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1. Any oriented surface immersed smoothly in £3 may be viewed as a Riemann

surface, inheriting the usual conformai structure from the Euclidean metric of

the surrounding space. But a strictly convex surface, oriented so that its mean

curvature is positive, has still another conformai structure imposed upon it in a

natural way. It is the conformai structure obtained by using the second funda-

mental form as metric tensor. Only on spherical portions of a surface do the two

conformai structures coincide.

In a recent paper [5], we described geometrically cases in which certain standard

differential geometric correspondences are Teichmiiller mappings. There, of

course, we worked with the conventional conformai structure on the surfaces

involved. But, standard differential geometric correspondences might in certain

cases be Teichmiiller mappings between the Riemann surfaces determined by

using the second conformai structure described above. And, in still other cases,

these correspondences might be Teichmiiller mappings involving the usual con-

formal structure on one surface, and the second conformai structure on another.

In this paper we describe geometrically cases in which such Teichmiiller mappings

actually are obtained. Of special interest, perhaps, are the particular instances in

which these mappings are conformai. Our results tend to parallel rather closely

those obtained in [5]. Wherever possible, lemmas and theorems below have

been numbered so as to indicate their correspondence to related items in that

previous paper.

2. In this section we mention those properties of Teichmiiller mappings which

are pertinent to the exposition which follows. No attempt will be made to give

background material from the theory of quasiconformal mappings which would

help to describe the importance of Teichmiiller mappings. A brief outline of such

material can be found in [5]. For a thorough explanation of the subject matter

involved, see (for instance) [1] or [2].

A quadratic differential Q on a Riemann surface R assigns a complex valued

function (j) to the domain of each conformai parameter z on R, so that the ex-

pression
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remains invariant. A quadratic differential SI is meromorphic on R if each such

function <p is meromorphic in z. A quadratic differential Í2 is holomorphic on R

if each such function (j> is analytic in z.

A Teichmüller mapping f:R-+R between Riemann surfaces is one which

maps R homeomorphically onto A in the following way. Let z = x + iy and

w = u + iv be conformai parameters at points of R and Â, respectively, in

correspondence under /. Then the Beltrami equation

w, = k r^j wt

must be satisfied, where k is a fixed constant such that

o^k<i,

where

dz      2\dx       dyj'    dz     2 \dx      dy/'

and where SI = <¡) dz2 is a fixed meromorphic quadratic differential on R.

Given a Teichmüller mapping/, the constant

1 + fc

is called its dilatation, while SI is called the defining quadratic differential of/.

Note that

1 ^K< oo.

The zeros and poles of fi are called exceptional points of/. Exceptional points

are, of course, isolated on R.

Teichmüller mappings are special kinds of quasiconformal homeomorphisms,

and include (for k = 0, K= 1) all conformai homeomorphisms between Riemann

surfaces. The inverse/-1 of a Teichmüller mapping/is a Teichmüller mapping

with the same dilatation K as/. Moreover, the exceptional points of/- 'occur at the

images under/ of the exceptional points of/. Finally, a Teichmüller mapping

composed in either order with a conformai homeomorphism is still a Teichmüller

mapping with the original dilatation K.

The following fact is generally helpful in picturing the behavior of a Teichmüller

mapping/ (see [2, §8]). In the neighborhood of any nunexceptional point of/, a

conformai parameter z = x + iy may be chosen so that the assignment of

w = Kx + iy to f(z) yields a conformai parameter on Ê. Thus a Teichmüller

mapping is, in the neighborhood of any nonexceptional point, a conformai

mapping followed by an affine transformation followed by a conformai mapping.
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These remarks lead directly to Lemma 1 of §3, which will be stated, therefore,

without proof. We emphasize that whenever the symbols Q or K are used below

they are meant to represent the defining quadratic differential and the dilatation,

respectively, of whichever Teichmüller mapping is then under discussion.

3. This section is devoted to a discussion of two lemmas. Let S be an oriented

surface which is C3 immersed in £3. Let R, be the usual Riemann surface de-

termined by using the first fundamental form on S as metric tensor. Conformai

parameters : = x + ij'onfi1 may be introduced by using isothermal coordinates

x, y on S, in terms of which

I = X(x,y)(dx2 + dy2).

In case Gaussian curvature Jf and mean curvature X are both positive on S, let

R2 be the Riemann surface determined by using the second fundamental form on

S as metric tensor. Conformai parameters w = u+ iv on R2 may be introduced

locally by using bisothermal coordinates u, v on S, in terms of which

II = p(u,v)(du2 + dv2).

The existence of isothermal and bisothermal coordinates under the conditions

given is assured (see [2, § 4], for instance).

In what follows we consider mappings / : S->S which are Teichmüller mappings

when viewed as maps between R, and R2, or R2 and R,, or R2 and R2. We will

automatically assume Gaussian and mean curvature to be positive on a surface

whenever its second conformai structure is under consideration. Lemma 1 is a

direct consequence of remarks made at the close of § 2.

Lemma 1.  If f.R, ->R2   is a Teichmüller mapping, then near all but ex-

ceptional points on S isothermal coordinates x, y may be introduced in terms

of which

I = l(dx2 + dy2),

// = ß(K2dx2 + dy2),

at points in correspondence underf. Iff:R2-*R, is a Teichmüller mapping,

then near all but exceptional points on S bisothermal coordinates u, v may be

introduced in terms of which

II = p(du2 + dv2),

(2)
/ = l(K2du2 + dv2),

at points in correspondence under f. If f: R2-*Ê2 is a Teichmüller mapping,
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then near all but exceptional points on S bisothermal coordinates, u, v may be

introduced in terms of which

II = p(du2 + dv2),

(3)

ÍI =   p(K2 du2 + dv2),

at points in correspondence under f.

Before stating Lemma 2, let us clarify some terminology. A line of curvature

is a curve along which Rodrigues' formula holds. An umbilic is a point at which

normal curvature is independent of direction. An umbilic is either removable or

irremovable in a given net of lines of curvature, depending upon whether it is a

regular or a singular point of the chosen net. A removable umbilic is characterized

by the fact that lines-of-curvature coordinates corresponding to the chosen net

may be introduced in a neighborhood of the umbilic. Where only one net of lines

of curvature exists in the neighborhood of an umbilic, reference to a chosen net

is unnecessary.

It is assumed throughout this paper that a net of curves on a surface is regular

on a dense subset. Thus, in particular, the closed set of irremovable umbilics in

any net of lines of curvature never covers a neighborhood on the surface. We call a

surface isothermal if isothermal lines-of-curvature coordinates can be introduced

in some neighborhood of every point. We call a surface bisothermal if bisothermal

lines-of-curvature coordinates can be introduced in some neighborhood of every

point.

Lemma 2. Let f: S-+S preserve a net of lines of curvature. If f-Ri -*■ R2

is a nonconformal Teichmiiller mapping, then, except at the irremovable um-

bilics of the preserved net (which must be isolated), S is isothermal and S is

bisothermal. The corresponding statement holds with the roles of S and S

reversed in case f:R2-*R1 is a nonconformal Teichmiiller mapping. If

f:R2-^Ê2 is a nonconformal Teichmiiller mapping then, except at the irre-

movable umbilics of the preserved net (which must be isolated), S and Ê are

bisothermal.

Proof of Lemma 2. Suppose /: Rt -» È2 is a nonconformal Teichmüller

mapping. Then K > 1, and near any nonexceptional point on S, isothermal coor-

dinates x, y may be introduced so that (1) holds at points! of S and § in corre-

spondence under /. If we set

17 = Ldx2 + 2Mdxdy + Ndy2,

î = Êdx2 + 2Fdxdy + Gdy2,

and
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dx '

then the directions of principal curvature on S satisfy

(4) Ma.2 -(N — L)a - M = 0,

while those on S satisfy

(5) Fa.2 - (K2G - £> - K2F = 0.

Since (1) yields F = M = 0, we know that

(6) F = M = 0

at umbilics, where first and second fundamental forms are proportional. In fact

(6) holds everywhere since K > 1 while the common roots of (4) and (5) must

correspond to mutually orthogonal directions on both S and S. However,

(1) and (6) together mean that x, y, are isothermal lines-of-curvature coordinates

on S, and that Kx, y are bisothermal lines-of-curvature coordinates on S.

Suppose f:R2 -» Rx is a nonconformal Teichmiiller mapping. Then exchanging

the roles of S and S in the previous case, we obtain, in the neighborhood of any

nonexceptional point, bisothermal lines-of-curvature coordinates on S, and

isothermal lines-of-curvature coordinates on §. A direct argument using (2) and

imitating the procedure above yields the coordinates u, v on S and Ku, v on S

which do the job.

Similarly, if f:R2 -» R2 is a nonconformal Teichmüller mapping, near any non-

exceptional point on S, bisothermal coordinates u, v may be chosen so that (3)

holds at points of S and S in correspondence under/. If we set

/ = Edx2 + 2Fdxdy + Gdy2,

! = Êdx2 + 2fdxdy + Gdy2,

and

a = dy_
dx

then the directions of principal curvature on S satisfy

Fa2-(G-£)a-F = 0

and

Fa.2-(K2G-E)*-K2F=0,

respectively. Here, K > 1 and the preservation of a net of lines of curvature yield

F = F=0.
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Thus, u, v and Ku, v are bisothermal lines-of-curvature coordinates on S and §

respectively.

It remains to be shown that in all three cases covered by Lemma 2, an exceptional

point p on S is an irremovable umbilic of the preserved net. We have already

shown that umbilics at nonexceptional points are removable in the preserved net.

Thus p has a neighborhood free of irremovable umbilics, and an index j in the

preserved net of lines of curvature.

But note that the preserved net lines of curvature coincides with the net of

trajectories and orthogonal trajectories of Í2 on R, (or R2). If working on R, we

refer to p. 82 of [4], and if working on R2 we refer to §4 of [6] to obtain

— m
7=-2-'

where m is the order of the zero at p or minus the order of the pole at p of Q.

Thus m # 0 means that j i= 0, so that p must be an irremovable umbilic of the

preserved net.

The conclusions of Lemma 2 are not generally valid when / is a conformai

mapping between R, and R2 or R2 and È, or R2 and R2. Simple counterexamples

in the last case are furnished by translations and rotations of arbitrary surfaces.

Moreover, even if S and S are isothermal or bisothermal as required by the

conclusions of Lemma 2, only in rare instances will an/: S-> § which preserves a net

of lines of curvature be a Teichmüller mapping between R, and R2 or R2 and R,

or R2 and R2. Various results below may be used to illustrate this fact.

4. Our theorems will deal with mappings between surfaces which preserve a net

of lines of curvature. The first such mapping considered is the standard mapping

/ between parallel surfaces S and § which associates with each point p on S the

point on § a fixed distance 15¿ 0 from S along the normal to S at p. It is well

known that / preserves lines of curvature. Moreover, / also preserves normals

if the orientation of § is the one induced upon it from S by f (see [3, p. 272]).

However the orientation induced by/ on § need not in general make^f > 0 if

Jf > 0 on §. Thus conclusions about the nature of S may be expected when the

R2 structure of S is being discussed.

A well-known theorem of Bonnet states that to each umbilic free surface S of

constant positive Gaussian curvature Jf there are parallel surfaces S' and S" at

distances

and J*

r=—i-

from S and of constant mean curvature
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•*"= irIt'
and

y?" —
* ~2f

respectively. It is also well known that the standard mapping/ : Rx -* Êx between

parallel surfaces S and 51 is conformai if and only if S1 and S are spherical or

planar, or are a pair of umbilic free surfaces S ' and S" in the relationship described

by Bonnet's Theorem. To complete the picture, we have the following.

Lemma 3. Letf be the standard mapping between parallel surfaces S and S. If

f :Ri~+ R2 is conformai, then S and S are spherical or else S is isothermal with

(7) * = -!.,

and

(8) sign i = sign Jf = sign áf # 0,

while S is bisothermal with

(9) *=—.

The corresponding statement holds with the roles of S and S reversed and —

in place of t in case f : R2 -> R{ is conformai. Iff: R2 -+ R2 is conformai, then

S and S must be spherical.

Proof of Lemma 3. As is usual, we use / to carry coordinates on S to corre-

sponding points on S. It is an elementary fact (see [3, p. 272]) that the coefficients

of the two fundamental forms on S are given in terms of those on S by

Ê = E-2tL+ t2(2Jí?L-JfE),

G = G-2tN + t2(2J4?N - JTG),

F=F- 2tM + t2(23fM - XF),

(10) Z = L-r(2JfL-X£),

Ñ = N- t(2Jf?N - JÍTG),

Hi = M - t(2JfM - Xf).

Suppose /:jRx-> Ê2 is conformai. The choice of isothermal coordinates on S

yields

(11) p = L = Ñ>0,    M=0.

But (10) implies that
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L(l - 2Mf) = JV(1 - 2«P),

while

Mil - 2Mf) = 0.

On the open set where (1 — 2rJf ) ^ 0, S is totally umbilic and therefore spherical.

(S has no planar portions since R2 structure is defined.) However, where (1 — 2r^f)

s0, S is of constant mean curvature

je = —.
2<

Since =?f is continuous, S is either entirely spherical, or else (7) holds on all of S.

Further discussion is necessary only in the latter case.

A surface of constant mean curvature is isothermal except at umbilics, which

must be isolated unless the surface is entirely spherical (see [4, Chapter 6]).

Thus, away from isolated umbilics on S, isothermal lines-of-curvature coor-

dinates x, y may be chosen. Moreover, use of (10) and (11) reveals that x, y are

bisothermal lines-of-curvature coordinates on S. Thus, not only does £ = G = X,

F = M =0, and F = M = 0, but

(12) L=kíX,   N = k2X

and

(13) Êki = Gk2 = p > 0

as well. Substitution of (12) in (10) yields

Ê = X(l - tkj2,
(14)

G = 1(1 - ífc2)2,

and

(15) p = lfc,(l - tki) = Xk2(\ - tk2).

Since (7) implies that

(1 - tk{) = tk2,

(16)
(1 - ffc2) = rfcj,

we obtain

ß = XtJf > 0.

Thus (8) must hold on all of S. For even at the isolated umbilics on S, Jf^O

because of (7). On the other hand, substitution of (14) and (15) in (13), and the

use of (15) yield
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k^tk2) = ku

k2(tki) = k2,

so that

*-±.

By continuity, (9) must hold on all of S.

No further discussion is necessary for the case in which/: R2 -» /?! is conformai.

It is easily checked, using (10), that in the situation described by Bonnet's Theorem,

the standard mappings between R[ and R2 and between R'{andR2 are conformai,

so long as S', S" and 5 are appropriately oriented. We note in passing that all

surfaces of constant positive Gaussian curvature are bisothermal except at isolated

irremovable umbilics (see [6]).

Suppose, finally, that f:R2^A2 is conformai. Choose bisothermal coor-

dinates on S. Then, since L= N = p., L = Ñ=pand M = M = 0, (10) yields

E = G,     F = 0.

Thus, all points are umbilic, and S and S must be spherical.

Note that Lemmas 4 and 5 below are of interest in the cases just discussed.

Turning now to nonconformal Teichmüller mappings, we obtain the following.

Theorem 1. Let f : S -* § be the standard mapping between parallel surfaces S

and S. Iff: Rt -» R2 is a nonconformal Teichmiiller mapping then the Weingar-

ten equation

(17) (1 - tkjkt = K2(l - tk2)k2

holds on S, and the Weingarten equation

(18) (1 + tfc2)2k*t = K2(l + tíci)2fc2

holds on S. The corresponding statement is valid with the roles of S and Ê

reversed, —t for t, kYfor k2, k2for fc\, k¡ for k2 and k2for fc¡ in casef : R2 ->Rt

is a nonconformal Teichmiiller mapping. If f:R2^k2 is a nonconformal

Teichmiiller mapping then the Weingarten equations

(19) (1 - tkt) = K2(\ - tk2)

and

(20) (1 + tk2) m K2(í + ífct)

hold on S and S respectively.

Proof of Theorem 1. Suppose / : Äj -» Â2 is a Teichmüller mapping with

K>1. Lemmas 1 and 2 guarantee that in the neighborhood of any point of S

which is not an irremovable umbilic, coordinates x, y may be chosen in terms

of which
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/ = X(dx2 + dy2),

II = Xkxdx2 + Xk2dy2,

(21) f      (IK2 , ,      ß   , ,Î = ——dx2 + i—dy2,
kx k2

II = fi(K2dx2 + dy2).

Since L = K2Ñ, (10) yields

ki - 1(2«, - CUT) = K2{/c2 - i(2Xfc2 - Jf )},

or

(1 - ifeOfci = K2(l - tk2)k2.

By continuity, (17) holds on all of S. Theorem 2 below states that all umbilics on

S must be planar. Thus, no removable umbilics can occur on S, since, at all non-

exceptional points of/, (10) yields

/2 = A(l-fk2)fc2>0,

(22)

K2fi m X(l - tki)ki > 0.

As to §, since kxÊ = K2k2G, we may use (10) to obtain

ícx(l-tkx) = kx,

k2\\ — tk2) = k2,

or

(23) fc1 = -rJV'   k2 = \-\--
l + tkx 1 + tk2

Substitution of these expressions in (17) yields (18).

In case/:R2 -> Êx is a Teichmüller mapping with K > 1, the roles of S and §

may be reversed in the arguments above. But this involves, essentially, using the

coordinates y, — Kx on 5 (now called S), which exchanges the roles of kx and k2

(now called k2 and kx) and of kx and k2 (now called £2 and £j). We have main-

tained the original orientation on § (now called S) so that its second conformai

structure is still defined. This requires the switch from í to — t in order to reach S

(now called S) by the standard mapping between parallel surfaces.

Suppose, finally, that/ : R2 -» A2 is a Teichmüller mapping with K > 1. Theorem

2 below states that S must be free of umbilics. Thus Lemmas 1 and 2 yield coor-

dinates u, v in the neighborhood of any point on S in terms of which
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/   =  -^-du2 + -£-dv2 ,
k, k2

11  = ß(du2 + dv2),

(24) t PK2 J,    2 ß    J   2/  = ——du2 + -t-rdv2,
k, k2

H  = ft(K2du2+dv2).

Since 1= K2Ñ, (10) implies that

(1 - tk,) = K2(l - tk2),

and (19) holds on all of S. As to S, since k,Ê = K2k2G, we may use (10) and

(24) to obtain (23) once more. Substitution of (23) in (19) yields (20). Note that

(19) and (20) behave as they should if the roles of S and S are reversed.

Attention is called to Theorem 2 below. The conclusions there are, of course,

applicable to the cases just discussed.

5. The results obtained in §4 relied heavily upon the very special nature of the

standard mapping between parallel surfaces. In this section we consider a some-

what larger class of mappings, those which preserve normals and a net of lines of

curvature. The conformai cases are studied first. The following comment will be of

use.

Lemma 4. Let f:S-+S preserve normals. lff:R,-+R2, or f :R2-+ R, or

f : R2 -» R2 is conformai, then f:S-+S preserves a net of lines of curvature.

Proof of Lemma 4. Choose a net of lines of curvature on S. In the neigh-

borhood of any point which is not an irremovable umbilic, introduce lines of

curvature coordinates x, y.

Iff: R, -* R2 is conformai, then at points of S and 51 in correspondence under

/, we have

/  = £dx2 4- Gdy2,

II  = Ek,dx2 + Gk2dy ,

(25) / = Êdx2 + 2Fdxdy + Gdy2,

ÍI = fx(Edx2 + Gdy2).

Preservation of normals implies that the coefficients of the first fundamental

forms of the spherical image mappings of S and S must be equal. In particular

(see [3, p. 253])

(26) h,2 = 2XM -XF = 2XÑ - jfF,

so that
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h12 = o= - Jrfi.

But the use of R2 structure implies that Jf" > 0. Thus

(27) F = 0,

and x, y are lines-of-curvature coordinates on S as well as S. In case/ : R2-> Rt is

conformai, an interchange of the roles of S and S yields the desired result.

Suppose now that / : R2 -> R2 is conformai. Then at points of S and S in cor-

respondence under/ we have

/  = Edxz + Gdy2,

,-fiv II  = Ektdx2 + Gk2dy2;

î = Êdx2 + 2Fdxdy + Gdy2,

II  = p(Ekxdx2 + Gk2dy2).

Thus, (26) and (27) hold once again, and x, y are lines-of-curvature coordinates

on S as well as S.

Lemma 5. Letf:S-*S preserve normals. If f : R1-^ R2 is conformai, then

(29) k\k2 = k22k,

holds at points of S and Ê in correspondence underf. If f:R2->Rl is confor-

mai, then

(30) fctfc2 = k2k\

holds at points of S and S in correspondence under f. Iff: R2^R2 is conformai

then

\      ) ^1^2 ^~ ^2    1

holds at points of S and S in correspondence under f.

Proof of Lemma 5.   Choose x, y as in the proof of Lemma 4. Suppose

/: «! -> R2 is conformai. Then (25) holds with F= 0, and

Ê = -OH-       G=    ̂ G

But, since normals are preserved,

(32)
h22 = 23tfN - XG = 2&Ñ- JfG,
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so  that

Thus, by continuity, (29) holds everywhere. In case / : R2 -* A, is conformai,

exchanging the roles of S and S, we obtain (30).

Suppose / : R2 -* R2 is conformai. Then (28) holds with / = 0, so that

£ = pEk,       ^ = ßGk2

K^ K2

Since normals are preserved, (32) yields

Thus, by continuity, (31) holds everywhere.

The equation (31) is also obtained, incidentally, if we apply Theorem 1 of [5],

assuming that/ : S -* S preserves normals between strictly convex surfaces, while

f:R,^R, is conformai. This coincidence is easily explained. For the com-

putations above reveal that when f:S^S preserves normals and / : R2-* È2 is

conformai, then (in the notation of (28)) /= ß2I. In fact, the following can be

said.

Remark. If / : S -^ ^ preserves normals and X, X, & and X > 0, then

f:R,->R, is conformai if and only if/: R2-*R2 is conformai.

Turning now to nonconformal Teichmüller mappings, we will obtain, just as in

Lemma 5,joint Weierstrass conditions W(k„ k2; ku fc2) = 0 relating the principal

curvatures at points of S and S in correspondence under/.

Theorem 2. Let f:S-*§ preserve a net of lines of curvature, and normals.

i//:Rt->R2 is a nonconformal Teichmüller mapping, then all umbilics on S

are planar, and

(33) k\k2 - K2k\k,

holds at points of S and S in correspondence under f. Iff: R2-+Ê, is a non-

conformal Teichmüller mapping, then all umbilics on S are planar, and

(34) k,ícl = K2k2k\

holds at points of S and S in correspondence under f. If f : R2-> k2 is a non-

conformal Teichmüller mapping, then S and § are free of umbilics, while

(35) k,k2 = X2^fc2

holds at points of S and S in correspondence underf.

Proof of Theorem 2. Suppose f:R,-+Ê2 is a Teichmüller mapping and

K > 1. Then Lemmas 1 and 2 guarantee that in the neighborhood of any point
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of S which is not an irremovable umbilic of the preserved net, coordinates x, y

may be chosen in terms of which

J  = X(dx2 + dy2),

II  = Xkxdx2 + Xk2dy2,

7       ßK2 pI  = ——dx2 + -7-dy2,
kx k2

11  =p(K2dx2 + dy2).

But normals are preserved. Thus, recalling (26) and (32), we obtain

Xk\ = pK2kx,

By continuity, therefore, (33) holds everywhere.

In case f:R2->Êi is a nonconformal Teichmüller mapping, the claims of

Theorem 2 can be verified by exchanging the roles of S and S in the discussion

just completed. This involves the switch from /cj to k2, k2 to ku kx to k2 and k2

to kx.

Suppose/ : R2 -* Ê2 is a Teichmüller mapping with K > 1. Then Lemmas 1 and

2 guarantee that in the neighborhood of any point on S which is not an irremov-

able umbilic of the preserved net, coordinates u, v may be chosen in terms of

which

/ = -^-du2 + -j^dv2,
ki k2

II = p(du2 + dv2),

(36)

ki k2

fl  =  fi(K2du2 + dv2).

But, since normals are preserved, we may use (26) and (32) to obtain

pki =fiK2ku

(37)
pk2 = ftk2.

By continuity, therefore, (34) holds everywhere.

Note now that umbilics are nonplanar on a strictly convex surface. Thus,

since K > 1, (33), (34) and (35) justify the claims about umbilics made by

Theorem 2.
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A closing comment can be made about the last case covered by Theorem 2

The substitution of (37) into (36) reveals that

I=^(^du2+'dv2).
H \   ki k2      ]

Let g be the mapping which sends the point with coordinates x, y on S to the

point with coordinates K2u, v on S.

Remark. If/:S->S preserves lines of curvature and normals, while

f:R2-+R2 is a nonconformal Teichmüller mapping, theng: R1^>R1 is conformai.

6. The spherical image mapping of a surface onto the unit sphere, and the

identity mapping of a surface onto itself are particular examples of the kind of

of mapping discussed in §5. The results which follow are in fact just corollaries

of Lemma 5 and Theorem 2.

Theorem 3. Let f be the spherical image mapping of S onto S. part of the

unit sphere. Iff: Rt -* R2 is a Teichmiiller mapping, then

(38) k1 = ±Kk2.

Iff ■ R2~* Ri or f:R2-+ R2 is a Teichmiiller mapping, then

(39) kt = K2k2.

Moreover, in all three cases, S is both isothermal and (if Jf, Jf >0) bisothermal.

Of course, S has no umbilics in the latter cases unless K = \.

Proof of Theorem 3. Suppose f:R1->R2 is a Teichmüller mapping. Then,

since S is the unit sphere, / : Rt -* Rt is a Teichmüller mapping with the same

dilatation K. Theorem 3 of [5] yields (38). Naturally, this conclusion can be

reached even more quickly by using (29) and (33) above. Similarly, / : R2 ->.$! is a

Teichmüller mapping if and only if/ : R2 -+ Ê2 is a Teichmüller mapping. Using

either (30) and (34), or (31) and (35), we obtain (39).

Suppose, moreover, that Jt? and JT are positive. Then when / : Rt -+ R2 is a

Teichmüller mapping, fct = Kk2. It is easily checked that here if x, y are isothermal

lines-of-curvature coordinates on S, then x^/K, y are bisothermal lines-of-cur-

vature coordinates on S. Similarly if/: R2-+Ê1 (or/: R2-+R2) is a Teichmüller

mapping, then bisothermal lines-of-curvature coordinates «,tonS yield isothermal

lines-of-curvature coordinates u/K, v on §.

Theorem 4. // the identity mapping f : S -» S is a Teichmiiller mapping

f: Rt -> R2, then S is both isothermal and bisothermal while

(40) fct = K2fc2.

Proof of Theorem 4. Using (29) and  (33) we obtain  (40).   The  isothermal
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lines-of-curvature coordinates x, y on S yield   bisothermal  lines-of-curvature

coordinates Kx, y on S.

Remark. Let Jf, Jf > 0 on S. Then the following statements are equivalent.

1. The spherical image mapping of S is a Teichmüller mapping from Rx.

2. The spherical image mapping of S is a Teichmüller mapping from R2.

3. The identity mapping of S is a Teichmüller mapping between Rt and R2.
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