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1. Introduction. In 1939, Lorenzen [13] proved that an abelian lattice-ordered

group (notation /-group) can be embedded into a large cardinal sum of linearly

ordered groups (notation ogroups) as a sublattice and as a subdirect sum. Since

then Birkhoff [2], Jaffard [10; 11], Ribenboim [16; 17], and others have reproved

and refined this result. Sik [18; 19] extends the Lorenzen embedding to a class

of non-abelian /-groups. However, none of these refinements sheds any light on

the structure of an o-group.

In 1907, Hahn [9] proved his embedding theorem for abelian o-groups, and

Clifford [4] and Banaschewski [1] have given much simpler proofs of this result.

Conrad [5] generalized the Hahn embedding so that it applies to abelian partially

ordered groups (notation po-groups), and Gravett [7; 8] has extended Conrad's

results to po-sets. These generalizations of Hahn's embedding, when applied to

an abelian /-group, do not usually embed it into an /-group.

The main result in this paper is a natural method for embedding an abelian

/-group A onto a sublattice of an /-group of real valued functions. This embedding

reduces to the Hahn embedding in the special case when A is an o-group, and the

Lorenzen embedding with most of its refinements is an easy corollary of this

embedding.

For the remainder of this section let G be an abelian /-group, and let Tx be the

set of all pairs (Gy, Gy) of /-ideals of G such that Gy is a maximal /-ideal of G with

respect to not containing some element g of G, and Gy is the unique /-ideal of G

that covers Gy (Theorem 4.1). We shall frequently identify the pair (Gy, Gy) with y.

For each y in Fx, Gy/Gy is an Archimedean o-group, and hence it is o-isomorphic

to a subgroup of the additive group of real numbers with the natural order.

Moreover, each G/Gy is an o-group (Theorem 4.1). For a and ß in Fx we define

a = ß if a = ß or Gx 2 G". It follows that Tx is a po-set with the following two

properties :

(a) For each g # 0 in G there exists at least one y in Tx such that g belongs to

Gy but not to Gy; y is called a value of g.

(ß) If g$ G\ then there exists a ß > y(ße Tx) such that g belongs to Gß, but not

to G„.
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A subset of rl that satisfies (a.) and (ß) is said to be plenary.

Let A be a plenary subset of T1; and let L be the large direct sum of the o-groups

Gâ/Gà(oeA). Let V= V(A, Gs/Gs) be the subgroup of L consisting of all vectors

v = (•■■,v6,---) such that v¡ = 0 for all ö in A with the exception of a set that

satisfies the maximum condition. If vx ̂  0 and vß = 0 for all ß > a, then vx is called

a maximal component of v. We define that ve V is positive if all its maximal

components are positive.

We prove that V is an /-group (Theorem 2.2 and Lemma 4.3), and Theorem 4.2

states that if G is divisible and A is a plenary subset of Tit then there exists an

isomorphism 0 of G into F such that ôe Ais a value of g in Gif and only if (g<p)ô is

a maximal component of g<p, and in this case (g<p)¡ = g + Gô. Such an isomorphism

0 is called a v-isomorphism, and every ^-isomorphism of G into Fis an /-iso-

morphism. In particular, G0 is a sublattice of V. Also, plenary subsets are exactly

those subsets of Tj that support ^-isomorphisms (Theorem 3.1).

There is a natural /-isomorphism 0 of Konto a subdirect sum of a large cardinal

sum of o-groups. Thus both the Lorenzen and the Hahn embeddings are corol-

laries of our embedding. If Ty has a minimal plenary subset A, then A is unique

(Theorem 5.2), and if G has a basis [6, p. 218], then there exists a unique minimal

plenary subset A of Tt (Theorem 5.5). If G is divisible and has a basis, then 00

gives an irreducible representation of G as a sublattice and a subdirect sum of a

cardinal sum of o-groups where 0 is a natural splitting of A into chains. Thus

we recover a result of Jaffard [10, Theorem 4, p. 251]. If G is Archimedean and A

is a minimal plenary subset of rlf then G has a basis (Theorem 5.4).

In §5 we prove that G has a finite basis if and only if Tj contains only a finite

number of maximal chains. Thus we can recover the structure theorem for di-

visible abelian /-groups with a finite basis [6, Theorem 2.2 and Proposition

11.3] or [11]. We also derive (Theorem 5.4) a necessary and sufficient condition

on G for Fy to admit a minimal plenary subset.

If A is a plenary subset of Tj such that each nonzero element of G has at most a

finite number of values in A, then the lattice of all Z-ideals of G is completely

determined by A (Theorem 5.10).

We also show (Theorem 6.4) that an abelian /-group can be embedded as a

subdirect sum and a sublattice of a large cardinal sum of subgroups of the real

numbers if and only if the intersection of the maximal /-ideals is {0}. An example

is given (due to Kaplansky) of an Archimedean /-group that cannot be so embedded.

Notation. The null set will always be denoted by □• If a and b are elements

of a po-set, then a || b will denote that a ^ b and a :g b. If S is a subset of a group

H, then [S] will denote the subgroup of H that is generated by S. Lattice oper-

ations will be denoted by A and V > and set theoretic operations by n and U.

If S and Tare subsets of a set, then S\Twill denote the set of all elements in S

that are not in T.
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2. A Hahn-type po-group. Let T be a po-set and for each ye T, let Hy be a

nontrivial po-group. Let V = V(F,Hy) be the following subset of the large direct

sum of the Hy. An element v = (—,vv---) belongs to V ifandonlyif

Sv = {yer\vy*0]

contains no infinite ascending sequences. This is clearly equivalent to the maximum

condition which is that every nonempty subset of S„ contains at least one maximal

element.

It is easy to verify that if S and Tare subsets of T, each of which satisfy the

maximum condition, then S U Tsatisfies the maximum condition. Thus, it follows

that F is a subgroup of the large direct sum of the Hr For each veV, let

re={yer|i;,?¿0 and  vx = 0 for all a > y}.

The vy with yeT" are called maximal components of v. We define a nonzero

element v of V to be positive if each maximal component vy of v is positive with

respect to the partial order on the group Hr We shall denote the identity of V by 9.

Theorem 2.1. If T is a po-set, if for each yeF Hy is a po-group, and if V is

partially ordered as above, then Vis a po-group.

Proof. Let P be the set of positive elements of V. By definition 9$P; hence,

all we must show is that P is a normal subsemigroup of V. If u and v are elements

of P, then clearly u + v i= 9. Let uy + vy be a maximal component of u + v.

Without loss of generality we may assume that uy ̂  0. If y £ P, then there must

exist a > y such that ux > 0 and uß = 0 for all ß > a. Since ux + vx = 0, vx < 0,

and hence a £ F". Thus there must exist ß > a such that 0 < vf. But then

uß + vß = vß =£ 0, and this contradicts the assumption that y ̂  Fu+v. It follows

that y e T", and so 0 < ur Similarly, if vy # 0, then 0 < vr Therefore 0 < uy + vy,

and hence u + veP.

To prove that P is normal, suppose that ueP and veV. If y sr~v+u+'',

then clearly uy # 0, and uß = 0 for all ß > y. Thus y e T", and hence, uy > 0.

Therefore 0 < — vy + uy + vy, and it follows that  —»4-u4-t>eP.

Theorem 2.2. The po-group V is an l-group if and only if

(a) Hy is an o-group if y is not minimal in T, and otherwise, Hy is an l-group;

and

(b) no pair of incomparable elements of T have a common lower bound.

Proof. Throughout this argument for a e Hy let à denote the element of V

whose yth component is a and all of whose other components are zero. We first

suppose that Fis an Z-group.

Assume (by way of contradiction) that for some y e T, Hy is not an Z-group.

Then [3, p. 215] there exists an element a eHy such that a and 0 have no least
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upper bound in Hr If ä V 9 = 9, then á ^ 9, and thus, a ^ 0, a contradiction.

Therefore 9 < ä\J 9.

Suppose there exists a maximal component bx of ä y Ö such that y < a. Then

0 < iv and hence 9<ä + (äy 9). Also, since 9 < ä\J 9, ä = â + 9<ä+ (äy 9).

Hence, ä y 9 ^ ä + (ä y 9), and thus, 9 ^ ä, a contradiction. Hence, there can exist

no maximal component bx of ay 9 such that 7 < a.Thus, since 9 < ä\J 9 and

ä ig ó V 0, it follows that (ó V &)? ¡s a maximal component of äy 6, that 0

< (ä V 0)r and that a < (ä y 0)r Now, since a V 0 does not exist, there exists

q eGy such that 0 < g < (äy 9)y and a < q. Therefore, if we replace (äy 9)y

by g in ä y 9, we get an element v of V such that à < v, 9 < v, and v < â y 9.

a contradiction. Thus each Hy is an /-group.

If a and y are elements of T and a < y, then i/y is an o-group. Otherwise, there

exists ae Hy such that a \\ 0. As above, (ä y 9)y is a maximal component of ä y 6,

and clearly a<aV0 = (aV 0)r Choose a negative element c in Ha. Then clearly

â < c + (ä y 9) and 9 < c + (ä y 9) because the lattice order on F only depends

upon the maximal components. But c < 9 implies c + (äy 9) < äy 9, and

this is a contradiction. Therefore, Hy is an o-group ; hence (a) is satisfied whenever

Kis an /-group.

Next assume that a,p\and y are elements of T such that y < a, y < ß and a || ß.

Choose 0 < aeHaand0 < be fl^and let v be any element of Fsuchthatö <v<ä

and v < b. For example, if 0 < ce Hy, then c is such an element. Let 0 < v6 be a

maximal component of v. If Ô ̂  a, then, since 0 < ä — v, vô < 0, a contradiction.

Thus o' s; a, and Ö g ß, and since a || p\ á < a and à < /?,and no further restrictions

are placed on v. It follows that nv < ä and nv <b for all positive integers n.

Therefore ä Ab cannot exist, which contradicts the assumption that V is an

/-group. Thus (b) is satisfied whenever V is an /-group.

Conversely, suppose that (a) and (b) are satisfied. It suffices to show that v and 9

have a least upper bound for each v in V. Consider 9 ^ ve V, and let vy be a maximal

component of v. If y is minimal in T, replace vy by vy y 0, and if y is not minimal

and vy < 0, replace vß by 0 for all ß ^ y. It follows by a straightforward argument

that the resulting element is v y 9. We next give another and somewhat more

transparent way of describing vy 9.

Let M be a maximal chain of T, and let VM be the projection of V on M, i.e.,

VM = {» e Fj »T = 0 for all y e I\Ai}.

Condition (a) assures us that VM is an /-group. For, if M contains no least element

then VM is an o-group, and if y is the least element in M, then VM is a direct

lexicographical extension [6, p. 214] of the /-group Hy by an o-group. Hence,

in any case, VM is an /-group.

Once again consider 9j=veY. For each maximal chain M of T, let % be the

projection of v upon Vu. It follows from condition (b) that 9 < v if and only
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if 9^vM for all such M. For each maximal chain M of T and for each yeM replace

vy by (fM V 9)y, and let v* be the resulting vector. Condition (b) assures us that

the process is well defined, and it follows easily that v* = v V 9. This completes

the proof of the theorem.

If T is a po-set which satisfies condition (b) of Theorem 2.2, then we shall say

that T is a root system.

The following propositions are easily verified. Most of them are immediate

consequences of Theorem 2.2.

(1) Fis an o-group if and only if T is (totally) ordered and each Hy is an o-group.

(2) If T is ordered and contains no least element, then V is an /-group if and

only if V is an o-group.

(3) If ris ordered and has a least element a and if Fis an /-group, then Fis an

o-group if and only if Hx is an o-group.

(4) If T has the trivial partial order, then

(i) Vis the large cardinal sum of the Hy;

(ii) Vis an /-group if and only if each Hy is an /-group.

(5) If for each y e T, Hy ■£ 0 is an o-subgroup of the real numbers (under addition

ordered in the usual way), then

(i) Fis an o-group if and only if T is ordered. Such an o-group will be called

a Hahn group;

(ii) Fis Archimedean [3, p. 255], if and only if T is trivially ordered;

(iii) the projection- of F upon any chain in T is a Hahn group.

3. Embedding theorem for po-groups. Throughout this section, let G be an

abelian po-group which has the property that if geG and 0 g ng for some

positive integer n, then 0 = g. Then G is an abelian semi-closed po-group. Clearly,

G is a torsion-free group. Also,it is true that any lattice-ordered group is a po-group

with this property.

Let P = {geG \0 < g},and let G be the unique (abelian) divisible closure of G.

Then P = {ge G \ 0 < ngeG for some integer n > 0} defines a partial order on G

which is an extension of the partial order defined on G, i.e., P = PC\G. Further,

if G is an /-group, then G is an /-group and G is a sublattice of G.

A subgroup C of Gis said to be convex if

(i) C is pure, and
(ii) a < b < c implies that be C whenever both a and c are elements of C.

In particular, if G is divisible, then so are its convex subgroups and if G is an

/-group, then each /-ideal satisfies (i) and (ii).

Let T be the set of all pairs of convex subgroups (Gy, Gy) of G such that Gy

covers Gr If G is nontrivial, then T is nonempty [5, p. 22]. We shall frequently

identify the pair (Gy, Gy) with y. For each y e T, Gy/Gy is o-isomorphic to a subgroup

of the real numbers (ordered as usual) unless it is trivially ordered, and in this
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case it is isomorphic to a subgroup of the additive group of rational numbers

[5, p. 23]. For a and /Sin T define that a ^ jSif G" = Gßand Gx = Gß orifG" s Gß.

Then T is a po-set. If g e G\GÔ, then 6 is said to be a ua/we of g. Let A be a subset

of T. The following two concepts are basic for our theory.

A is said to be plenary if it has the following two properties:

(a) Each nonzero element in G has at least one value in A.

(ß) If g e G\GÔ for some Ó" e A, then there exists a value of g in A that exceeds S.

In particular, T itself is plenary.

An isomorphism 0 of G into V(A, Gd/Gs) is said to be valuation preserving

(notation ^-isomorphism) provided that it satisfies

(v) ô e A is a value of g e G if and only if (g<t>)ä is a maximal component of g(f>,

and in this case (g(j))ô = Gô + g.

Suppose that 0is a ^-isomorphism of G into V(A, G /Gô) and consider 0<geG.

Clearly Gs + g is positive for every value ô of g in A and hence g0is positive in V.

If A = r,then 0_1 also preserves order [5, p. 23].

Theorem 3.1 (Main embedding theorem). Let G be a divisible abelian po-

group and let V*= V(A,GS/GÔ), where A is a subset of F. Then the following

are equivalent:

(1) There exists a v-isomorphism of G into V.

(2) There exists an isomorphism (j) of G into V such that <5eA is a value of

g eG if and only if(g<p)6 is a maximal component of g<p.

(3) A is a plenary subset of T.

Proof. Clearly (1) implies (2). Suppose that (2) is satisfied and consider 0 # ge G.

There exists a maximal component (g4>)0 of g<j> in V, and hence by our assumption

on 0, ¿eAis a value of g. Suppose that geG\Gß, where ße A, and consider

yeGß\Gß. Then (y<p)ß # 0 and ((g + y)4>)ß = (g(p)ß + (y<j>)ß, so we may assume

without loss of generality that ( (g + y)4>)ß ̂  0 (otherwise choose - y instead of y).

It follows that (g + y) <p has a maximal component ((g + y)4>)7 where y 2; ß, and

hence g + y e Gr\Gy where ye A. Since g^Gß and yeGß it follows that y > ß.

Thus y e Gß £ Gy, and hence g e Gy\Gy. Therefore A is a plenary subset of T and

hence (2) implies (3). Note that we have not made use of the hypothesis that G is

divisible.

The fact that (3) implies (1) was proved in [5] and [8]. Here we give an entirely

different proof that makes use of the fact that G is a rational vector space, and

the following result of Banaschewski [1, p. 431]:

There exists a mapping n of the set of all subspaces of G into itself such that

for all subspaces A and B of G

(i) G = A e 7rL4), and

(ii) if A^B, then n(A) 2 n(B).

For x e G we define x0 e Fas follows : for each ô e A, let
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(x<f>)s = xs+ G6,

where x = xô+ cö, xb e Gs and cs e n(Gô). hen clearly 0 is a homomorphism of G

into the large direct sum of the Gd/Gs. For any nonzero element x of G, let

Äx = {<5eA|(x0)a*G,}.

If ö is a value of x, then (x<j))s = x + Gd # Gs. It follows that Rx is nonempty,

and hence 0 is an isomorphism. To prove that G0 £ V, it suffices to show that

every ascending sequence of Rx has a greatest element.

Let M be an ascending sequence ö, < ô2 < — in Rx, and let ß = (J{Gái | o¡ e M}.

Then G = g©7t(ß) and x = z + y where zeQ and y e n(Q); hence z belongs to one

of the G*', say C5'. Suppose (by way of contradiction) that ôt <5seM. Then

(z<j>)¡s = Gös because z e C5' £ Gàs, and (y<t>)ôs = Gôs because Gs' £ Q and hence

y e n(Q) £ n(GSs). Thus (xtj)\s = (z0)ás 4- (y<p)ôs = GSa, but this means that <5S £ Rx,

a contradiction. Therefore, ô, is the largest element of M.

If xeGs\Gs, then (x0)¿ = x + Gô ¿ Gô, and if <5<aeA, then (x(p)x=Gx

because x e Gx. Thus (xcf>)s is a maximal component of x0. Conversely suppose

that (x0)¿ is a maximal component of x0. If x ^ Gd, then by property (ß) there

exists a value a of x such that ö < a, but then (x0)a = x 4- Gx # Ga, a contradiction.

If x e Gö, then (x0)á = Gs, a contradiction. Therefore, ó is a value for x.

If g is positive in G, then g + Gd is positive in Gô/Gô for all values

ô of g, and hence all maximal components of gtp are positive. Thus #0 is positive,

and this completes the proof of the theorem.

Note that if we only require A to have property(a),then 0 is still an isomorphism,

and if ô is a value of g, then (g<p)a = g 4- Gô is a maximal component of g0.

If A = T, then, as noted above, 0"1 also preserves order. In particular, if T is

ordered, then we have Hahn's embedding theorem for divisible, abelian o-groups

[9]. Also, the hypothesis that G is divisible can be weakened in various ways.

For example, it suffices to assume that all of the G}¡GS are divisible [5, p. 13].

Suppose that A £ T. Let Q = {Gs\(Gs,Ga)e A}. A subset A of G x Q is an

overlap if (x„ G3)eA, (x2,Giz)eA, Gôll=:GôeQ, and GÔ2^GÔ imply that

x, — x2eGô. An element x0 of G is a limit for the overlap A if (x,Gs) e A implies

that x — x0 g Gg. The group G is said to be overlap complete with respect to A if

each overlap has a limit in G.

Suppose now that G is divisible and that A is a plenary subset of T and that 0

is the isomorphism derived in Theorem 3.1. Then we have the following theorems:

Theorem 3.2 (Gravett). The mapping 0 is an isomorphism of G onto

V(A,GS/Gd) if and only if G is overlap complete with respect to A [8, p. 14].

Theorem 3.3. // 0 and 0' are v-isomorphisms of G into V(A,GÔ/GÔ), then

there exists an o-automorphism \]/ of Vsuch that (G(j))ij/ = Gtp' [5, p. 28].

In general, T contains proper plenary subsets. For example, for each 0^ geG,
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let e€g be the collection of all convex subgroups of G that are maximal with respect

to not containing g. Then for each Gg e ^g there exists a unique convex subgroup

Gg of G that covers Gg, namely the intersection of all convex subgroups of G that

contain Gg and g. Let Tx be the set of all these pairs (Gg, Gg),ge G. Then clearly

Tx is a plenary subset of T, and for a,ßeTx

a = ß if and only if Ga = Gß

and

a < ß if and only if Gx <= Gß.

In the next section we show that if G is an /-group, then V(Yx,Gg/Gg) is also an

/-group and every ¿¿--isomorphism of G into F is an /-isomorphism. The next

theorem shows that Tx is usually a proper subset of T.

Theorem 3.4. If G is a divisible abelian po-group, then Tx = T if and only if

G = RX@A, where Rx is the group of all rational multiples of a fixed element

xeG, A is an o-group and g = rx + aeG is positive if and only if a is positive in

A. In particular, if G is an l-group, then T = Fx if and only if G is an o-group.

Since we make no use of the above results we shall omit the proofs.

4. Embedding theorem for /-groups. Throughout this section, let G be an

abelian /-group, and let T be the set of all pairs (Gy,Gy) of /-ideals of G such that Gy

covers Gr In general, T fails to satisfy condition (b) of Theorem 2.2, and hence

F(r,GyG,,) is not an /-group. In this section, we obtain an embedding of G as a

sublattice of an /-group F(A,G*/G¿), where A is a plenary subset of T, under the

assumption that G is divisible. By Theorem 2.2 we must find a plenary subset A of T

such that no pair of incomparable elements of A have a common lower bound.

It is not difficult to show that

A = [X e T | the elements of T that exceed X form a chain}

is a plenary subset of F and that V(A,Gk/Gx) is an /-group. However if G is the

cardinal sum of the rational numbers by the rational numbers, then A = T # T^

and it follows from Theorem 4.3 that no «-isomorphism of G into V(A,G*/GX)

is an /-isomorphism. Thus, in general, we must choose a proper subset of A.

If G is a subdirectly irreducible abelian /-group, then G is an o-group [3, p. 224].

Thus we have

Lemma 4.1. // G is an abelian l-group and if there is a nonzero l-ideal A of G

such that A ç Bfor all nonzero l-ideals B of G, then G is an o-group.

Theorem 4.1. Suppose that G is an abelian l-group, and let g be any nonzero

element of G. If C is any l-ideal of G which is maximal with respect to not

containing the element g, then G/C is an o-group with a convex subgroup that
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covers zero. Thus there exists a unique l-ideal C of G that covers C, and C' is

contained in every other l-ideal of G that properly contains C.

Proof. Let C' be the intersection of all /-ideals of G which contain C and g.

If C" is an /-ideal of G which properly contains C, then g e G", and hence C £ C".

Thus C' covers C, and each proper /-ideal of G/C must contain the /-ideal C'/C.

Therefore by Lemma 4.1, G/C is an o-group.

We shall call an /-ideal of G regular if it is maximal with respect to not

containing some element of G. Let

Tj = {y e T | Gy is regular}.

Note that if y er1? then Gy is the unique /-ideal of G that covers Gy (Theorem

4.1). Thus for a and ß in Ft, a < ß if and only if Gx is a proper subset of Gß, and

a = ß if and only if Gx = Gß. Also it is easy to show that a proper /-ideal of G is

regular if and only if it is meet irreducible in the lattice of all /-ideals of G.

Lemma 4.2. V(r¡, Gy/Gy) is an l-group, and r1 is a plenary subset of T.

Proof. By Theorem 4.1 for each yeFt, G/Gy is an o-group, and hence the

elements of T that exceed y form a chain. Thus Tj is a root system, and so by

Theorem 2.2, 7(1^, Gy/Gy) is an /-group.

If g is a nonzero element of G, then by Zorn's Lemma there exists an /-ideal C

of G that is maximal without g, and by Theorem 4.1 there exists a unique /-ideal C

of G that covers C. Thus (C, C) = (Gy, Gy) for some y elY Therefore each

nonzero element of G has at least one value in T^

If g e G \Gy for some y e Ft, then there exists an /-ideal M of G that is maximal

without g and which contains Gy. As before M = Gs for some ¿>erls and so

ö > y and g e Gs \Gd. Therefore Tj is a plenary subset of T.

Let

T2 = {y e T | G/Gy is an o-group},

1^3 — {y e r | the /-ideals of G that contain Gy form a chain}.

Lemma 4.3. Fi = T2 = T3 s A.

Proof. By Theorem 4.1 Tj £ r2, and clearly r2 s T3 £ A. Consider Gv for

y e T3, and let geGy\Gy. Let ß be an /-ideal of G that contains Gy and which is

maximal with respect to not containing g. Then ge Gy\Q, and since the /-ideals of

G that contain Gy form a chain, G7 => Q 2 Gr However Gy covers Gy, and so

Q = Gr Thus Gv is regular, and hence r3 ç F1.

Corollary. If g e Gy \Gyfor y eFif then Gy is a maximal l-ideal of G without g.

If G/C is an o-group, where C is an /-ideal of G, then C = Gy for some y e F1 if

and only if C is covered by an /-ideal. Such a C is not necessarily covered.
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There is a rather nice characterization of the plenary subsets of I\.

Lemma 4.4. For a subset A of Fl the following are equivalent:

(1) A is a plenary subset of r1.

(2) A is a dual ideal of F and P)ágAGá = {0}.

Proof. Suppose that A is a plenary subset of Ft, and suppose that ö < y, where

ôeA and ye T. If ge Gy\Gy, then g<£Gd, and hence there exists <5'eA such that

ô' > ô and such that geG*\Gä.. Since the elements in F that exceed <5 are

linearly ordered it follows that y = ô' e A. Thus A is a dual ideal of F. If g is a

nonzero element of G, then there exists <5eA such that g e GS\GS. Therefore

f]ieAG0 = {0}.
Conversely suppose that A is a dual ideal of F and that f| s , A Ga = {0}. If ô e A

and if g $ Gô, then there exists yeF such that y > ô and geGy \Gy. But since

A is a dual ideal of F, y e A. If g is a nonzero element of G, then there exists ô e A

such that g i Gô since Ç]g 6 AGÔ = {0}. Either ge GÔ\GÔ, or as above there exists

y > ô such that geGy\Gy and ye A. Therefore A is a plenary subset of F1.

Let (é¡ be the collection of all /-ideals of G. For each nonzero element g of G

there exists a subset ^g oî'€ whose elements are those /-ideals which are maximal

with respect to not containing g.

Throughout the remainder of this section, let A be a plenary subset of Tt = F2.

Note that A satisfies condition (b) of Theorem 2.2, and hence V(A,GS/GÔ) is an

/-group. This is precisely why we are interested in F2.

Lemma 4.5. If 0 < x and 0 5Í y are disjoint elements of G (i.e., x A y = 0)

and if C€?r then yeC and no l-ideal of G which is maximal without y is

contained in C.

Proof. Since the lemma is obvious if y = 0, we assume that 0 < y. If y $ C,

then x + C and y + C are positive disjoint elements in the o-group G/C (Theorem

4.1), and this is impossible. If Ke^y, then xeK, and hence K^C.

Lemma 4.6. Let g be a nonzero element in G. Then

(i) Each value of gy 0 in F1 is also a value of g.

(ii) If 5 e rt is a value of g and g + Gs is negative in G5/Gô, then g y 0 e Gx

for all   a^ô (aeT^.

(iii) Let A be any subset ofF1 that contains at least one value for every element

in G. Then g is positive if and only if g + Gà is positive in Gô/G6for all values

ô of g in A.

Proof, (i) If g+ = gy QeGa\Gs, then, by Lemma 4.5, g~ = -gV0eG¿,

and hence g = g+ - g~ e G*\GS.

(ii) Suppose that geGs \GS and that g + G} is negative in Gs/G5. Then g — c < 0

for some ceGs, and thus 0^gV0^cV0eG0. Thus, gV 0eGd. Suppose (by
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way of contradiction) that g \J 0 i Gx for some a < Ô. Then there exists a value

ß ^ « of g V 0. By (i), j? is also a value of g, and since g\J 0eGô, ß ^ 5. Since the

values of g form a trivially ordered set, /? | ô. Therefore a < ß, a < ô, and this is

impossible in Tx = T2.

(iii) If 0<geG¿\G,5, then clearly g + G¿ is positive in the o-group Gi/G¿.

If 0 ig g, then 0 < g~. Let 5 be a value of g ~ in A. By (i) 5 is also a value of —g,

and hence a value of g. And by Lemma 4.5, g+ e Gö. Therefore g + Gô = — g~ +GÔ

is negative.

Corollary. A subset A of rx is plenary if and only if

(a) each 0 < geG has at least one value in A, and

(ß) if0<geG \GÔ (ö e A), then g has a value in A that exceeds ô.

This is an immediate consequence of our definition of plenary and part (i) of

the lemma. Also note that it follows from this lemma that every «-isomorphism 0

of G into F(A, Gs/Gô) is an o-isomorphism (both 0 and 0~1 preserve order).

If G and H are /-groups and if 0 is an isomorphism which maps G into H and

has the further property that (x V y)<p = x(p\J y<p and (x A y)<t> = xcj) Ay0 for

all x and y in g, then 0 is called an l-isomorphism.

Lemma 4.7. // 0 is a v-isomorphism of G into V(A, Gs/Gô), then 0 is an

l-isomorphism. In particular, G0 is a sublattice of V.

Proof. It suffices to show that (a V 0)0 = a(f>\J 0 for all a eG. Let M be a

maximal chain of A and let n be the projection of F onto the o-group.

VM = {veV\vd = 0   forall<5eA\M}.

It suffices to show that (a \J 0)(pn = a<pn V 9 (see the description of a0 V 9

given in the proof of Theorem 2.2).

Case I. a07t = 9. If afin = 9, then (a(j>)s = Gs for all SeM; hence aeG6 for

all á e M, and so a V0eGa for all ôeM. Thus (a V O)0ti = 9 = a<j>n\J 9.If a<¡>n<9,

then let «5 be a value of a in M. Then a + Gs is negative, and hence by Lemma 4.6,

a V 0 s Gx for all a s M. Therefore, (a V O)07t = 9 = a07t V 9.

Case II. 9 < a<pn. Then — a<pn < 9, and hence by the above, ( — a V O)07t = 9.

Therefore

(a V O)07t = (a + (- a V O))07t = a07t + ( - a V O)07t = a0rc = a07t V 9.

Theorem 4.2 (Main embedding theorem for /-groups). Let G be a divisible,

abelian l-group, and let A be a plenary subset of Tx = T2. Then V(A, Gô/Gâ)

is an l-group and there exists a v-isomorphism 0 of G into V. Also 0 is an

l-isomorphism, and hence G0 is a sublattice of V.

This theorem is an immediate consequence of Theorems 2.2 and 3.1 and Lemma

4.7. The next theorem justifies our choice of Tt.
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Theorem 4.3. Suppose that G is an abelian l-group, A is a subset of F and that

V(A, Gô/Gô) is an l-group. If there exists a v-isomorphism of G into V which is

also an l-isomorphism, then A is a plenary subset ofT,.

Proof. Let 0 be a y-isomorphism of G into V that is also an Z-isomorphism.

It follows from Theorem 3.1 that A is a plenary subset of T (divisibility of G was

not used in this part of the proof of Theorem 3.1). For each ô e A, Gö<j> = V6C\G

where

V, = {v e V\ vx = G„ for all a ^ S).

By a straightforward computation it follows that 0 induces an o-isomorphism of

G/G¿ into V/Vs. Let v be an element in F with a nonzero <5th component and all

other components zero. Then (see the proof of Theorem 6.1) Vs is a maximal

Z-ideal of V without v, and hence by Theorem 4.1, V/Vs is an o-group.

Therefore G/Gö is an o-group, and hence for each g e Gs \G3, Gô is a maximal

Z-ideal of G without g. Thus SeF, and hence A £ I\.

Note that T, may contain many plenary subsets and for each such subset we

get an embedding. In order to obtain the best possible embedding of this type

one needs to know when F, admits a minimal plenary subset. The next section

is devoted to answering this question. Theorem 5.2 asserts that when such a

minimal set exists it is unique, and in Theorem 5.4 we find a property of G that is

both necessary and sufficient for the existence of a minimal plenary subset of T,.

Note that if A is a plenary subset of F„ and 0 is a «-isomorphism of G into

V(A,GÔ/Gi) such that G0 contains the small direct sum of the Gà/Gà, then A is a

minimal plenary subset of F,. For if öeA, then there exists an element g e G

whose only value in A is Ô. Thus ö cannot be discarded, and hence A is minimal.

Finally, we note that the Lorenzen embedding can be recovered from the

material in this section. For let A be any subset of T, such that every nonzero

element of G has at least one value in A. By Theorem 4.1, G/Gy is an o-group for

each y e A. Let ny be the natural homomorphism of G onto G/Gy for each y e A,

and let L=L(A,G/Gy) be the large cardinal sum of the G/Gy (ye A). The mapping

n of geG upon (•■•,gny,--)eL is clearly an isomorphism. By (iii) of Lemma

4.6, it follows that both % and rc-1 preserve order. If 9 is the identity for L, and

geG, then

gn\j9 = (-,g + Gy,-)\/9

= (-,(gV0)4-Gy,-)

= (*V0)b.

Therefore Gn is a sublattice of L, and clearly Gn is a subdirect sum of L.

In general, this embedding does not fill out Lvery nicely. In particular, if G is a

non-Archimedean o-group, then L is not an o-group. In §6, we make use of Theorem

4.2 to obtain a much better Lorenzen embedding (for divisible, abelian Z-groups).
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5. Minimal plenary sets. Throughout this section let G be an abelian /-group,

and let rt be as in §4. As in §3 we denote the two properties of a plenary set by

(a) and (ß).

Let W be a partially ordered set, and let weW. Then the set {x e W\ x ^ w} is

called the cone beneath w. Since each plenary subset of Fx is a dual ideal of F

(Lemma 4.4) we have the following:

Lemma 5.1. Let Abe a plenary subset of Fu and let Se A. If ô < y e T1; then

y e A. Thus, if we wish to discard an element y in Flt and retain a plenary subset

ofFu the cone beneath y in Fx must also be discarded.

Theorem 5.1. Let Abe a plenary subset ofFY. Then the following conditions

are equivalent:

(1) A is a minimal plenary subset ofF1.

(2) For each ôeA there exists geG such that all the values of g in A are less

than or equal to ô.

(3) For each ôeA there exists geG such that all the values of g in Ft are less

than or equal to 5.

Proof. First suppose that A is a minimal plenary subset of Fx. And assume,

by way of contradiction, that there exists ÔeA such that no nonzero element of G

has all of its values less than or equal to Ô. Let A' be the subset of A obtained by

discarding <5 and the cone beneath it. Then each nonzero element g of G has a

value in A', and clearly A' satisfies (ß). Thus A' is plenary, and this contradicts

the minimality of A. Therefore condition (1) implies condition (2).

Next assume that condition (2) holds, and suppose, by way of contradiction,

that ô e A and that no element of G has all of its values in T, beneath ô. Then

there exists a nonzero element g of G such that all of the values of g in A are

beneath 5. It follows that if y e A and y í£<5, then g e Gy. By Lemma 4.6 we may

assume that g > 0. By assumption, g has a value ß ig ö where ß e F1 \A. Select

0>feGß\G0. If ô is a value of/, then by the Archimedean property of

Gs/Gô, for some positive integer n, nf + g + G¡ is negative. Thus we may assume

without loss of generality that if ô is a value off, then ô is a value off + g and

/ + g + Gs is negative. Let h =f+ g. Since /£ G¡, f has a value 5' 3: ô, ô' e A.

If 5 = ô', then Gs + h is negative and ô is a value of h. If <5' > ô, then g e G¿>, and

so ö' is a value of h and Gy + h — Gr +f is negative.

Now let y be a value of h in A. If y ^ ô, then y = ô = ô', and therefore by

the above h + Gy is negative. If y fg Ô, then geGy and so Gy + h = Gy+f is negative.

However ß is a value of h, and Gß + h = Gß + g is positive since g>0 and 0 >feGß.

This contradicts Lemma 4.6, and proves that condition (2) implies condition (3).

Lastly assume that condition (3) is true. By Lemma 5.1, in order to get a proper

plenary subset of A, we must discard a cone beneath some element of A. Clearly,

since A satisfies condition (3). all values of some nonzero element g of G must
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lie in that cone. Thus, since we need to retain property (a), no cone can be discarded,

and hence A is a minimal plenary set.

An element ôeFt is called essential if there is an he G such that all of the

values of h are in the cone beneath ô. Let E denote the set of all essential elements

of Tt.

Theorem 5.2. // A is a minimal plenary subset of Tl5 then A = E. Thus if T1

contains a minimal plenary subset, that subset is unique.

For each nonzero element g of G let Rg be the subgroup of G that is generated

by the Z-ideals of G that do not contain g. Then Rg is an /-ideal, and therefore, it

is the intersection of all the /-ideals of G that contain all of the Gy, where y is a

value of g in I\. Let

R(G)=r\{Rg\0*geG}.

The /-ideal R(G) can be characterized in another way.

Theorem 5.3. If g is a nonzero element of G, then geR(G) if and only if g

has no value which is essential.

Proof. If g £ R(G) then there exists 0 =£ h e G such that g £ Rh. There is an

/-ideal Gx maximal without g such that Gx 2 RH. Then a is a value of g, and all

values of h are in the cone beneath a. Hence a is essential. Conversely if a is an

essential value of g then there exists 0 ^ h e G such that all the values of h are in

the cone under a. Therefore g £ Gx 2 Rh. Hence g $ R(G).

As an immediate consequence of Theorem 5.3 and Theorem 5.2 we have

Theorem 5.4. A minimal plenary subset of Ft exists if and only if R(G) = 0.

Remarks. If G = R(G) then it follows from Lemma 5.4 that each 0 ^ geG

has an infinite number of values. An example of such a group is the /-group of all

real valued continuous functions on the unit interval [0, 1]. Also it can be shown

that if S is an /-ideal of G, then R(S) = SC\R(G). Thus it follows that R(R(G))

= R(G); and if ,4 and B are /-ideals of G, then R(Ar\B) = R(A)C\R(B) and

R(A + B) = R(A) + R(B).

An element g of G is special if it is positive and has a unique value <5 in F1.

A value of a special element of G is called a special element of Tx. Clearly any

plenary subset of Tt must contain all the special elements of Tt.

Lemma 5.2. Let Q be a set of special elements in G, and let A be the set of

values for the elements in Q. Let

A' = {aeTtla^ 8 for some <5eA}.

// each positive element in G is greater than or equal to at least one element

of Q, then A' is the unique minimal plenary subset ofFt, and



1963] THE HAHN EMBEDDING THEOREM 157

A' = {a e Tx | a = bfor some special ô e rx}.

Proof. It follows from Lemma 5.1 and the remarks preceding this lemma

that A' must be contained in any plenary subset of Tit and clearly A' satisfies (ß).

Thus it suffices by the corollary to Lemma 4.6 to show that every 0 < g e G has

at least one value in A'. There exists q e Q such that 0 < q < g. Let ô be the

value of q. Since G6 is convex and q$Gô, g$ Gà. Thus g has a value a = S (a. e Fx),

and since <5eA', oceA'.

An element g of G is said to be basic if 0 < g and {x e G10 < x ^ g} is totally

ordered. A subset S of G is a basis for G if S is a maximal set of disjoint elements

and each 5 in S is basic (see [6] for the theory of basic elements and bases).

Lemma 5.3. Each basic element of G is special. Let g be a basic element in

G, and let U be the maximal l-ideal of G without g. Let

J^={L\L<= U and Le'ë,, for someO^ heG).

Then each element of^V is determined by a basic element that is less than g,

and hence Jf is totally ordered.

Proof. Let a be a basic element of G. Then 0 < a, and there exists a maximal

convex o-subgroup G' of G that contains a [6, Lemma 2.1]. Let A and B be the

pair of convex o-subgroups of G' such that A covers B and aeA\B.

Case I. B = 0. Since {x e G +1 x A a = 0} is a convex subsemigroup of positive

elements [3, Theorem 6, p. 219], it follows that

U = [{x 6 G+ | x A a = 0}]

is an /-ideal of G that does not contain a [6, p. 214]. Let V be any /-ideal of G

that does not contain a. If 0 < v e V\U, then 0 < v A a e Af~\V. Thus, since A is

an Archimedean o-group, n(v A a) > a > 0, for some positive integer n. But this

means that ae V, a contradiction. Therefore Fç U, and hence U is the unique

maximal /-ideal of G without a.

Case II. B # 0. Let B* = {x e G+ \ x A B+ = 0}. Then B+ + B* = {x e G+ | x

does not exceed every element of B) and

U = [B+ + B*]

is an /-ideal of G which does not contain a [6, p. 223].

If g e G + \U, then g > B and a > B, and hence g A a ^ B; but since B has no

largest element, g A a > B. Since A/B is an Archimedean o-group, it follows that

nig A a) > a > 0 for some integer n > 0. Thus any /-ideal of G without a must

be contained in U. Therefore U is the unique maximal /-ideal of G without a.

Thus a is special. Suppose that F is a maximal /-ideal of G without v > 0 and

Fs U, where U is the maximal /-ideal without the basic element a. If v A a = 0,

then by  Lemma 4.5, aeV^U, a contradiction. Therefore 0 < v A a ^ v. If
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v A a $ V, then Fis maximal without v A a, and since v A a Ú a it is basic. Finally,

suppose that v A a e V. Then v = v A a + v', where 0 < v' < v and v' $ V. Then V

is maximal without v'. Also, a = v Aa + a', and a' A v' = 0. If a' = 0, then

a ^ v, and hence V= U. If a' # 0, then, since a' and a Av' are elements of the

o-group A, we have that 0 < a A v' implies 0 < a' A v', a contradiction. Thus,

if a' t¿ 0, then a A v' = 0, and by Lemma 4.5, a e V, a contradiction. Thus F is

determined by a basic element that is less than or equal to a, and since such basic

elements are linearly ordered, Jf must be linearly ordered.

If G has a basis, then each positive element of G is greater than or equal to at

least one basic element [6, Theorem 5.1]. Thus the following theorem is an

immediate consequence of Lemmas 5.2 and 5.3.

Theorem 5.5. Suppose that G is an abelian l-group with a basis Q. Let A be

the set of values in r, for the elements in Q, and let

A' = {a e F, | a ^ ô for some <5 e A}.

Then A' is the minimal plenary subset of F,.

Theorem 5.6. If an abelian l-group G has a basis, then there exists a minimal

plenary subset A of F, which satisfies

(*) for each ae A there exists a ße A such that a ^ ß and the elements in A

below ßform a chain. Conversely, if A is a minimal plenary subset of F, which

satisfies (*), then G has a basis.

Proof. If G has a basis, then the result follows immediately from Lemma 5.3

and Theorem 5.5.

Conversely, suppose that A is a minimal plenary subset of G which satisfies (*).

Let Ö be an element in A with no incomparable elements of A below it. Since A is

minimal, it follows from Theorem 5.2 that there exists a special element g > 0

with value y ^ <5. Assume (by way of contradiction) that g is not basic. Then there

exist positive elements a and b of G that are less than g and incomparable. If

a A b # 0, then let a' -a-(a Ab) and b' = b - (a A b). It follows that a'

and b' are positive, disjoint, and less than g. Thus, without loss of generality, we

may assume that a A b = 0. Let a(ß) be a value of a(b) in A. Since 0 < a < g,

g$Gx, and hence a £¡ y. Similarly, ß g y. But by Lemma 4.5, aeGß\Gx and

beGx\Gfi, and hence by Lemma 4.4,a. || ß, a contradiction. Therefore, g is basic.

Now it suffices [6, Theorem 5.1] to show that every positive element of G is

greater than or equal to at least one basic element. Let h be a positive element

in G with value ô e A. By the above argument, there exists a basic element g with

value y ̂  Ö. If h A g = 0, then by Lemma 4.5, Zi e Gy £ Gô. But h e GS\GÖ; thus

0 <h Agúh. Hence h is greater than or equal to the basic element h Ag-

Theorem 5.7. // G is an Archimedean l-group, then F, contains a minimal

plenary subset if and only if G has a basis.
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Proof. By Theorem 5.6, if G has a basis, then Tj contains a unique minimal

plenary subset.

Conversely, suppose that F1 contains a minimal plenary subset A. It suffices

to show that A is trivially ordered. For then A clearly satisfies property (*) of

Theorem 5.6, and hence G has a basis.

Suppose that a and ß are elements of A and that a < ß. By Theorem 5.1, there

exists an element g of G, all of whose values are less than or equal to a. By Lemma

4.6, we may assume that 0 < g. If 0 < h e Gß\Gß, then ng < h for all integers

n > 0, since the values of ng are all less than or equal to a. Thus, since G is Ar-

chimedean, g ^ 0, a contradiction. Therefore, a || ß for all a and ß in A.

As before, let G be an abelian /-group, and let A be a plenary subset of F{.

The rest of the theorems in this section follow from the preceding theory and the

following lemma.

Lemma 5.4.   If 0<geG has only a finite number of values ôif ô2,---,ô

in A, then there exists an element h in G such that <5, is the only value of h in A

and g + Gó¡ = h + Git.

Proof. The proof is by induction on the number of values of g. Clearly, if

n = 1, then the lemma is true.

Suppose that the lemma is true for all positive elements of G which have less

than n values in A and that 0 < ge G has n values o\, •••,ó"„ in A. The set of values

of g forms a trivially ordered set, and therefore Göl || Gi2. Thus there exists

0 > keGSl\GSl. In particular, mk + geGôl\Gôl, and g + Gôi = mfc + g + Gôi =

((mk + g) y 0) + GSl for all integers m > 0. Let Q = {a e A \ k e G" \GX and a ^ <5,

for some i = l,---,n}. Then Q ^ D because k$Gôi, and since Q s F2, Q contains

at most n — 1 elements. If <5¡ < a e Q, then k + g + Gx is negative and if ôt e Q,

then «fe + g + G3l is negative for some n > 0. Let m be a positive integer such

that mk + g + Gx is negative for all a in Q.

Now we claim that the only values of (mk + g) y 0 in A are contained in the

set {o\, ô3,---,ôn}. If this is true, then, by induction, there exists an element h of G

whose only value in A is ¿j, and we are through.

The values of (mk + g) y 0 are contained in the values of mk + g by Lemma

4.6, and if ß is a value of mk + g and mk + g + Gß is negative, then

(mk + g) y 0 e Gx for all a ^ ß by Lemma 4.6. Thus it suffices to prove that if

a e A is a value of mk + g, such that mk + g + Gx is positive, then a = S¡ for some

i = 1, 3,•■•,«.

If a < St for some i, then mk + g + G¿( = Gs¡. Now G/Gx is an o-group,

Gà>/Gx is the smallest convex subgroup of G/Gx that contains g + Gx, and

G"/Gx <= Gôi/Gx. Therefore, Gs,/Gx must be the smallest convex subgroup of G¡GX

which contains mk + Gx, and so, 6¡ must be a value of mk. Hence, <5¡ e Q, and

mk + g + Gs. is negative, a contradiction. So no value of mk + g can be less

than a value of g.
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If ¿2 — a or if ¿i < a for some i # 2, then, by our choice of m we know that

mk + g + Git is negative, and hence mk + g + Ga is negative.

If a j| o¡ for all i, then ge Gx, and hence mk + g + Gx = mk + Gx is negative;

this completes the proof of the lemma.

Theorem 5.8. If for each ôeA there exists an element geGs\Gs with only a

finite number of values in A, then A is the minimal plenary subset ofTx

Proof. By Lemma 5.4, for each ôe A there exists a geG whose only value in A

is ô. Thus no proper subset of A satisfies condition (a) in the definition of a plenary

subset.

Theorem 5.9. Suppose that G is divisible and that each element in A is the

value of some element g in G with only a finite number of values in A. Then there

exists a v-isomorphism 0 of G onto a sublattice of F(A, Gs/G3) such that G0

contains the small direct sum of the GàjG&.

Proof. By Lemma 5.4, each element ô in A is the value of some element g > 0

of G with only one value in A. Let 0 < h e GS\G¡. Without loss of generality

we may assume that g + Gs — h + Gô. Then g A h + Gö = h + Gô, and for any

ß e A such that ß ^ ô,0 S g A h = g e Gß. Hence ô is the only value of g A h in A.

Thus any positive coset of Gs/Gd contains an element whose only value in A

is ö. The existence of a «-isomorphism with the stated property now follows from

Theorem 4.2 and the results in the appendix.

A subset A' of A is said to be a lower subset if the relations a e A, ßeA', and

a < ß always imply that a e A'. For each /-ideal 1" of G let

Ip = {ô e A | ô — some value in A of an element a of I}.

Clearly Ip is a lower subset of A. Conversely for each lower subset A' of A let

A'p' = {geG\geGx for all ae A\A'}

= {g e G | each value of g in A belongs to A'}.

Clearly A'p' is an /-ideal of G. If n is a «-isomorphism of G into F(A, G^Gg), then n

induces a «-isomorphism it' of G/A'p' into F(A\A', Gs/Gs); namely, for ge G and

a e A \A' define ((g + A'p>'), = ign)y

Theorem 5.10. Suppose that each element g in G has at most a finite number

of values in A. Then p is a one-to-one order preserving mapping of the set J of

all l-ideals of G onto the set ¿£ of all lower subsets of A and p' is the inverse of p.

Proof. It suffices to show that pp' and p'p are identity mappings. Let A' be a

lower subset of A. If a e A'p'p then there exists an a e A'p' such that a = some

value y in A of a. But all of the values of a in A are elements of A'. Thus, since

A' is a lower subset of A and a = ye A', ae A'. Therefore A'p'p £ A'.
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Consider ae A'. By Lemma 5.4 there exists an element geG with a as its only

value in A. Thus geA'p', and hence aeA'p'p. Therefore A'p'p 2 A'.

Let / be an Z-ideal of G, and consider a e I and a e A \Ip. If a i Gx, then a has a

value in A that exceeds a, and hence txelp, a contradiction. Thus a e Gx, and it

follows that a e Ipp'. Therefore / £ Ipp'.

Finally, consider 0 < aelpp', and let a.,, —,a„ be the values of a in A. Each

a, e Ip, and hence a, ^ ô, where <5¡ e A and Ô, is a value of an element a, e /. Without

loss of generality we may choose the a, so that they are positive and so that

a + GXI < ai + GXi,       i=l,—,n.

Let b = a, + ■■■ + a„. Then 0 < a < bel, and hence a el. Therefore Ipp' £ /,

and this completes the proof of the theorem.

Note that under the hypothesis that for each öeA there exists an element

g eGâ\Gs with only a finite number of values in A, A'p'p = A' and / £ Ipp' for

all lower subsets A' of A and for all Z-ideals / of G. It is only in proving Ipp' £ /

that the stronger hypothesis was used.

Theorem 5.11. // A contains only a finite number of maximal chains, then

A = r„ and G has a finite basis. If, in addition, G is divisible, then there exists

a v-isomorphism 0 of G onto a sublattice of V(A,Gi/Gd) such that G0 contains

the small direct sum of the Gs/Gö. Conversely, if G has a finite basis, consisting

of exactly n elements, then F, contains exactly n maximal chains. In particular,

if G is divisible and if F, is finite, then G = V(F„ Gy/Gy).

Proof. The values of 0 ¥= geG form a trivially ordered subset of A, and hence

they must lie in distinct maximal chains of A. Thus if A contains only a finite

number of such chains, then each element in G has at most a finite number of

values in A. Therefore, by Theorem 5.8, A is the minimal plenary subset of F„

and the «-isomorphism 0 described in Theorem 5.9 exists provided that G is

divisible.

Next suppose that the set s„ —,s„ is a basis for G, and denote the value of s,

by 5¡ for i= 1,—, n. Let

A={aer1|a^¿¡   for some i = l,—,n}.

By Lemma 5.3, the elements in F, that are less than or equal toô^i = 1, •••,»)

form a chain, and each corresponds to a basic element. Let

A'= A u {aer^a^o^ for some i = 1,—,n}.

Then A' contains exactly n maximal chains, namely, the n maximal chains that

contain the ó, (i = 1, —,n). Also, A = {cceF, |a ^ 5 where <5 is the value of some

basic element}. Therefore, by Theorem 5.5, A' is the minimal plenary subset of F,.

Suppose (by way of contradiction) that y e F, \A', and let A" be the subset of F,
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consisting of the elements of A', y, and the chain of all elements in FL that exceed y.

Clearly A" is a plenary subset of Tx, and A" contains n + 1 maximal chains. Thus by

the first part of the proof, A" is a minimal plenary subset of Flt a contradiction.

Therefore Ft contains exactly n maximal chains.

To complete the proof of this theorem, it suffices to show that if A contains

only a finite number of maximal chains, then G has a finite basis.

Let a and b be positive disjoint elements of G with values a and ß respectively

in A. By Lemma 4.5, aeGß\Gx, and beGx\Gß. Thus, by Lemma 4.4, a||j8. It

follows that G does not contain an infinite disjoint set, and hence [6, Theorem

5.2], G has a finite basis.

6. The groups V(F, Ry) and the Lorenzen embedding. Let T be a root system

(po-set in which no incomparable elements have a common lower bound), and

for each y e F let Ry be a nontrivial subgroup of the additive group of real numbers

with the natural order. Let V— V(F,Ry) be the po-group constructed as in §2.

By Theorem 2.2, V is an /-group. For each y in r let

V =  {»eK|i;« = 0   for all a > y},

and

Vy  =  {v e V\ vx = 0  for all a 2: y},

Theorem 6.1. The set

A = {(Vy, Fy)|yer}

is the minimal plenary subset of the set rt = Ft(V), and each element in A is

special.

Proof. Clearly, Vy and Vy are /-ideals for all y in F. Consider <5 e F, and let v be

an element in F with ¿th component nonzero and all other components zero. Then

v e Va \Va, and if C is an /-ideal of F that does not contain v and if 0 < c e C, then

cx = 0 for all a 2: ô, since otherwise 0 < v ^ nc for some integer n > 0, and hence

veC. Therefore C s Vô, and it follows that Vô is the unique maximal /-ideal in V

without v. It is clear that Vs covers Vô. Thus A is a subset of Fx that consists

of special elements.

To complete the proof, it suffices to show that A is a plenary set. If 0 ^ v e V,

then ve Vy\Vy for each y such that vy is a maximal component for v. If

v <£ V", then v must have a maximal component vp with ß > a, and hence veVß\ Vß.

Therefore A is plenary.

Theorem 6.2. V has a basis if and only if for each aeT there exists a ßeF

such that a 2; ß and the elements in F below ß form a chain.

This is an immediate consequence of Theorems 5.6 and 6.1.

Let G be an abelian /-group, and let A be a plenary subset of Tj = Ft(G). Let P
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be a collection of maximal chains of A, and let 0 be a ^-isomorphism of G into

V(A, Gâ/Gs). As before, for each M e P let VM be the Hahn o-group

VM={veV\vy=*Gy forallyeA\M}.

Let L be the large cardinal sum of the VM

L=L(VM:MeP),

and for each M e P let

LM = L(VQ:M*QeP).

Let 0M be the natural homorphism of L into LM.

If o is an /-isomorphism of an /-group H onto a subdirect sum of L, then Ho is

said to be an irreducible representation of H provided that o<pM is not one-to-one

for all Me P. For each M e P let nM be the projection of F onto VM and for each

t>e V define

i>7r = (---,wiM, -OeL.

It follows that if (J{MeP} = A, then 0rc is an /-isomorphism of G onto a sub-

direct sum of the VM (see the definition of v y 9 in the proof of Theorem 2.2).

Theorem 6.3. Let G be an abelian l-group, let A be a minimal plenary

subset of Tt and let P consist of those maximal chains M in A such that there

is a ßeM with {a^/J|oceA} totally ordered. Let 0 and n be as above. Then

the following are equivalent.

(1) G has a basis.

(2)\J{MeP} = A.
(3) G07t is an irreducible representation of G.

Proof. By Theorem 5.6, (1) implies (2). Suppose that (J {M e P} = A. Then <pn

is an /-isomorphism of G onto a subdirect sum of the VM. Let Me P.By assumption

there is a ß e M such that {a :g ß ] a e A} is a chain. Since A is minimal, there is a

0 # g e G such that all of the values of g in A lie below ß (Theorem 5.1); that is,

g07t0M = 0, and it follows that G07t is irreducible and hence (2) implies (3).

Finally suppose that G07t is an irreducible representation of G, and consider

a e A. There is a 0 # g e G such that the values of g in A lie below a. Since 07t is an

isomorphism, g07tM ̂  0 for some Me P. Thus some value ß of g in A belongs

to M. Therefore a e M and hence A has property (*) of Theorem 5.6. Thus G has a

basis and so (3) implies (1).

Remark. An abelian /-group G has a basis if and only if it satisfies Jaffard's

condition M [10, p. 231], and Jaffard has shown [10, Theorem 4, p. 251] that G

satisfies condition M if and only if G has an irreducible representation as a sub-

lattice and a subdirect sum of a cardinal sum of o-groups. Thus we have re-proved

part of Jaffard's result in our theory.

The following theorem was noted by Nakayama [15] for vector lattices.
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Theorem 6.4. An abelian l-group G is l-isomorphic to a subdirect sum of a

large cardinal sum of additive groups of real numbers iwith their natural

order) if and only if for each 0 ^ geG there is an l-ideal of G which is covered

by G and does not contain g, or equivalently, if and only if the intersection of

the maximal l-ideals of G is zero.

Proof. Let R be the group of real numbers and let G be a sublattice and a

subdirect sum of a large cardinal sum of subgroups Ry of R (y e T). We consider G

as a subgroup of F(T, Ry) where T is trivially ordered. Then the identity map

on G is a «-isomorphism of G into F. By the remarks preceding Theorem 5.10

for each yeT

Giy) = {g = i-,gx,-)\gy = 0}

is an /-ideal of G and G/Giy) is o-isomorphic to Rr Thus if 0 ^ g e G and gy ̂  0,

then G(y) is an /-ideal of G without g and G covers G(y).

Conversely, suppose that for each 0 ¥= geG there is an /-ideal C of G which

is covered by G and does not contain g. In particular G/C is o-isomorphic to a

subgroup of R. Let S be the collection of all /-ideals of G that are covered by G.

Then the mapping of geG upon

g(L = i-,g + C,-),       CeS

is clearly an isomorphism of G onto a subdirect sum of the large cardinal sum Q

of the G/C. The set [\G,C) \ C e S} is a plenary subset of Tx = T^G), and 0 is a

«-isomorphism. Therefore G0 is a sublattice of Q.

Remark. The /-group K described in Example 4 is Archimedean, but it does

not satisfy the hypothesis of the preceding theorem. Thus it cannot be embedded

as a subdirect sum and a sublattice of a cardinal sum of subgroups of R.

7. Examples. In this section we give some examples which illustrate the scope

as well as the limitations of our theory. In general the method of construction is

to start with the real numbers R and a root system A, and then to consider a

subgroup and a sublattice G of F(A, R). The usefulness of the examples is sometimes

dependent on the fact that the set A reappears as a plenary subset of T^G).

This will happen whenever G has the following properties:

(i) For each 5 in A there exists an element g in G with 5 as one of its maximal

components.

(ii) GO Vs is an /-ideal of G that is maximal without g.

(iii) Vxr\ G^V„nG implies a = ß.

The reader can verify that these conditions are satisfied by the examples.

It follows from Theorem 5.7 that, if G is an Archimedean /-group without a

basis, then rt(G) contains no minimal plenary subset. Thus the group of all

continuous functions on the unit interval [0, 1], with the usual ordering, is an
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Archimedean Z-group with no minimal plenary subset. A smaller /-group with

this property is provided by the following:

Example 1. Let A be the trivially ordered set of positive integers, and let G

consist of all those functions/in F(A, R) which satisfy

(a) f(i) is an integer for each i in A;

(b) there exists a positive integer n = n(f) such that/(i) =/(i 4- n) for all i in A.

Then G is the set of all periodic integral valued functions. It is easy to show that

G is an Archimedean Z-group. Moreover, G has no basis, in fact, G contains no

basic elements. For let g be a positive element in G and choose an i e A such

that g(i) > 0. Then the functions

... _   ig(j)   if / is a multiple of 2i

_ i 0       otherwise

t( ) = i 8^   if ; is a multiPle of 3/

1       I 0       otherwise

are both positive, less than g, and noncomparable. It follows that G has no basic

element, and hence F,(G) has no minimal plenary subset.

We next give an example of an Z-group G without a basis such that F,(G) has a

unique minimal plenary subset A and yet no element of A is special. Thus for this

group our embedding is minimal but there is no minimal Lorenzen embedding.

Example 2. Let / be the unit interval [0,1] and for each positive integer n, let

/" = I x I x ■■• x I (n factors).

Let A be the join of the /" for n = 1,2, ••• partially ordered as follows:

(x,,---,xm)<(yl,---,yn)

if m > n and x¡ = y¡ for i = 1,2, •••,«. In this case F(A, R) is the collection of all

mappings of A into JR. For each ô = (a„---,a„)e A, let

h = {(a„-,an, x)e/n+1|xe/}.

Let I3 have the usual topology as a subspace of I"+1. Finally, let G be the subgroup

of V (A,R) consisting of all functions which are continuous on / and I3 for all

Se A.

Thus every nonzero element of G has infinitely many values, so that no element

of A is special. However, A is a minimal plenary subset of F,(G) since for each

<5 e A there is an element of G, all of whose values lie below Ô (see Theorem 5.1).

Example 3. A divisible Archimedean Z-group G for which V(F,(G), Gy/Gy)

is not Archimedean. Let G be the Z-group of all continuous functions on the half

line [0, oo ). Let

J'0 = {/eG|/is bounded}.
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Then J'0 is an /-ideal of G and /t(x) = x does not belong to J'0. Let J0 be an

/-ideal of G that contains J'0 and is maximal without fv By a simple inductive

argument, G contains an infinite ascending chain

J0 c Jt cz J2 a •••

of /-ideals such that J¡ contains/^*) = xl and is maximal without fl+i(x) = x'+1.

Thus, FL(G) contains an infinite ascending chain, and so, in particular,

V(Fl(G), Gy/Gy) is not Archimedean. In this case it is clearly possible to chose a

plenary subset A of F ¡(G) suchthat V(A, Gs/G¿) is Archimedean. Namely, choose

A = [0, oo ), the trivially-ordered root system we started with. The following

example shows that this is not always possible.

Example 4 (Kaplansky). Let G consist of all real functions on [0, 1] of the

form

g(x) +  Î
■-i (x-ap

where g(x) is continuous. Define fe G to be positive if/(x) 2:0 for all xe[0, 1]

for which f(x) is defined. Then G is an Archimedean /-group and each maximal

/-ideal of G must contain all the continuous functions. In particular, an /-ideal

of G that does not contain f(x) = 1 cannot be covered by G. Thus by Theorem

6.4, G is not a subdirect sum and a sublattice of a cardinal sum of subgroups

of the reals.

It also follows that no plenary subset A of T^G) can be trivially ordered. Thus

V(A, G3/Gô) is not Archimedean for any plenary subset of Ft(G).

Example 5. Let A be the set of all finite sequences of l's and 2's, each of which

starts with a 1. Partially order as in the following diagram:

/ '\
11 12

111      112      121      122

1111    1112

Then G = V(A, R) has no basis, but every element of A is special. Thus A is a

minimal plenary subset of T^G).

Example 6. For each positive integer n, let R„ be the additive group of rationals

and let G be the small direct sum of the Rn,

Lexicographically order G from the left. Consider the mapping x defined by
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(1,0,0,-) -» (1,1,1,-)

(0,1,0,0,-) -> (0,1,0,1,-)

(0,0,1,0,0,-) -+ (0,0,1,0,0,1,-).

The elements on the right are independent in the large direct sum L of the R„.

Thus x is induced by an isomorphism n of G into L. Clearly (1,0,0, ••• ) ^ Gn, and

hence Gn $ G.

Thus we have an o-group G and ^-isomorphisms n and 9 of G into

VÇF^G), Gy/Gy) (the large direct sum of the R„) such that G9 contains the small

direct sum of the GyGy, but Gn does not.

8. Appendix. Let G be an abelian divisible po-group and let A be a plenary

subset of the set F of all pairs (Gy, Gy) of convex subgroups of G such that

Gy covers Gy. We have shown in Theorem 3.1 that there exists a ^-isomorphism

of G into V= V(A, Gà/Gô). Here we derive a necessary and sufficient condition

for the existence of a ¿¿-isomorphism 0 of G into V such that G0 contains the small

direct sum of the Gö/Gö. Even if such a oisomorphism exists, it does not follow

that all ^-isomorphisms of G into V will have this property (see Example 6). Thus

we must sharpen our proof of Theorem 3.1.

A set T of subspaces Tô (ô e A) of G is called a decomposition of G provided

that it has the following properties:

(1) TÔ + GÔ=G   for all ¿e A;

b (2) T{ O Ga= Gd   for all ô e A;

(3) for each geG, the set {<5 e A | g £ Ta) satisfies the maximum condition.

If T is a decomposition of G, then the mapping of g e G upon

gr=(-,(r, + g)nGâ,-)

is a ^-isomorphism of G into V [5, Theorem 2.4]. Conversely, if 0 is a f-isomorph-

ism of G into V, then 0 = T for some decomposition Tof G [5, p. 12].

Let T be a decomposition of G. Note that, if ö e A is a value of g e G, then

g i Tâ, and h e Ts if and only if (hT )s = G3. For each a e A let T* be the intersection

of all the Ts with the exception of Tx. It can be shown that GT contains the small

direct sum of the Gó/Gó if and only if T¿ + T¿*= G for all ô e A, but this result

is not very useful.

Theorem 8.1. There exists a v-isomorphism 0 of G into V such that G0

contains the small direct sum of the Gs/G3 if and only if for each Se A

(*) each nonzero coset of Gô/Gô contains an element whose only value in A is <5.

Proof. Let 0 be a u-isomorphism of G into V such that G<p contains the small

direct sum of the Gs/G6, and consider ô e A and Gôj=a+ Gse Gs/Gö. There exists
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b e G such that (b0)á = a + Gô and (b<p)x = Gx for all a ^ «5. It is clear that b is

special with respect to A.

Conversely suppose that A satisfies (*). We first show that for each ô e A,

G*= Dô © Gô where Dô is a group such that each nonzero element has the unique

value ô in A. For, if Bs is a divisible group of elements such that each nonzero

element has the unique value ô in A (in particular, B6 = 0 will do), then

G3 © B3 s Gó. If Gô 5¿ Gá © Bá, then there exists g 6 Gá \G¿ © Bö with unique value

ô in A, and it follows by a straightforward argument that Gs © B¿ ©Rg £ Gs and

each nonzero element in Bs © R? has the unique value <5 in A, where Rg is the

one-dimensional subspace of G that contains g.

Next, let H be the small direct sum of the D3, and for each ô e A let

S6=     S  © D«.

Then it is easy to check that the Sa form a decomposition of H. By the existence

theorem [5, p. 9] there is a decomposition Tof G such that S3 s T3 for all ô e A.

UO ¿deDs, then deSfs Td*, and hence (dT)3 = d + G3 and (df)x = Gx

for all <5 #<xe A. Therefore Gf contains the small direct sum of the G3/G3. This

completes the proof of the theorem.

Note that, if A is linearly ordered, then each element in G has exactly one value

in ö, and hence (*) is satisfied. So we have the following corollary:

Corollary 8.1. // G is a divisible abelian o-group, then there exists a

v-isomorphism 0 of G into the Hahn group F(r,G7/G,,) such that G0 contains

the small direct sum of the Gy/Gy.

Finally, let n be a Banaschewski function defined on the set of all subspaces

of G, and let 0 be the existent «-isomorphism of G into F= F(A,Gá/Gá) (see

the proof of Theorem 3.1). For each ôe A let

T3 = G3 + n(G%

Then it is easy to verify that the set T of all the T3 is a decomposition of G and

that 0 = T, but it can be shown that not every «-isomorphism of G into F is

induced by a Banaschewski function.
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