. 56].) The proof of (iii) is left

to the reader.

2.3. Corollary. A compact space is minimal Frechet if, and only if, it

is finite.

2.4. Corollary.   Any subspace of a minimal Frechet space is minimal

Frechet.

2.5. Corollary. A nonminimal Frechet space cannot be topologically

imbedded in a minimal Frechet space.

Since every compact space satisfies property S (cf. 1.2), then property S

cannot be a characterization for a Frechet space to be minimal Frechet. However,

we do have the following result.

2.6. Theorem. Let (X,.T) be a minimal Frechet space. Then (X,2T) satisfies

property S.

Proof. If X is finite, then by 2.3 (X,.T) is compact. Thus (X,3~) satisfies

property S. Now suppose X is infinite. From the structure of minimal Frechet

spaces (cf. 2.2), every two nonempty open sets meet. Hence every point is an

adherent point of every open filter-base. Thus S(i) is satisfied and S(ii) is vacuously

satisfied.

The next theorem completely resolves the question concerning the product of

minimal Frechet spaces. The proof is left to the reader.

2.7. Theorem. For a product X = \\XX of an arbitrary family of nonempty

spaces to be minimal Frechet, it is necessary and sufficient that all the spaces

Xx are minimal Frechet; all but finitely many of them are singletons; and at

most one of them is infinite.

3. Minimal completely regular spaces.

3.1. Definition. A topological space (X,.T) is said to be minimal completely

regular if 3" is completely regular and there exists no completely regular topology

on X strictly weaker than 2T.

Since all compact spaces are minimal Hausdorff, then all compact spaces are

minimal completely regular. The question as to whether there exist minimal

completely regular spaces which are not compact is answered in 3.3.

But first we prove a theorem which will give us under certain conditions a

method of constructing a regular topology strictly weaker than a given regular

topology.

3.2. Theorem. Let (X,-T) be a regular space. Let CS be an open filter-base

with no adherent point (or possibly 'S has a unique adherent point to which 'S

does not converge). Suppose there exists a closed filter-base 3F which is equivalent
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to 'S. Take and fix some point p e X (if 'S has a unique adherent point, let p

be this point). Define the following family of filter-bases on X:

„, . _    Í ^(x), the 3~-neighborhood system of x for x # p;

\ {FU G | V is an open ^-neighborhood of x and G e 'S} for x = p.

Then for each x e X, 3S(x) determines a fundamental system of neighborhoods

for a regular topology $~* which is strictly weaker than 3~.

Proof. By 1.12, we know { J'(x) | x e X] determines a Hausdorff topology &~*

which is strictly weaker than $~. We shall now show that 9~* is regular. Take

x e X and W e 3S(x). We wish to show there exists a closed 5"*-neighborhood of

x contained in W.

Case 1. x ^ p. Since 3~* is Hausdorff, there exists some W e -f(x) such that

W is disjoint from some ^"»-neighborhood Uofp and W c W. Since (X,&)

is regular, there exists a closed ^"-neighborhood H of x such that H <= W'. Since

U n W = 0 and H c W', then Ud H = 0. Hence H is a closed -^"»-neighborhood

of x such that H <=W.

Case 2. x = p. Since W e 3S(p), then there existsan open ^"-neighborhood V

of x and Cef such that W = FUG. Now ^" is regular, hence there exists a

closed ^"-neighborhood S of p such that S <=V. Since J*" and 'S are equivalent,

then there exists an F e & such that F <=G. Thus S U F is a .^"»-neighborhood

of p such that SuFcFuG. We will now show S U F is closed in (AT,^"*).

Take y<£ SUF. Since S U F is .^closed, there exists a U e ^(y) such that

Ur\(SuF)= 0. By definition [7 is also a -^""-neighborhood of y. Thus, SUF

is a closed 3~* neighborhood of p such that S U F <= W. Hence ^"* is a regular

topology strictly weaker than i7~.

3.3. Theorem.   All minimal completely regular spaces are compact.

Proof. Remark. In the proof of this theorem, the reader will observe that

a technique is provided to construct a completely regular topology strictly weaker

than a given noncompact completely regular topology.

Let (X,T) be a minimal completely regular space. In order to show (X, &) is

compact, it suffices to prove that X is the same as its Cech compactification ß(X).

We already know that X can be considered as a subspace of ß(X). To establish our

theorem, we now offer a proof by contradiction.

Assume X is not compact. Then ß(X) — X is nonempty. Take and fix some

element p of ß(X) - X. Let 'S be the filter-base of open neighborhoods of p in ß(X).

Let 'S* be the trace of'S on X. Considered as a filter-base on ß(X), 'S* has a

unique adherent point, namely p. Thus 'S* has no adherent point on X. Now

select and fix an element a in X. On X, form the following collection of fundamen-

tal systems of neighborhoods for a topology 9~*.



1963] MINIMAL TOPOLOGICAL SPACES 103

r(x)  =  i nx)Xx*a,
K '       \ {V U G | F is an open ^-neighborhood of a and G e rS*} if x = a.

By 3.2 we see that J~* defines a regular topology on X such that T* is strictly

weaker than F. We shall now show that (X, 3~*) is a completely regular space.

Let Í2', fi, and Q* be the families of all unit-interval-valued continuous functions

defined on ß(X), (X,T) and (X,9~*) respectively. Take b e X and F a closed set

in (X,^*) such that b£ F. We wish to show there exists / e SI* such that/(b) = 1

and/(F) = 0. Consider the following cases:

Case 1. b # a. Now F U {a} is closed in (X,.^*). Since b £ F U {a}, then,

by regularity of ^"*, there exist disjoint open neighborhoods U and F of b and

F U {a} respectively. Now U is also open in (X,£F). Hence X — U is closed in

(X,T). Thus there exists/ e Í2 such that/(b) = 1 and/(x) = 0 when xeX-U.

By construction of 3~*, f is ^"""-continuous at z e X when z # a. Since F is a

subset of X - U, then/(F) = 0. But V is an open neighborhood of a in (X,3~*).

Hence, / is5"*-continuous at a. Thus / e SI*.

Case 2. b = a. Consider the closure F of F in p\x). Since F is closed in

(X,f*) and thus in (X, 3T), we have FnX = F. Now a e X - F; hence a ¿ /".

Also p é F because, if p e F, each G e 'S* would meet F, and so each

^"♦-neighborhood of a would meet F, contradicting that F is a y*-closed set not

containing a. Since ß(X) is regular and F is closed, there exist neighborhoods S,

Toï a and p respectively in ß(X) such that SnF=0 = TnF. Also ß(X) is

normal. Hence by Urysohn's Lemma, there exists /' e Si' such that /' = 1 on

¿> u f = SUT and 0 on £ Let/ =/' | X. Thus/(a) = 1 and f(F) = 0. Since for

each point x e X, x ^ a, -f(x) is a fundamental system of neighborhoods in

(X,3T) as a subspace of ß(X), then / is continuous at x. Also / is constant on

(S U T)n X, a ^"*-neighborhoodofa.Thus / is continuous at a = b. Hence

feSl*.

Thus, we have shown 3~* is a completely regular topology strictly weaker than

y. This contradicts the minimality of 5~. Hence (X, ¡T) is compact.

4. Minimal normal spaces.

4.1. Definition. A topological space (X,^") is said to be minimal normal

if ¡F is normal and there exists no normal topology on X strictly weaker than F.

Since all compact spaces are minimal Hausdorff, then all compact spaces are

minimal normal. The question as to whether there exist minimal normal spaces

which are not compact is answered in the following theorem.

4.2. Theorem.   All minimal normal spaces are compact.

Proof. Remark. In the proof of this theorem, the reader will observe that a

technique is provided to construct a normal topology strictly weaker than a given

noncompact normal topology.
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Let (X,.T) be a minimal normal space. In order to show (X,3~) is compact,

it suffices to prove that X is the same as its Cech compactification ß(X). We

already know that X can be considered as a subspace of ß(X). To establish our

theorem, we now offer a proof by contradiction.

Assume X is not compact. Then ß(X) — X is nonempty. Take and fix some

element p of ß(X) — X. Let IS be the filter-base of open neighborhoods of p in

ß(X). Now let 'S* be the trace of 'S on X. Thus 'S* is an open filter-base on X.

Considered as a filter-base on ß(X), 'S* has a unique adherent point, namely p.

Thus 'S* has no adherent point on X. Now select and fix an element a in X. We

now construct the same topology 2*~* on X exactly as in the proof of 3.3. By 3.2

we see that ST* defines a regular topology on X such that t?~* is strictly weaker

than 9~. We shall now show that (X,$~*) is a normal space. Let ß and R be two

disjoint closed subsets of (X,3~*). We wish to find two disjoint open neighbor-

hoods of ß and R respectively. Since 9~* is weaker than T, then ß and R are

closed in (X,T). Since ^ is normal, there exists disjoint open sets //' and K' in

(X,&~) such that ß is a subset of//' and R is a subset of K'. We now consider the

following cases:

Case 1. a$ ß UR. Let H = //' - {a} and K = K' - {a}. Then H and K

are open in both (X,3~) and (X,S~*). Also // and X are disjoint neighborhoods

of Q and R respectively.

Case 2. a e Q UR. Assume a e Q. Then a£ R. Since (X,^"*) is regular,

then there exist disjoint open sets H" and K" such that a e H" and R<=K".

Clearly //"and X"are open in (Z,^). Now let // = //' u//" and X = K'nX".

Thus we see that // and X are disjoint open neighborhoods of ß and R respectively

in (X,.T). Since H" is an open neighborhood of a in (X,^~*), then H is an open

set also in (X,.T*). Since a$ K, then X is an open set also in (X,2T*).

Thus (X,¡T*) is a normal space. Moreover, ¡T* is strictly weaker than ¡2~.

This contradicts the minimality of 9~. Hence (X,3~) is compact.

5. Minimal locally compact spaces.

5.1. Definition. A topological space (X,3~) is minimal locally compact if ¡T

is locally compact and there exists no locally compact topology strictly weaker

than.r.

Since all compact topologies are minimal Hausdorff, then all compact topolo-

gies are minimal locally compact. The question as to whether there exist minimal

locally compact topologies which are not compact is answered negatively as a

corollary of the following theorem.

5.2. Theorem. Let (X, 9~) be a locally compact topology which is not compact.

Then 3~ is stronger than some compact topology ¿F* defined on X.

Proof. Remark. In the proof of this theorem, the reader will observe that a

technique is provided to construct a compact topology weaker than a given locally



1963] MINIMAL TOPOLOGICAL SPACES 105

compact topology which is not compact. Also the reader is reminded that "locally

compact" implies the Hausdorff separation axiom.

Let X' = X U {p} where p $ X; let if' be the Alexandroff compactification of

9~ in X' at the point p. Let 'S be the filter-base of open neighborhoods of p in

(X',3T'). Let 'S* be the trace of 'S on X. Clearly 3?* has no adherent point in

(X,3~). Now select and fix an element a e X. On X, again construct the same

topology 2T* exactly as in the proof of 3.3. By 1.12 we see that ^~* defines a

Hausdorff topology on X such that -T* is strictly weaker than 3". We shall now

show that (X,T*) is a compact space. Let^" be a filter-base on (X, &~*). It suffices

to prove that J5" has an adherent point on (X,.T*). \î!F has an adherent point on

(X,3~), then J^will have an adherent point on (X,T*) since 3~* is weaker than F.

On the other hand, if J5" has no adherent point on (X,T*), then p will be an

adherent point of & on (X',$~'). Thus for all G e 'S and for all Fe^,Gc\F^ 0.

But J* is a family of subsets of X. Hence for all H e 'S* and for all Fef,

H c\F # 0. Thus a is an adherent point of & in (X,jT*). Hence (X,.r*) is a

compact space.

5.3. Corollary. The minimal locally compact spaces are precisely the

compact spaces.

We finally remark that some other properties one might investigate in the

study of minimal spaces are the following:

(i) Can an arbitrary Hausdorff (regular) space be topologically embedded in

some minimal Hausdorff (minimal regular) space?

(ii) Is the topological product of minimal Hausdorff (minimal regular) spaces

necessarily minimal Hausdorff (minimal regular)?
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