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1. Introduction. A dimension lattice is the abstract analogue of the lattice

of projection operators in a von Neumann algebra (ring of operators or W*

algebra). For the purposes of this introduction one can imagine it to be such a

projection lattice with the usual equivalence relation of equal relative dimension.

Our principal results center about three mappings: (1) gages, which are real-

valued completely additive functions on the dimension lattice invariant under

its equivalence relation; (2) dimension functions, mapping the lattice into a

certain function space; and (3) linear functionals on this function space. A gage

is the analogue of a measure and plays the corresponding role of a basic measure

in Segal's development of an integration theory in operator algebras [8]. The

terminology is his. In the operator algebra case, the analogue of a dimension

function is often referred to as a "center-valued" or "function-valued" trace.

In Dixmier's book [2] these are called "applications it." In the abstract lattice

theoretic version the range of the dimension function is the space C(S) of non-

negative continuous functions on the Stone space S of a certain complete Boolean

sublattice of L—the invariant elements of L (central projections). A diagram is

most helpful in visualizing the situation.

dimension lattice, L

dimension functions, D gages, m
/ \

function space, C(S)
Jlinear functionals, p

reals
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It is the primary purpose of this paper to prove that: if either a gage m or a

dimension function D is given, then the remaining two mappings can be con-

structed so that the diagram is commutative; i.e., the equation m = poDholds.

Moreo<er, if two of m, p, D are given, then the third satisfying m — poDis

uniquely determined. This is the general idea; the precise statements and com-

plete definitions are given in §4.

These results are formally identical with those established by Dixmier for

operator algebras [2, Chapter III, §4]; in fact, our presentation is modeled

after his. The technical machinery is however quite different in this abstract version.

As a by-product of this complex of theorems, we are able to obtain an abstract

version of a theorem of Segal on operator algebras [8, Theorem 15]. This is the

Radon-Nikodym theorem of the title.

Our theorems have a natural place in a developing pattern of algebraic and

lattice-type theorems which have been abstracted from the theory of von Neu-

mann algebras. Von Neumann himself initiated this program with his 1935 theory

of Continuous Geometries, developing the notion of relative dimensionality as

an intrinsic property of continuous complemented modular lattices (Continuous

Geometries). This applied only to the finite case, and Loomis and S. Maeda,

taking a slightly different tack, succeeded in characterizing the notion by a few

natural lattice theoretic axioms. On this basis they were able to construct a

complete and satisfactory lattice-theoretic generalization of the dimension theory,

ncluding the proof of the existence of a dimension function. Our results complete

this latter investigation by showing that the relationships between dimension

functions and gages can also be generalized, and that gages possess an intrinsic

Radon-Nikodym theorem.

In §§2 and 3 we develop some preliminary machinery for the main results

of §§4 and 5. The elementary exposition of orthomodular lattices presented in

§2 has perhaps some independent interest. §4 presents the results on gages and

dimension functions, and §5 contains the Radon-Nikodym theorem.

2. Orthomodular lattices. A lattice L is orthocomplemented if there exists

a mapping a -* ax of L onto itself such that a±± = a, ax\/a = l,ax/\a = 0, and

a ^ b -+ ax ^ b±. The element ax is called the orthocomplement of a, and we say

that a and b are orthogonal, written a J. ft, in case a ;£ b±. (This relation is sym-

metric.) If a ^ b we write b — a for b A ax, and, if a 1 b, a © b for a V b. Also

if ax is an orthogonal family (ax ±aß for a ± ß) we write © ax instead of \J ax.

Definition 1. If a = (a f\b) ® (a f\bx) for a,beL, we say that a commutes

with b and write aCb.

For example if a L b so that a ^ bx, then a /\b f¡¡bx f\b = 0 so aAb = 0.

Then (a A b) © (a A bx) = 0 © a = a, whence a commutes with b. Similarly, if

a ^ b, then aCb.
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Theorem 1. The following three conditions are equivalent in any ortho-

complemented lattice L:

(1) a ^ b implies b = a(B(b — a);

(V) a ^b implies a = b — (b — a);

(2) whenever a commutes with b, then b commutes with a.

Proof. (1) is equivalent to (1') by application of the dual automorphism J..

We complete the proof by showing that (1) and (2) are equivalent. Suppose

that (1) holds and that a commutes with b; that is, a = (a A b) © (a A bx). Taking

the 1 of this last equation we get ax = (ax \f bx) A (a1- \J b) so that

b/\a± = bA(a±\/b"-)A(a-L\Jb) = bA(a±\/b-L) = b-aAb. Then

(bAa)®(bAal) = (bAa)®(b-aAb) = b

by (1), which is exactly the statement that b commutes with a. Finally suppose

that (2) holds. If a ^ b, then, as we have already remarked, aCb. Applying (2),

we have bCa, which is to say

b = (b A a) © (i>A ax) = a®(b- a).

But this is (1), which concludes the proof.

Definition 2. An orthomodular lattice is an orthocomplemented lattice

which satisfies any one (and hence all) of the equivalent conditions of Theorem 1.

Theorem 2.   Let Lbe an orthomodular lattice. Then the following hold:

(1) aCb if and only if aAb = aA(b\/a±) (=a — aA b^;

(2) if aCb, then a^Cb and a^Cb^;

(3) if a^Cb and a2Cb, then a1 \Ja2Cb and ax A a2Cb;

(4) if L is in addition complete, and axCb for all a(2), then (\Jax)Cb and

(Aax)Cb.

Proof. (1). Suppose that aCb, so that a = (a A b) © (a A ox). Taking the 1

gives a-1 = (ax V &""") A (ax V b). Now aAb^aA(b\/ a1-), and we compute

a A(b\J ax) - a Ab = a A[(b\/ aL)A(ax \/ b1-)] = a Aax = 0

using the formula just derived. Then by Theorem 1, (1),

a A (b V ax) = (a A b) © (a A (b V ̂ ) - a A b) = (a A b) © 0 = a A b,

which proves the implication in one direction. Conversely suppose that

uAfc = aA(i»VaJ") = fl-aAi'i. Then

(a A b)®(a A b1-) = (a - a A b±)@(aA b1) = a

by Theorem 1, (1). But this says exactly that aCb, completing the proof of (1).

(2) We will omit reference to the indexing set where convenient.
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(2). The definitions of xCy and xCy1 are the same, and using this along

with the symmetry of the relation of commutativity, we can put together the

chain of equivalences,

aCb -> bCa -> bCax -* a^Cb -» axCbx,

which completes the proof of (2).

(3) and (4). We suppose Lis complete and prove (4). The same argument, with

trivial modifications, will prove (3), and this verification is left to the reader.

Tt is enough to prove that ( \Jaa)Cb, for if this is established we can use (2)

to conclude (/\aa)Cb as follows: aJZb for all a implies a^Cb1- for all a,

so that (\fax)Cb\ and then (/\aa)Cb by (2) again.

Always (\K)A b ^ \J(aaA b) and (\/a«) A bx ̂  V(«* A bx). Then

[(VaJA &]V[(V<OA &x] ̂ [V(fl.A 6)]V[V(a«A ̂)] - VLKA &)V(aaAbx)].

Using the fact that aaCi> for all a, the right-hand side is \/ax, hence

[(Va«)A&]V[(Vfl«)A&x]£Va«-

It is obvious that the reverse inequality is also true, so we have equality. This

proves (\/ax)Cb, and completes the proof of Theorem 2.

The notion of commutativity has an intimate connection with the distributive

law which we specify in the next theorem, after some preliminary comments

and definitions.

Definition 3. (See F. Maeda [5, Chapter I, Definition 1.6], and von Neumann

[7, Part I, Definition 5.1].) Let a, b, c be elements of the lattice L. If

(a V b) A c = (a A c) V (b A c) we write (a, b, c)D. If(aAb)\Jc = (a\/c)A(b\Jc)

we write (a,b,c)D*. If both (a,b,c)D and (a,b,c)D* hold for all permutations

of a,b,c, then we write (a,b,c)T and say that (a,b,c) is a distributive triple.

The relation (a, b, c)D is obviously the same as (b, a, c)D, and similarly (a, b, c)D*

is the same as (b, a,c)D*. From this it follows easily that there are six different

laws contained in the relation (a, b,c)T. Now von Neumann has shown [7, Part I,

Theorem 5.1] that in a modular lattice the validity of any one of these laws,

for a particular triple, entails the validity of the five others. Hence, in a modular

lattice (a,b,c)D and (a, b,c)T are the same. It is not difficult to prove that this

property characterizes modular lattices; in fact the following result even holds:

if the validity of four of the six laws of (a, b,c)T for a particular triple always

implies the validity of the other two, then the lattice is already modular. Ac-

cordingly in a nonmodular lattice the relations (a, b, c)D and (a, b, c)Tare different.

More interest attaches to (a,b,c)T, and in our next theorem we give a criterion

for deciding when a triple is distributive. This theorem is quite useful in appli-

cations.

Theorem 3.    Let a,b,c be elements of the orthomodular lattice L, and sup-
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pose that some one of these elements commutes with the other two. Then (a, b,c)

is a distributive triple.

Proof. We can assume without loss of generality that c commutes with a

and with b. As we mentioned earlier there are six different laws in (a,b,c)Twhich

we have to verify, three involving D and three involving D*. These are

(a,b,c)D, (a,c,b)D, (b,c,a)D, (a,b,c)D*, (a,c,b)D*, and (a,b,c)D*. Now if we

show under the hypothesis that cCa and cCb that (a,b,c)D, then, knowing also

that c±Ca± and c^Cb1' (Theorem 2,(2)), we conclude at the same time that

(a±,b±,c±)D. If we take the 1 of this last relation we get (b,c,a)D*. Similarly

the other two relations involving D* follow from their counterparts involving/).

This leaves just the three £)-relations, and by symmetry we need only prove two:

(a,b,c)D and (c,a,b)D.

(a,b,c)D: Always (a \Jb)A c ^ (a A c) \J(b A c), so we can write

(a yb)Ac-(aAc)\J(bAc) = (a V b) A [c A (ax V cx)] A (¿x V cx)

= («V6)A(cA"ax)A(0xVcx) using cCa^and

Theorem 2, (1)

= (a\/b)Aa±A[cA(b±Vc±)']

= (a V b) A ax A (c A ¿>x) using cCbx and

Theorem 2, (1)

= (aV&)A(aVi>)xAc = OAc = 0.

Hence, (a\\J b) A c - (a A c) \J(b A c) = 0 and we conclude as in the proof of

Theorem 2,(1), that (a \Jb)A c = (a A c) \J(b A c); that is, (a,b,c)D.

(c,a,b)D: Always (c \J a) A b ^ (cA b) y (a A b) so we can write

(cVfl)AL-(cAL)V(aAL) = (c\Ja)A[bA(cL\Jb±)]A(ax\Jb±)

= (c\/a)A(bA cx) A (ax V &x) using bCcx and

Theorem 2,(1)

= [(c\Ja)Ac±]AbA(a±\/b±)

= (c±Aa)AbA (ax V i>x) using c^Ca and

Theorem 2,(1)

= c±A(aAb)A(aAb)± = cA0 = 0,

whence (c \J a) A b = (cA b) \/(a A b) which shows (c,a,b)D and completes the

proof of Theorem 3.
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Given an element, a, of a lattice Lwith 0 and 1, another element, b, is said to

be a complement of a if a V b = 1 and af\b = 0. In an orthomodular lattice

we can give an explicit formula for the complements of an element.

Theorem 4. Let L be an orthomodular lattice, with aeL. Then, for any

xeL, b(x) = (x — x A a) © (x V a)x is a complement of a, and every comple-

ment of a can be written in this fashion for some xeL. Moreover, b(x) = ax

if and only if x commutes with a.

Proof. We will write b for b(x). Using Theorem 3 we verify easily that

(a,x,a A x)T, and it follows that a \J(x — x A a) = a \/x. Hence

a\Jb = a \J(x -xAa)y(x\/a)x = (a\/x)\J(a V x)x = 1.

Since x-xAa^xVdwe have (x — xf\ a)C(x V a)-1 using the remark following

Definition 1 and Theorem 2, (2). Similarly aC(x \/a)x, so we can conclude

again by Theorem 3 that (a,x - x A a,(x \Ja)x)T. Then

a /\b = a f\[(x - x A a)\/(x\f a)x~\ = [a A (x - x A a)] V[a A(* V a)x]

= [(aAx)A(xAa)x]y(aAxxAax)

= ovo = o,

which shows that b is a complement of a for any xeL. Conversely, if c is a given

complement of a, then setting x = c represents c in the form desired.

As for the last sentence of the theorem, suppose that xCa. Then xCax

by Theorem 2, (2), and x — x A a = x A ax by Theorem 2, (1). Hence

b(x) = (xAax) © (xxAax)=a\

Conversely, if b(x) = ax, then x - x A a ^ ax. Since always x - x A a ^ x, we

have x-xAa^xAax. But the reverse inequality is immediate, since

x-xAa = xA (xx V ax). Hence equality holds, x — xAa = xAax, and the

criterion of Theorem 2, (1), then tells us that xCax. Then by Theorem 2, (2), xCa,

which completes the proof of Theorem 4.

Corollary. Let x be an element of the orthomodular lattice L. Then x has

a unique complement if and only if x commutes with all elements of L.

This is an immediate consequence of Theorem 4.

We now turn our attention to the characterization of the center of an ortho-

modular lattice. One piece of notation: an element z is called neutral if (a, b,z)T

for all a, b in the lattice.

Theorem 5. Let L be an orthomodular lattice. Then the following condi-

tions on an element zeLare equivalent:

(1) z is neutral;

(2) z has a unique complement, namely zx;

(3) z commutes with every aeL.
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Proof. The equivalence of (2) and (3) is the corollary to Theorem 4. And if

(3) is true, then by Theorem 3, (a, b, z)Tfor all a, b e Lso that z is neutral. Hence

(3) implies (1). Finally if z is neutral, then (a, a x z)Tfor all a e L which contains

as a special case aCz for all aeL. Thus (1) implies (3), and this completes the

proof. The set of elements which satisfy the equivalent conditions of Theorem 5

is called the center of L and denoted center (L).

Corollary. The center of an orthomodular lattice L is a Boolean sublattice

of Lcontaining the 0 and 1 of L.

Proof. By Theorem 5, (3), always 0,1 ecenter(L). Using the criterion (3) of

Theorem 5 again, together with Theorem 2, (3), we see that center (L) contains,

along with z,w,z\/w and z Aw, and so is a sublattice of L containing the 0 and 1

of L. By Theorem 5, (1), center (L) is clearly distributive. It is evident that zx

has a unique complement along with z, so that by (2) of Theorem 5, center (L)

contains with every z, z\ and so is complemented. Hence center (L) is distri-

butive and complemented, thus a Boolean lattice. This completes the proof of

the corollary.

For some other characterizations of the center see Birkhoff [1] and F. Maeda

[5], and S. Maeda [6, Lemma 1.2].

Our commutativity relation allows us to generalize the concept of the center

of an orthomodular lattice. If L is orthomodular with M a nonempty subset

of L, then we define the commutor of M, written M' by M' = (xeL; xCa for

all aeM).

Theorem 6. Let M be a nonempty subset of the orthomodular lattice L.

Then M' is an orthomodular sublattice ofL under the same Land with the same

0 and 1. // L is complete, so is M'. Moreover, always center (L) s M',L

= center (L), and (center (L))' = L.

Proof. Always OCa and ICa for all aeL. Hence 0, leM'. If xeM', then

by Theorem 2, (2), xxe M'. If x, y e M', then x\J y and x A y e M' by Theorem

2,(3). Thus M' is always a sublattice of L with the same 0 and 1, and accordingly

is also orthomodular. If xxeM' for all a, and V*« and A*« exist> trien °y

Theorem 2,(4), \Jxx and f\xx are also in AT. Consequently M' is complete if

L is. The remaining statements follow from Theorem 5.

The following corollary is an immediate application of Theorem 6.

Corollary.    The center of a complete orthomodular lattice is complete.

This was proved by S. Maeda [6, Theorem 1.3].

On the basis of the commutativity relation, we are able to give a handy

criterion for deciding when the lattice operations are continuous.

Theorem 7.   Let L be a complete orthomodular lattice with (ax) a family
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of elements of Land beL.If axCb for every a, then V(a« A b) = (Va«) A b and

A(a«V6) = (Aa«)Vfe.

Proof. It is always true that \f(aaA b) ^ (\/ax)A b. Hence we can write,

with a = \Jax,

aAb- \/(axAb) = aAbA(atyb±) = A (« A b A (a ¿ V bx)).

Since axCb for every a, bCax for every a, and by Theorem 2,(1), i»A(a« A bx)

= b A at- Hence

aAb-VKAi')=A(«Af'AaIi)=(flAl')AAfl«i = i'AaAfli=0.

Then by Theorem 1,(1), aAb = \J(axAb), and by the usual trick the dual

also holds. This proves the theorem. We draw an immediate

Corollary. //, for each a, one of the relations ax^b or aa 2: b holds; or

if aa e center (L) for all a; or if be center (L), then we have \/(axA b) =(\/ax)A b

and A(axyb) = (f\ax)yb.

Part of the corollary was proved by S. Maeda [6, Lemma 1.3].

3. Measures on complete orthomodular lattices. Several theorems of stand-

ard measure theory do not use the distributivity of the underlying measure

algebra. In this section we shall establish some of these results which will be use-

ful in the study of gages. The equivalence relation does not yet play any role,

so we work in the gene al context of measures on orthomodular lattices.

Definition 4. A measure on the complete orthomodular lattice L is a function

m on Lsuch that:

(1) O^m(a)^ oo for all aeL;

(2) m(0) = 0;

(3) m(®ax) =T.m(ax)   (complete additivity).

A measure m is semi-finite if every nonzero element of L majorizes a nonzero

element b with m(b)< oo; finite if m(a)< oo for all a in L, and faithful if

m(a) = 0 implies a = 0.

A measure automatically has the property: a f¿b-> m(a) ^ m(b). For if a :£ b

then b = a ®(b — a) so m(b) = m(a) + m(b — a) ^ m(a).

Theorem 8. Let m be a function on the complete orthomodular lattice L

which has the following properties:

(1) 0 ^ m(a) ^ ao for all a e L;

(2) m(0) = 0;

(3) m(©n¡ = ,a¡)=  Hl=,m(a) for any finite orthogonal family (a).

Then the following are equivalent:

(i)   m is completely additive; that is, is a measure(3);

(3) It was pointed out by the referee that a countably additive measure is completely additive

if and only if it is completely additive on null elements.
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(ii)   if (ax) is an ascending directed set, then m(\Jax) = LUB m(ax);

(iii) if (ax) is an increasing family, then m(\Jax) = LUBm(ax);

(iv) if (ax) is a well-ordered increasing family, then m(\Jax) = LUBm(ax).

Proof. That (iv)->(iii) follows from the fact that every increasing family

has a well-ordered sub-family with the same LUB. We complete the proof by

showing (iii) -» (ii) -* (i) -» (iv).

(iii)-»(ii). Denote the directed set (ax) by D. A simple construction shows

that every countable directed set has a linearly ordered subset with the same

LUB. So if (iii) is true, then (ii) is true for every countable directed set. Now

we use transfinite induction on the cardinality of D. The following ingenious

lemma of Iwamura is crucial (F. Maeda [5, Appendix 2]).

Lemma. Lei D be an infinite directed set. Then there exists in D a trans-

finite sequence (Dp), p < Q (Q some transfinite ordinal), of directed subsets with

the following properties:

(1) card(Z)p)<card(D);

(2) if p<o<Q, then Dp^Da;

(3) D= \Jp<nDp.

Let ap = \J(x;xeDp); then, applying the lemma and the induction hypothesis,

m(ap) = L\JB(m(x); xeDp)^LUB(m(ax);axeD). Whence LUB (m(ap);p < Q)

^ LUB (m(ax);axeD). By (2) and (3) of the lemma, (ap) is an increasing family

with \Jap = V K; axeD) = a so m(a) = m(\Jap) = LUB(m(ap) ; /) < Q) g

LUB(m(a„); axeD). But the reverse inequality, m(a) ^ LUB(m(a J ; ax e D) is

obvious, so we have m(a) = LUB(m(ax);axeD).

(ii) -> (i). If (ax) is an orthogonal family, then ®ax is the LUB of the directed

set of spans of finitely many ax. By (ii), m(© ax) is the LUB of the m's of finite

spans, which, by finite additivity, is the sum of the m's. The sum of a (possibly

uncountable) series of positive terms, whether + oo or not, is the LUB of finite

partial sums, which gives the result.

(i) -* (iv). We may assume that the well-ordered increasing family (ax) contains

0 and contains all \J(aß;aß< ax) (i.e., contains all limit numbers). Setting

a'x = successor of ax, a transfinite induction applied to Theorem 1,(1), gives

a = ®(ax-ax), and ax = e,,<,.(fl/- aß). So m(ax)= Haß<axm(a'ß- aß), and

LUBm(aJ = Yim(a'ß — aß) = m(a), and this completes the proof.

Corollary. Let m be a measure on the complete orthomodular lattice L,

and (ax) a decreasing family of elements ofL with f\ax = a. If, for some index ß,

m(aß) < oo, then GLB m(ax) = m(a).

This is an immediate application of the theorem.

Theorem 9.   Let m be a measure on a complete orthomodular lattice which
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has the property mia) = 0, m'b) = 0->m(a \/b)=0, and let q = \/(xeL; m(x)=0).

Then miq) = 0. We call q the maximal null element for m.

Proof. Zorn's lemma assures us of the existence of a maximal orthogonal

family (xj of elements of L such that m(xj = 0 for all a. Setting p = ®xx,

mip) = Im(x„) = 0. Hence p ^q,q being the span of all elements of measure 0.

Now we show mia) = 0 -» a :g p. This will establish q ;£ p, and so p = q.

We assume m(a) = 0, ai^p, and derive a contradiction. If a SP-, then

p\J a-p^0. Since p©(pV «-/>) = PV a, we have m(p)+ mip\J a - p) = mip \J a).

Because m(p) = 0 and m(a) = 0, it follows that m(p V a) = 0, so m(p V « — p) = 0.

But pVa-pap1,#0. and has measure zero, so p V a — p can be added to the

orthogonal family (xj, contradicting the maximality of this family. Hence

mia) = 0 -» a ^ p and the proof is complete.

The following theorem dates back in principle to the second Murray-von

Neumann paper where the unrestricted additivity of the trace was first established.

The key step in the proof of that result was a local approximation of the trace

by functional of the form (Tx, x). The subsequent work of Kadison and Dixmier

(Dixmier [2, Lemma 8, p. 314]) clarified the role played by this fundamental

lemma, and Kadison emphasized its significance by coining the apt phrase "local

approximate additivity" to describe it. With little more than some formal

changes, this key argument, especially as expounded by Dixmier [loc. cit.], proves

our theorem. This theorem, asserting that two measures in an orthomodular

lattice, under certain conditions, are locally approximately proportional, con-

tains all its ancestors as special cases and is, we feel, by virtue of its symmetry

and generality, the most natural and satisfactory consequence of the basic ideas

of Murray and von Neumann. While we do not make use of this result in the

sequel, it fits most naturally at this point.

Theorem 10. Let m and n be two semi-finite measures on the complete

orthomodular lattice Lsuch that mia) = 0 if and only if nia) = 0 (i.e., m and

n are absolutely continuous with respect to each other). Let the nonzero element

b of Lbe given, and let e > 0 be given. Then we can find 0 i= c ^ b and 0 > 0

such that x ^ c -v 0m(x) ^ n(x) ^ 0(1 + e)m(x).

Since the basic ideas for the proof of this theorem are already contained in the

proof of Lemma 8 in Dixmier [2, p. 314], we shall not repeat the details. The

theorem is still valid if the lattice Lis only countably complete and the measures

m and n countably additive.

Concerning the assumption of semi-finiteness : by taking m to be a faithful

finite measure, and setting n(a) = 0 if a = 0, and = oo otherwise, we define two

measures on the lattice, absolutely continuous with respect to each other, for

which the theorem clearly cannot hold. We assume semi-finiteness to exclude

this possibility. A weaker hypothesis might serve as well.
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If every nonzero element of L majorizes a minimal element, or atom, as, for

example, when Lis the lattice of all projections on a Hubert space, the theorem

is clearly trivial. The only interesting application, then, is to the continuous

or nonatomic case. Notice also, that, having obtained this estimate within the

element c of the lattice, clearly the same argument can be applied within cx.

A transfinite induction then establishes the existence of an orthogonal family

(cx) with @ca=l, and a family (9X) of numbers, 0 < 9X < oo, such that

x S cx-*9xm(x) ^ n(x) ^ 9x(l + s)m(x). However with the lack of a distrib-

utive law, if nothing more is known about the measure, these piecewise estimates

cannot in general be put together to form a global estimate.

4. Gages and dimension functions. In this section we prove our results

connecting dimension functions and gages. We begin by giving a summary of

the theory of dimension lattices and the definitions of S. Maeda's dimension

function and of a gage.

Following Loomis, we define a dimension lattice to be a complete orthomodular

lattice L which carries an equivalence relation ~ satisfying the following axioms:

(A) if a~0, then a = 0;

(B) if at 1 a2 and b ~ at © a2, then b = b1®b2 with bx ~ at, b2~ a2;

(C) if (ax) and (bx) are orthogonal families with ax ~ bx for all a, then

®ax~®bx;

(D') if a and b have a common complement, then a ~ b.

All the results we shall establish can be proved using the following two axioms

in place of (D'):

(D) if not alb, then there exist O^a^a and 0 ^ i»t ̂  b with at ~ b^ ;

(E) if ai®a2 = b1® b2, a± ~ a2, bt ~ b2, then ax ~ bt.

Axiom (D') implies both (D) and (E) (Loomis [4, Lemma 39, Lemma 44 and

Corollary]), while probably (D) and (E) together do not imply (D'), although

this is apparently not known. However a considerable simplification in the ex-

position is possible using (D') so we shall assume it, eschewing the added generality

in favour of simplicity of exposition.

An element a of L is called finite ii b^a, b ~ a -» b = a; otherwise a is in-

finite. Two elements a,boïL are called related if there exists 0 i= ax ̂  a, 0# bt ^ b

with ax ~bx. Thus axiom (D) says that any two nonorthogonal! elements are

related. An element z of Lis called invariant if z is not related to zx. Every in-

variant element is in the center of L and the set B of all invariant elements is a

complete Boolean sublattice of the center of L (Loomis [4, Theorem 2 and its

proof]). If a ~ x g c we write a~¿ c, and if a ~ x < c, a «< c. If a is in L then

the following two constructions, \J(xeL;x ^ a) and /\(zeB; z^.a), yield

the same invariant element called the hull of a and denoted by | a | (Loomis

[4, Theorem 3]). An element a # 0 is called properly infinite(A) if a A z is either

(4) Loomis says purely infinite.
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0 or is infinite for every zeB and is called purely infinite ifx^a, x^0-+x

infinite. Finally an element a is called simple if b is not related to a — ft for

every b ^ a.

All of these objects have their counterparts in von Neumann algebras. The

invariant elements are the central projections, the simple elements, the abelian

projections, and the hull of a projection is its central support.

A dimension lattice is said to be finite if 1 is finite and said to be properly

infinite if all nonzero invariant elements are infinite. It is called of Type I if

it has a simple element a such that | a | = 1, or, equivalently, if 1 is the union

of simple elements. It is called of Type II if it has no simple elements and if

it has a finite element b such that | b | = 1, or, equivalently, if 1 is the union of

finite elements. A dimension lattice is called of Type III if all nonzero elements

are infinite. We further classify as follows: of Type I, (resp. II,) if of Type I

(resp. II) and finite; and of Type I«, (resp. IIœ) if of Type I (resp. II) and properly

infinite.  Then  we  have  the  following theorem;  in  a  dimension  lattice  L,

1 can be written uniquely as the orthogonal span of five invariant elements

z\l), 2(,"), z(iY, zïf, and z,„ such that the lattice L(0,z\x)) (resp.

L(0,z(r>), L(0,z(,V), L(0,z\f), L(0,z,u)) is of Type I, (resp. Iœ, IIl5 IIœ, III).
We shall write z, for z^Qz^ and z„ for z(,V 0 z\f\ Finally we call a di-

mension lattice a factor lattice if 0 and 1 are the only invariant elements.

As we have already noted, the set B of invariant elements is a complete Boolean

sublattice of the center. By a classical theorem of Stone, B is isomorphic to

the lattice of all compact open subsets of a compact Hausdorff space S which

we shall call the Stone space of B. Let C(S) be the space of all non-negative (finite

or infinite) continuous functions on S. The space S and C(S) have the following

properties (see Stone [9] and Dixmier [3]): (1) In S the closure of any open

set is open, and the interior of any closed set, closed; (2) If E(z) represents the

compact open set corresponding to zeB, then the (E(z); zeB) are a basis for

the topology of S; (3) If y is the span in B of the family of elements (ya), then

E(y) is the closure of the set-theoretic union of the E(yx) and dually; (4) C(S)

is a complete lattice. If we define the product of two functions in C(S) to be

the unique continuous function which is the "upper semi-continuous regulariza-

tion" (replace the value of/(x) by limsupy^xf(y) for every x) of their pointwise

product (computed with the convention that 0 oo = 0) then all the usual algebraic

rules in C(S) are valid.

S. Maeda [6] defines a dimension function to be a mapping D of L into C(S)

with the following properties:

(1) if a~b, then D(a) = D(b);

(2) if a lb, then D(a ® b) = D(a) + D(b);

(3) if zeB, then D(zAa) = %(z)D(a), where x(z) is the characteristic func-

tion of E(z);
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(4) if a > 0, Did) > 0;

(5) if a is finite, then D(a) is finite valued a.e., where a.e. means "except on

a set of the first category."

We shall make frequent use of S. Maeda's results on dimension functions

and shall refer to his theorems as needed.

A gage [Segal, [8]) on a dimension lattice L is a semi-finite measure on L

which takes the same value on equivalent elements(5). It follows from axiom

(D') that a gage m has the further property that m(a) = 0 and m(b) = 0 together

imply that mia V b) = 0. In our alternate treatment using the weaker axioms

(D) and (E) this fact was an added assumption.

The maximal null element of a gage (Theorem 9) is invariant. For let

q = V (x e L; m(x) = 0), and suppose a~¿ q. Then mia) :£ m(q) = 0 -> a ^ q

so q is invariant by Loomis [4, Lemma 21]. In particular if L is a factor then

every gage is either faithful or identically zero. Notice that this argument does

not use the semi-finiteness of m. Also, using Lemmas 26 and 28 in Loomis [4],

one checks easily that if m is faithful and a e L is infinite, then m(a) = oo.

A measure p (in the sense of §3) on the Boolean lattice B of invariant elements

of a dimension lattice can be transplanted to the compact open subsets of its

Stone space S, and determines, by standard integration theory methods, an

extended real-valued functional (integral) on C(S), which we also denote (6) by

p, with the properties 0 ^ p(f) ^ oo, p(f + g) = p(f) + p(g) and piaf) = ap(J)

for all/, g in CiS) and 0 ^ a ^ oo. By virtue of the complete additivity of the

measure p, the functional it determines is normal; that is, if ifx) is a directed

set (up) of functions in CiS) with LUB/a =/eC(S), then LUB pifx) = pif).

Also the functional is semi-finite (resp. faithful) if and only if the parent measure

is semi-finite (resp. faithful).

If p is such a functional, and D is a dimension function, we denote by p o D

the composition of these two mappings : [poD] (a) = p(ö(a)) f°r aü aeL.

Theorem 11. Let D be a dimension function on the dimension lattice L,

and p a measure on B, the Boolean lattice of invariant elements of L. Then:

(1) m = p oD is a measure on L which takes the same value on equivalent

elements;

(2) m is semi-finite iand so is a gage) if and only if both zul ^ maximal

null element of p, and p is semi-finite;

(3) m and p have the same maximal null element. In particular m is faithful

if and only if p is faithful.

(5) Segal's definition states only unitary equivalence, but this is the same as assuming in-

variance under the equivalence relation of the von Neumann algebra. See, for example, Dixmier,

Ann. Sei. École Norm. Sup. 68 (1951), 185.

(6) The same symbol is used for the measure and its associated functional to avoid a con-

fusing multiplication of notation. It is always clear from the context which is meant.
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Proof.   We prove these results in the order (1), (3), (2).

(1) The equation m(0) = 0 is immediate If a = ®ax, then by (S. Maeda

[6, Theorem 5.5]) D(a) = YD(ax), so m(® ax) = p(D(® ax)) =p(l]D(ax))

= Hp(D(ax)) = Hm(ax) which proves the complete additivity. If a ~ b, then

m(a) = p(D(a)) = p(D(b)) = m(b).

(3) We show first that m(a) = 04->p(| a |) = 0. If p(\ a |) = 0, then it follows

immediately from [6, Theorem 5.2] that m(a) = p(D(a)) = 0. On the other hand

if p(\a |) # 0, then, since [0(a)](x) > 0 a.e. in E(\a |) [ibid.] we easily reach a

contradiction unless m(a) = p(D(a)) # 0.

Now let s be the maximal null element of m and w that of p. We know that

s is invariant, and that m(s) = 0, whence p(\s |) = p(s) = 0. Hence s g w, and

similarly w ̂  s, so that w = s.

(2) Suppose m is semi-finite. If not zul^s (= w), then on zm —zmAs,

m is faithful and identically infinite on nonzero elements, a contradiction. If p

is not semi-finite, then there exists z e B with the property that 0 ^ w ̂  z ->p(w) = oo.

It follows from [6, Theorem 5.2] that 0#u^z-> m(a) = p(D(a)) = oo, contra-

dicting the semi-finiteness of m. Thus both zlu^w and p semi-finite follow from

the semi-finiteness of m. Suppose now, conversely, that both these conditions

are satisfied. If a e L is given we wish to prove that there exists 0#bga with

m(b) < oo. If a :g zm g w = s, then m(a) = 0 and there is nothing to prove. So

we can assume 0 # a A z|n = a A(zi©zM), or, by changing notation, that

0#flgzI©zI1. Then there is a finite element c with 0 ^ c 5¡ a. By [6, Theorem

5.2],/ = D(c) is < oo a.e. on £(|c|). By the semi-finiteness of p we may choose

0 ^ z ^ | c ¡ with p(z) < oo. Set b = z A c (<; a), then |f>| = zA|c| = z#0, so

b ^ 0 and one easily checks then that m(b) = p(D(b)) < oo. Thus m is semi-

finite and the theorem is proved.

By definition there is a simple element h^ zx with | h \ = z v Any other simple

element with this property is equivalent to h [4, Lemma 30]. Since any simple

element is finite [4, Lemma 8], h is finite. Also a finite element d can be found

with | d | = z j,. We suppose these constructions are carried out and h and d

are fixed in the next lemma.

Lemma. Let L be a dimension lattice, and B its complete Boolean lattice

of invariant elements. Let m be a gage on L, and c an element of L. Then:

(1) pc(z) = m(c A z), considered as a function of zeB, is a measure on B;

(2) If c is finite, pc is semi-finite;

(3) If c = h®d (h, d as above) and m is faithful, then pc is faithful and semi-

finite.

Proof. (1) We have pc(0) = m(0) = 0, and pc(© zx) = m(cA® z«) = m(®(c A zj)

(corollary to Theorem 7) which in turn equals Im(cAz,)= £/>c(za) so that

pc is a measure on B.
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(2) Given 0 ^ z e B we must find weB, 0 # w g z such that pc(w) < oo. If

z A c = 0 then pc(z) = m(c A z) = m(0) = 0 < oo and we are finished already with

w = z. So suppose z A c # 0. Set a = c A z, so that a is finite, # 0. By the semi-

finiteness of m, there exists beL,0^bg,a with m(b) < oo. Since b :£ a, i> is finite

also. Now we quote Theorem 4.1 in S. Maeda [6]. He proves the existence of a

sequence rn(b, a), n=0,1,2, • • •, with the following properties : (i) r„ e B, n=0,1,2 • ■ • ;

(n) ®ñ=0rn=.¡ b\; and (iii) r0 A a < r0 A b, and for «=1,2,3,—,

r„Aa~ ®l = iuin) ©P> uïn) ~ rn A b and p <^ r„A b where x <^y means that for

any zeB either zAx=zAy=0 or z A * -< z A .v. Now b = aAbSaA\b\

= a A ©„" o r„ = ©„"oía A r„). Since 6 # 0, a A rt # 0 for some fc = 0,1,2, -. If

fc = 0, then aAr0<.bAro~> m(a A r0) ^ m(b A r0) which is < oo by the choice

of b. If fc # 0, then m(rk A«) = fcm(rfc A £>) + w(p) by the second part of (iii)

above and p <^ rk A b -* m(p) ^ m(rkA b) so m(rkA a)^(k + l)m(rkAb) < oo.

So in any case we have m(a A rk) < oo. Now let w = rkAz. Clearly w 5¡ z and

a A r* # 0 -► (c A z) A r* ̂  0 -► w = z A ^ # 0. Also weB. Finally

pc(w) = m(cA w) = m(c A z A rk) £ m(a Ark)<<x>

which shows pc is semi-finite.

(3) Both h and d are finite by the remarks directly before the lemma, and it

follows from axiom (D') that h © d is finite [4, Theorem 7]. Hence if c = h © d,

pc is semi-finite by (2). Suppose now that m is faithful and c = h®d. Suppose

pc{z) = 0 = m((h ®d)Az) = m(h A z) + m(d A z). Then m(/i A z) = m(d A z) = 0

which implies, by the faithfulness of m, that h A z = 0 and d A z = 0. Whence

0 = |/iAz| = |/i|Az = ZjAz, and similarly z,,Az = 0. Since Ladmits a faith-

ful gage, zIII = 0, so that l = z,©zu, and z = zA 1 = z A(zi© zIL)

= (zAzj)©(zAzu) = 0©0 = 0. This shows pc is faithful and the lemma is

proved.

Theorem 12. // m is a faithful gage on L, then there exists a faithful semi-

finite measure p on B and a dimension function D on Lso that m = p oD.

Proof. Setting c = h®d and p(z) = pc(z) = m(cA z), then p is a faithful

semi-finite measure on B by the lemma. It determines a faithful semi-finite normal

functional on C(S). Likewise, for any aeL, pa(z) = m(aAz) is a measure on B

which determines a normal functional or integral on C(S). The appropriate form

of the Radon-Nikodym theorem for this situation is given by Dixmier [3, Pro-

position 8]. According to this theorem, there is a one-to-one correspondence

between functions fa e C(S) and (functionals determined by) measures pa such

that pa(g) = p(fag) for all g e C(.S). Denote the well-defined mapping a ->fa by

D. We proceed to show that D is a dimension function on L.

(1) If a~b then [4, Lemma 22] aAz~ f>Az, zeB-*m(aAz) = m(bAz),

z e B -* pa = pb ->/„ =fb -> D(a) = D(b),
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(2) If alb, then m((a © b)A z) = m(a A z) 4- m(b A z)-+Pas>b = Pa + Pb

->/.e» =fa+fb^ D(a ®b)= Dia) + D(b).

(3) Clearly pahz(g) and ptt(x(z)g) agree for g = x(w), weB, since both reduce

to the measure m((a A z) A w), weB. Hence they agree for all geC(S), so that

]>(/„* ZS) = Pa^ig) = Pailiz)g) = Pif„Xiz)g), geC(S). It follows that

/„a, = xWa, or D(a A z) = Z(z)D(a).

(4) If a > 0, then pa(l) = p(a) ¿ 0 (p is faithful), so that £>(a) ̂  0.

(5) If a is finite, p„ is semi-finite by the lemma. Then by Dixmier's theorem

[3, Proposition 8] £>(a) < oo in an open dense set, hence D(a) < oo a.e.

Thus for every a e L, pa(g) = p(gD(a)), g e C(S), where D(a) is a dimension

function on L. In particular, m(a) = pa(l) = p(D(a)) which proves the theorem.

Theorem 13. Let m be a faithful gage on L and p a faithful semi-finite

measure on B. Then there is a dimension function D, uniquely determined by

m and p, so that m = p oD.

Proof. By Theorem 12 there is a dimension function D and a faithful semi-

finite measure p, on B so that m = p,oD. By the classical Radon-Nikodym

theorem (Stone space version [3, Proposition 8]), p,(f) = p(gf) for all/e C(S)

where the derivative g is in C(S), 0 < g(x) < oo a.e. Since L admits a faithful

gage, z ,,i = 0. Then by [6, Corollary to Theorem 5.3], D = gD, is a dimension

function on L. Then m(a) = p,(D,(a)) = p(gD,(a)) = p(D(a)) which proves the

existence. To show that D is uniquely determined, suppose that p(D(aj) = p(D,(a))

for all a eL where D and D, are dimension functions. By [6, Theorem 5.3] there

exists a function feC(S), 0 </(x) < oo a.e. such that D,(a)=fD(a) lor all

aeL. Let h and d be as in the Lemma. Then c = h®d is finite and

| c | = | A j © | d | = Zi @ z,, = 1. Setting g = D(c), it follows from [6, Theorem

5.2] that 0 < g(x) < oo a.e. Set p,(h) = p(gh) and p2(h) = p(Jgh), h e C{S).

Both p, and p2 are faithful and semi-finite [3, Proposition 8], and they are the

same for h = x(z), zeB, as is easily checked. It follows that p, = p2, whence

[3, Proposition 8] g =fg. Since 0 < g(x) < co a.e.,/(x) = l a.e. -*/= 1 -*D1 =D

which proves the uniqueness.

Theorem 14. Let m be a faithful gage and D a dimension function on L.

Then there is a uniquely determined faithful semi-finite measure p on B so

that m = p oD.

Proof. By Theorem 12 there is a dimension function D, and a faithful semi-

finite measure p, on B so that m = p,oD1. By [6, Theorem 5.3] there is an

feC(S), 0 </(x) < co a.e. such that Dl =fD. Then setting p(g) = p,(fg), all

g e C(S), p is faithful and semi-finite. Then m(a) = p^D^a)) = p,(fD(a))=p(D(a))

which proves the existence. The uniqueness follows as in Theorem 13.

5.    The Radon-Nikodym   theorem.    Segal's   Radon-Nikodym   theorem   [8,



82 S. S. HOLLAND, JR. [July

Theorem 15], which we generalize in this section to the abstract case of a di-

mension lattice, compares two gages m and n on a von Neumann algebra A,

and asserts that, if m is faithful, then there exists a unique positive self-adjoint

operator T (in general, unbounded) affiliated with the center of A such that

n(P) = miPT)c for all projections P in A. (Segal's theorem actually states a

little more.) The operator T is the Radon-Nikodym derivative. There are two

problems which must be surmounted in generalizing this result: a substitute

must be found for the self-adjoint operator, and one has to make sense out of

the product of such an "operator" with a lattice element. As for the construction

of the formal self-adjoint operator, the clue is furnished by the spectral represen-

tation of self-adjoint operators on a Hubert space. According to the spectral

theorem there is a one-to-one correspondence between self-adjoint operators

and certain one-parameter families of projections. Following this lead, we define a

formal selfadjoint operator to be a real-indexed, increasing family of lattice ele-

ments, and label it central if every member of its spectral family is an invariant

element. We can define a product of such formal operators, all of whose spectral

projections commute, by mimicking the formula for the spectral family for a

product of functions. There remains the problem of extending the gage m to

these objects, but this is easily accomplished. Based on these constructions then,

one can state and prove the exact analogue of Segal's theorem.

It should be pointed out however that this theorem of Segal is by no means

the most significant theorem of this type in his paper [8]. In this paper, and

an earlier paper by Dye, the comparison of a general linear functional (not

invariant under the equivalence) with a gage is the principal problem, and

the corresponding Radon-Nikodym theorems are considerably deeper. To

generalize these theorems to dimension lattices in the face of the serious

difficulties occasioned by the noncommutativity is a problem of a higher order

of difficulty.

We begin the proof by constructing the space of formal self-adjoint operators

mentioned above. If Lis a complete orthomodular lattice (we do not need the full

set of axioms of a dimension lattice for this) denote by <?(L) (the e suggesting

"extension") the set of all one-parameter families (aA) of elements from L indexed

by non-negative reals, with the following properties:

(1) X^p -> a¿áa„;

(2) ax = AK; »>*■)■
Set ax — \J iax; 0 ^ X < oo). Equality in e(L) is defined by (aA) = ibx)<-+ ax = bA,

0 5j X < oo, and a relation ^ (which one easily checks is a partial order) by

(aj S| ibt)^ak ^bx, 0 ;£ X < oo. By identifying an element aeL with the one-

parameter family (xA) e e(L), where xx = ax for 0 ^ X < 1, and xx = 1 for A ̂  1,

we embed Lin a one-to-one fashion in e(L). Since the equality and partial order

in e(L) are clearly consistent with those in L, we can regard L as a subpartially

ordered set of e(L), L being a complete lattice in the shared order. For convenience
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the letters a,b,c,--- will be used to denote elements of the extension-set e(L)

as well as elements of the original lattice L, whenever this will not cause con-

fusion.

We shall say that two elements a = (ax), b = (bp) of e(L) commute if each ax

commutes with each bp as elements of the lattice L. It is possible to define

the product of commuting elements of e(L) in terms of their spectral families

which agrees with the operator product in the special case where the elements

are commuting self-adjoint operators. However, we will only need a definition

of the product of an element of L and one of e(L), and so we restrict ourselves

to this case. If a e Land b = (bx) e e(L) commute we define the product ab (easily

seen to be an element of e(L)) by

ab = (a±ybx).

(Note that a and (bx) commute if and only if a commutes with each bx.) It is then

straightforward to check that if a,bee(L), a^b, and ce L commutes with

both a and b, then ac ^ be.

The next step of these preliminary constructions is the extension of a measure m

from the base lattice L to the extension-set e(L). The definition we will give is

motivated by the standard formula for the integral of a non-negative function

jfdp = j Xdp(Ax) + oo p(Ai),

where A is the set on which / < X. If one bears this parent formula in mind,

many of the properties of the extended measure discussed below become quite

obvious.

Suppose, then, that m is a measure on the complete orthomodular lattice L.

If a = (ax) e e(L) we define m(a) by

(1) if m(a^) ^ 0 or m(af) = oo for any X, 0 < X < oo, then set m(a) — oo ;

(2) if neither condition in (1) obtains, set m(a) = lim£_0+ \^Xdm(ax A at)-

The limit in (2) always exists (it may be + oo), so that the definition is effective.

Moreover a direct computation shows that the extension is consistent; that is,

when applied to an element a of L, the definition gives the original value, m(a).

We have anticipated this fact in using the same notation for the extension as

for the original measure.

Much as in standard measure theory, the following properties of the extended

measure then follow.

Theorem 15. If a = (ax), b = (bx) are elements of e(L), L complete ortho-

modular, and the measure m on Lis extended to e(L), then:

(1) m(a) < co implies Xm(ax) 5¡ m(a)for 0 < X < oo and Xm(ax) -* 0 as A-> oo ;

(2) a ^ b implies m(a) ^ m(b).
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With this lattice extension and corresponding measure extension at hand,

we have already the requisite structure to make sense out of the statement of

Segal's Radon-Nikodym theorem. A central self-adjoint operator is now simply

an element z = (zx) of e(L) such that every zx, 0 ^ X < oo, belongs to the center

of L. The product az, for aeL, then is an element of e(L). If m is a measure

extended to e(L), then m(az) makes sense. Supposing now the element z is fixed,

we prove in the next theorem that n(a) = m(az) is always a measure on L.

Theorem 16(7).    n(a) = m(az) is a measure on L.

Proof. The finite additivity of n and the fact that n(0) = 0 are immediate.

Then, by Theorem 8, to complete the proof we need only show that, if (at) is

an increasing family of elements of L, t in some linearly ordered indexing set T,

then LUB«(fl,) = n(\/at). Let a = y a,. In the order of e(L), a,z ^ az for all t,

so m(atz) S m(az). So it is enough to prove that LUBm(a,z) ^ m(az).

Accordingly we can assume LUBm(a,z) < oo, so that the second part of the

definition of the extended measure s to be used in computing m(a,z). Using

Theorem 15, one checks easily that the same is true for m(az). If, now a > e > 0,

the following inequality for the integrals which occur in this definition is easily

established :

0^  I Xdm(aA(zx-zt))-      Xdm(a,A(zx - ze)) ^ am((a - at)A(zx - z,)).

We have m((a - at) A (zx- ze)) < oo, and since f\t((a - at) A (zx- ze)) ^ f\,(a -at)

=0, the corollary to Theorem 8 gives GLB, m((a — at) A (zx — ze))=0. As a function

of at, m((a — at) A (zx — ze)) decreases as at increases, and we conclude the

following: if a and e are fixed, and 5 > 0 is given, then there is an a,0 such that

a, ^ a,0 implies

/•a /»a

0 ^ j   Xdm(a A (zx - ze)) - J Xdm(a, A (zx - zj) g Ô.

The inequality LUBm(a,z)^m(flz)-o now follows for any Ô > 0, and we

conclude that LUBm(a,z)^m(ûz) which completes the proof.

We now turn our attention to the case of maximum interest, where the

base lattice L is a dimension lattice, and the measure m is a gage. We shall de-

note by B the complete Boolean lattice of invariant elements of L.

Theorem 17. Let m be a gage on the dimension lattice L with maximal

null element w0, and let z = (zx) be an element of e(B). Then:

(7) As pointed out by the referee this theorem becomes clearer if one observes that for a

fixed, m(a a z) is a measure on the Stone space of the center of L, that (zx) is the spectral family

(essentially) of a continuous function /on 5, and that n(a) is simply §fdma. A proof can be given

along these lines.
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(1) n(a) = m(az), aeL, is a measure on L which has the property that

a ~ b -> n(a) = n(b) so that n lacks only the property of semi-finiteness to be

a gage;

(2) if z¿ ^ w0, then n is semi-finite, and so is a gage on L;

(3) the maximal null element for n is z0\/w0, so that, in particular, n is

faithful if and only if both z0 = O and m is faithful.

Proof. (1) It follows from the previous theorem that n(a) is a measure.

The invariance is proved in a straightforward manner using Lemma 22 of Loomis

[4]-
(2) By the definition of a gage, m is semi-finite. So if a e L is given, a ^ 0,

there is a b0 ^ a, b0 # 0 with m(b0) < co. Since b0 ^ 0 it follows that there is

a /i, 0 i£ //< oo, with b0 A (z„ V z^) ¿ 0. Let this element be b, so 0 i= b ^ b0 ̂  a.

By assumption z¿ ^ w0, so that m(b A z¿) = 0. Also m(b A zx) i£ m(b) < oo for

0 < A < co, so that the second part of the definition of the extended measure

is to be used in computing n(b) = m(bz) according to the formula

/* 00

n(b) = lim      Xdm(bA(zx - z£)).
£-»0+ Je

It is easy to see that m(b A (zx - ze)) is constant for X ̂  p, so that the integral

cuts off at p. Also, since m(bA(zx — ze))^m(b0)< oo, the limit as £->0 is

finite. Hence n(b) < oo with b ^ a, b j= 0 and this shows that n is semi-finite.

(3) Let r be the maximal null element of n. One checks easily that n(z0 V w0) = 0

so that z0\jw0^r. Conversely, if n(a) = m(az) - 0, then by Theorem 15,

™(fl A zx) = 0, 0 < k < oo. Now z0 = AM>o z,< -♦ zo"= V/< > o z¿" and by the corol-

lary to Theorem 7, V„ > o(«A zp) = a A \J» > 0 ̂  = a A z¿ Then by Theorem 8,

m(a A z¿) = LUB m(a A zfi = 0 so that uAzq^Wq. Then a=(aAz0)©

(a A Zq) ̂  z0\jw0, so that r ^ z0\/i»0' This completes the proof. The converse

of this result is our Radon-Nikodym theorem.

Theorem 18. Let m be a faithful gage on the dimension lattice L. Then

there is a one-to-one correspondence between gages n on Land elements z = (zx)

of e(B) with z00 = Í such that

n(a) = m(az),       aeL.

Proof. If z = (zA) is given, with z^ = 1, then, by Theorem 17, n(a) = m(az)

is a gage.

To prove the converse part, consider n given and suppose, to begin with, that

it is faithful. By Theorem 12, the faithful gage m factors in the form m = p oD

where p is a faithful semi-finite measure on B and D is a dimension function.

Then by Theorem 14, n = p,oD where p, is a faithful semi-finite measure on B.

The existence of an/e C(S), 0 </(x) < co a.e. such that p,(g) = p(fg), all g e C(S),

now follows from [3, Proposition 8]. Then n(a) = p,(D(a)) = p(fD(a)).
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For a non-negative real number X, the set

F(X) = interior (closure (x e S; fix) ^ X))

is both open and closed. Accordingly, there is a unique zkeB with £(zA) = £(A).

A straightforward calculation shows that the one-parameter family (zA) satisfies

the two conditions stated at the beginning of this section and so belongs to e(B).

The condition /(x) < oo a.e. implies that zm = 1, so z = (zj satisfies the require-

ments of the theorem.

It remains now to show that n(a) = m(az). The function m(az) is obtained

by extending the measure m from the base lattice L to the element

az = (ax\J zx) of e(L). Suppose now a is fixed, and consider m(az) as a function

of z e e(B). For those z in e(B) which are also in B, az = a A z, so m(az) = m(a A z).

This is a measure on B by the lemma preceding Theorem 12; call it pa. This measure

has its own extension to e(B), also denoted pa, and it is clear from our definition

of measure extension that pa(z) = m(az), all z e e(B). Keeping a fixed, suppose

now that z is that particular one-parameter family arising from the function /

as described in the last paragraph (essentially the spectral family of/). Now

pa can be considered interchangeably as a functional on C(S) and an extended

measure on e(B), and the methods of standard integration theory show that

Pad) = P.(Z).
Finally, referring to the proof of Theorem 12 (second-last sentence), the equa-

tion m = p o D was deduced from the stronger result pa(g) = p(gD(a)), all g e C(S).

In particular this is true for g =/, / as above. Putting together our assembled

equalities,

m(az) = pa(z) = Pa(f) = pifDia)) = px(D(a)) = nia),

which proves the existence in the case that n is faithful.

Maintaining this assumption, we prove that z is unique. Suppose that

n(a) = m(ax), x = (xA)ee(B), xœ = 1. (Actually x„ = 1 is a consequence of the

assumed semi-finiteness of n.) By Theorem 17, (3), the maximal null element of

m(ax) is x0, so that our assumption requires that x0 = 0.

Consider the family of subsets F(X), 0 ;£ X < oo of S defined by

F(X) = fl £(x„),

and define a function A on S by

(x e S; h(x) = X) = F(X) n f\ F(p)x.

The function h is defined in all of S and h e C(S); this is (essentially) the function

whose spectral family is (xA). The conditions x0 = 0, x«, = 1 imply that

0 < h(x) < oo a.e. It follows as in our previous remarks that m(ax) = p(hD(a))
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so that n = p2 o D where p2 is the measure p2(g) = p(hg), all g e C(S). Whence

by the uniqueness portion of Theorem 14, pv = p2. It follows that h =/, x = z.

If n is not faithful, then, if z0 is its maximal null element, we reduce to the

dimension lattice L(0, zx ), apply the previous result to get a unique one-para-

meter family w = (wx), then set z = (z0\J wx). This z will satisfy n(a) = m(az)

and is clearly unique. This completes the proof of Theorem 18.

Corollary. Let m and n be gages on the dimension lattice L such that m(a) = 0

implies n(a) = 0. Then there is a ze e(B) such that n(a) = m(az). If m is faithful,

z is unique.

Proof. This is an immediate consequence of the theorem.
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