
EXISTENCE IN THE LARGE OF PARALLELISM
HOMOMORPHISMS

BY

ROBERT HERMANN(i)

1. Introduction. All manifolds, tensor-fields, curves, maps, etc., will be of

differentiability class C°° unless mentioned otherwise. All manifolds will be

paracompact and connected. Let M be a manifold of dimension n. (1 ^ i, j, •• • ^ it;

summation convention.) An everywhere linearly independent set of 1-differential

forms, (cOj), on M defines an absolute parallelism for M. We will consider one

such parallelism as fixed on M. Let M' be another manifold, with a set of 1-forms

(co'i), not necessarily defining a parallelism. Our problem: When is there a map

tp:M' -*M such that 0*(a)¡) = ui'p. (If co is a differential form on M, <f>*(co) is

the form on M' induced by 0, denoted by ô<p(co) in [4].) Suppose that:

1.1 da>¡ = cJki o)jAo)k.

The cJki are the first order invariants of the parallelism on M. Define the second,

third, ••• order invariants cJkih, cJkithiM,--- as follows:

1-2 dcJki = Cjkiha)h,       dcjklthl = Cjkij,ub2ü}h2, •••.

Suppose further that:

1.3. There are functions c'Jki, c'jkih, ••• on M' such that

dm¡   = c'jki co'j A co'k,

dc'jki  = Cm* o}'h, etc.

Let x0 (resp x'0) be a fixed point of M (resp M') and let P (resp P') be the space

of(Cco) curves of M starting at x0 (resp at x'0). If 0 exists, with (¡)(x'0) = x0, it defines

a map 0* : P' -+ P. The method of Ambrose and Hicks [1 ; 9] is conversely to

first construct 0*, then find the conditions that it pass to the quotient with respect

to the natural projections P' -> M' and P^M. Usually, this involves some sort

of completeness condition for M, a condition on the fundamental group of M',

and a requirement that the corresponding first order invariants are the same

along curves corresponding under 0„.. Our aim is to build a bridge between this
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work and the work of E. Cartan on the problem ([2, Volume 2, Part 2, p. 724]

and [3, p. 316]), which at first sight has a purely local character. The main idea

is to find further sufficient conditions that the corresponding invariants be the

same along the corresponding curves.

We will now state our main result. Let Q be the ring of C °° real valued

functions on M generated by the functions cJki, cjkih,---. Suppose further that

there is a manifold that we will denote by M/SI, and a maximal-rank mapping

n :M-+M/Sl such that:

1.4. For xeM, the fibre of n through x is the connected component containing

x of {yeM :/(y)=/(x) for all feSl}.

Theorem 2. Suppose that 1.1-1.4 are satisfied, that M' is simply connected

and that the parallelism defined by the (cOj) on M is complete in the sense to be

defined below. A given feSl is constant on thefibres ofn, hence there is a function

f on M/Sl such that n*(f) =f. Suppose that there is a map 0 : M' -* M/Sl such

that

1 -5 0*(cffci) = c'jki,        0*(cj/fc;,Ä) = c'jkiM -.

Then, there is a map 0 : M' -» M such that

710 = 0 and 0*(tü¡) = co'¡.

Finally, in §4, we apply these ideas to prove an extension to spaces with absolute

parallelism of de Rham's theorem on reducibility of Riemannian manifolds [5].

The methods are different from de Rham's and can be extended to also give a

new proof of his result. We sketch this proof in §5.

2. Completeness and the existence of homomorphisms. Let o : [0, T] -> M

be a curve in M. The functions a((r) = a>;(<j'(0)> 0 ^ t ^ T, are called the first

order invariants of the curve o. (<j'(r)is the tangent vector to o at o-(r), an element

of Mo(r)> the tangent space to M at o(t).) Since we also have o*(co¡) = a¡(t)dt, we

see that:

2.1. The curve t -> (o(t), t) in M x [0, T] is the integral curve of a vector field

X on M x [0, T] with dt(X) = 1 and co¡(X) = a¿. Hence, given functions a¡(t)

and a point x0 e M, there is at most one curve o, with o(0) = x0, whose first

order invariants are a¡.

Such a o can, by the usual process of analytic continuation, be defined over a

maximal subinterval [0, t0). If o exists over [0, T] for every choice of T and

functions a¡(t) and every initial point x0, then the parallelisms on M is said to be

complete (in the sense of Ehresmann [6]). Those curves whose first order invar-

iants are constants will be called the straight lines of the parallelism (i.e., they

are the curves whose tangent vector field is self-parallel).

Note that completeness in the usual sense of the theory of affinely connected
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manifolds means straight line completeness, i.e., a piece of a straight line can be

indefinitely extended. This idea of completeness, although serving admirably in

Riemannian geometry, is probably too weak in non-Riemannian situations.

Proposition 2.1. Let M and M' be manifolds, with basepoints x0eM and

x'0eM'. Suppose there are forms (to) and (œ[) on M and M', with:

22: dü)¡ = cJkí a>jA cok,      d(o¡ = cjki a>¡ A (ok.

Suppose that the (m) define an absolute parallelism for M which is complete

in the sense defined above. For every curve a : [0, T] -> M' with cr(0) = x'0 define a

curve oD : [0, T]^> M such that aD(0) = x0 and o%(oj) — ct*(co¡), aD is called

the development of o in M. If M' is simply connected, a sufficient condition

that there exist a map 4> :M' -*M with 0(xo) = x0 and 0*(co¡) = œ[ is that:

2.3. c'Jki(o(t)) = cjki(oD(t)) for each curve a in M beginning at x0.

Proof. Let S(s, t),0^s, t g 1, be a homotopy(2) of curves in M', with

S(s, 0) = x'0. Let ôD(s, t) be the developed homotopy in M, i.e., ôD(s, 0) = x0 and

t -> ôD(s, t) is the development in M of the curve t -> ö(s, t). It is clear that ôD is

C00, since it is obtained from <5 by solving Cœ differential equations with C°°

initial conditions. Suppose that

ôt(œ) = A¡(s, t)dt 4- B,(s, t)ds,

2.4

<5*((«;) = A\dt + B¡ds.

Using 2.2, we have:

8A,

ds

2.5.

Mi
ds

Notice that: A, = A'¡. Hence, using 2.3,

2.6 §iBi-B')=5*icjki)AJiBk-B'k),

i.e., B¡ — B'¡ with s held fixed, satisfies a linear, homogeneous differential equation

in t. The condition that 5„(s, 0) = x0, <5(s, 0) = xó  implies  that  B¡ = B[ = 0   at

t = 0, i.e.,

2.7. B, = B; identically.

(2) All homotopies will also be C00. Recall that two Cx curves that are continuously homo-

topic are C00 homotopic [14, p. 25].

rifí
-£ =  àt(c]k)AkBj,

Fifí'
y =  ô*ic;ki)A'kB'j.
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In particular, if ô is a homotopy with both endpoints held fixed, so is

oD. hence, since M' is simply connected there is a bonafide map 0 : M' -» M such

that <p(o) = oD for each curve o starting at x¿. That this map is C00 again follows

from the fact that it is obtained locally by solving Cœ differential equations.

2.7 now again implies that <p*(w/) = co[, since if ô is a homotopy in M' and

i)'eM¡(Jil) (resp iieMJfi(Jil)) is the tangent vector to the curve u^>ô(u, t)

(resp u -» bD(u, t)) at u = s, then B¡(s, t) = co¡(v), B'¡(s, t) = (o¡(v'), and 0„(u') = t>.

Remark. If (co'¡) also defines a parallelism for M' and 2.3 is satisfied for each

straight line o starting at xó, then a similar arguments show that such a 0 exists

in a sufficiently small neighborhood of xu. Of course, this is nothing more than

Cartan's theorem that the component in a normal coordinate system of the

curvature and torsion tensors of an affine connection uniquely determine the

connection. We shall refer to this as the local version of Proposition 2.1.

3. The constant manifolds of Q and the pseudogroup of automorphisms of

an absolute parallelism. Let M be a manifold with an absolute parallelism

defined by forms (oj¡), with functions cJki, cjk¡h,"-defined by 1.1 and 1.2 and

with SI the ring of functions generated by these functions. For xeM, let

SY be the connected component containing x of {yeM :f(y)=f(x) for all

/eQ}. Let MX(S1) « {ve Mx : df(v) = 0 for all fe SI}. It is asserted in Theorem

2.5 of [8] that Slx is a submanifold of M and that MX(SÏ) is the tangent space to

Slx at x. This theorem is false, as the following counter-example, given to me by

I. M. Singer, shows:

Let M be the plane of two real variables s and t. Let f(s) be the following

Cx function : f(s) = 1 for s ^ 0, f(s) = e~1/s2 + 1 for s k 0. Let col = ds,

co2 =f(s)dt. co1 and co2 define an absolute parallelism for M. Further, da>¡ = 0,

dco2 = (f'(s)/f)a>x A o)2. Thus n is generated by f'(s)/f(s) and its derivatives.

But, the set of points where all elements of n are zero is the set of all (s, t) with

s ^ 0, which is not a manifold.

Examining the proof of Theorem 2.5 of [8], it may be seen that the error

occurs in the last paragraph, i.e., lines 21-24 on page 308. Thus, the proof of

2.13 of [8] is correct, and this translated into the notation used here yields the

following fact:

dim Mx(Sl) = dim M/Sl)   for all y e Slx.

QA is called the constant set of SI passing through x.

Let A be the pseudogroup of local automorphisms of the parallelism. Thus, a

0 e A is a diffeomorphism between open sets Ud(<p) and Ur(<p) of M such that

0*(co¡) = cOj. Thus also 0*(n) = n. Let A(M) denote the corresponding connected

group of automorphisms of the parallelism, i.e., the set of <peA with

Ud(4>) = M = Ur(4>), such that 0 can be continuously deformed in A to the

identity. It is known that A(M) is a Lie group [10], that a (¡>eA has no fixed



174 ROBERT HERMANN [July

points unless it is the identity, and that Í2* contains the orbit of x e M under

the sub-pseudogroup of A consisting of those 0eA that can be continuously

deformed in A into the identity.

We say that Q is finitely generated in an open set U of M if there is an integer N

and elements fx, ••-,/Ar in Q such that any feil can, in U be written in the form

/= F(fi,---,fN), where F(ux,---,uN) is a C00 function of N real variables. We

say that Q is locally finitely generated if each point has a neighborhood U in

which it is finitely generated.

Theorem 1. With the above notations, suppose either that Q is locally finitely

generated or that M and the co¿ are real analytic. Then,

(a) dim MX(Q) is constant for xeM, and defines a foliation on M whose leaves

are the Qx. The Ci* are then closed submanifolds of M.

(b) The pseudogroup A is locally transitive on the sets Qx, xeM.

(c) // the parallelism is complete and if M is simply connected, then A(M)

is simply transitive on the sets Qx, xeM.

Proof. A vector field I on M is the infinitesimal generator of a 1-parameter

pseudogroup of automorphisms of the parallelism if: X(co¡) = 0, where X(co¡)

denotes the Lie derivative of the form co¡ by the vector field X.

(See [8] for a fuller description of the Lie derivative operation and the laws it

obeys. We will use formulas 2.1-2.8 of [8] freely.) Let Vt = a>£X), i.e., the V,

are the functions that are the components of the vector field X with respect to

the basis of forms (w¡). The condition X(co¡) = 0 then takes the form (using 2.4

of [8]):

3.1 dV¡ = ckJiVjCOk.

Let a : [0, 1] -* M be a curve and let « : t -» «(i) = X(o(t)) e Ma(t) be the vector

field along a obtained by restricting X to a. Let «¡(f) = coj(v(t)) = F¡(o-(í)) be the

components of «. Then, 3.1 implies:

3.2 -LVi(t) = ckji(a(t))vj(t)œk(a'(t)).

Now, forget for the moment the origin of equations 3.2. They form a system of

first order linear homogeneous ordinary differential equations for the «¡(f), with

a unique solution for given initial conditions.

Lemma 3.1. Suppose that either (a) M and the elements of Q are real analytic,

or (b) ñ is locally finitely generated. Suppose that v(t), 0 = t ^ 1, is a vector

field along the curve a satisfying 3.2 and such that df(v(0)) = 0 for all feQx.

In hypothesis (a), suppose further that the vector field v is piecewise real analytic.

Then, in both cases, df(v(t)) = 0for all fed. In particular, v{i) e Mff(i)(Q) for

O^tgl, hence:

dim M.miQ) ^ dim M0(1)(Q).
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Proof. Suppose that ô(s, t), 0 g s, ig 1, is a homotopy of curves such that:

è(0, t) = o-(t), Og t g 1, and, for each r, the tangent vector to the curve s -» ô(s, t)

at s = 0 is v(t). Thus, ö(s, t) is a deformation of a, and v is the corresponding

infinitesimal deformation.  Suppose that:

ô*((Oi = At{s, t)dt + B,(s, t)ds.

Then, our conditions require that: ^¡(0, i) = a>i(o'(t)) and B¡(0, t) = ej;(i>(0)-

From 2.5, we have

dA,       dB

ds dt
^o*(cjk)AkBf,

hence :

3.3
dA¡

~e7s=0

= jta>¿v(t)) + cjki(a(t)) cok(a'(t)) (a}(v(t)) = 0,

using 2.2. Thus,

±(dcjki(v(t))) = |(|^(^0))
s=0

s = 0

using 3.3 whence:

Continuing:

= fciCjkiAöis, t))Ah)\,=0

= fciCjkUöis, 0))|s = owfc(«r'(i)),

^(dcjti(t>(í))) = dcjkithivit))œki(T'it)).

^(^am)=^cjkas(s, o))[=o

= dcjkifhM(v(t))(ohl(o'(t)).
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The general formula is seen to be:

3-4 Yt^dCjki'h'hi.*p)(t,(i)) = dcJ«,»,*,.*p+1(»(0H+i(ff'(0)-

Thus, 3.4 gives an infinite system of linear homogeneous differential equations

for the functions dcjkihi.*„(iK0)- 1 ú}*kti*h,hít—,hp ^ n, 0^ P< °o,with,

by the hypotheses of Lemma 3.1, zero initial conditions. Thus, in hypothesis (a),

the functions dcJki(v(t)), dcjkih(v(t)), etc., are identically zero, thus proving the

lemma. In case (b), proceed as follows:

Since we want to prove that the functions dcJki(v(t)), dcjkij,(v(t)), etc., are

identically zero, it suffices to work locally, i.e., we can suppose that n is finitely

generated on M. Relabel the generators of fi as c„, 1 rg a < oo, with c¡, ■■■,cN

such that, for a> N, there is a function F/u1, ••-,uN) of N real variables such

that: cx = Fx(c¡,---,cN). Then, for a > N,

N       ftp
dcx(v(t)) = I    —* (Cl(o(0), -, c,(o(t)))dcß(v(t)).

ß=i   ouß

Thus, we see that the infinite system 3.4 is equivalent to a finite system of ho-

mogeneous linear differential equations for the functions dcx(v(t)), with zero

initial conditions. These function of t must then be identically zero, whence the

conclusion of Lemma 3.1 in case (b).

Now return to the proof of Theorem 1. Lemma 3.1 proves (a) since, given

x,yeM, we have only to join x and y by a curve o: [0,1] -* M with o(0) = x,

ff(l) = y (and suppose, in the real analytic case, that o is piecewise analytic).

By Lemma 3.1, dim M„m(Sl) ^ dim Ma(1)(Sl), hence by symmetry,

3.5 dim Mx(Si) = dim M/Sl).

Let xeM and let fu •••,/,„ e n be functions so that:

(i) d/t, —,d/„, are linearly independent at x, and

(ii) Af,(ÍÍ) = {veMx: df/v)-dfjv) = 0}.
Then, there is a neighborhood U of x in which (i) and (ii) hold, by 3.5. Thus,

any feSl can, in U, be written as a function of the/1; —,/„,. This shows that the

field of tangent planes x -* M/Sl) defines a foliation on M. For x e M, let Lx

be the leaf of the foliation. Since x-yMx(Sl) defines a (nonsingular) foliation

("involutive distribution," in Chevalley's language [4]), L*can be defined as:

Lx= {ye M : y can be joined to x by a piecewise Cœ regular curve on which

all the n are constant}.

To prove that Lx= Slx, it suffices to show that If is closed in M, since it is

clearly, by the above results, open in Slx. Suppose then that z is a point of M

lying in the closure of nx. Choose f[, •■•,/,', e n and a neighborhood U' of z such

that (a) the //, ■••,f'm are functionally independent in U', and (b) M/Sl)

- {v 6 M. : ¿/[(v)-df'm(v) = 0} for yeU.
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Further, U can be chosen sufficiently small so that

tfrMJ={yeU :fxiy) =f'xiz),-,fmiy) =f'miz)}.

But, since fiz) = fix) for allfeQi since z lies in the closure of C2*, we must

have: fixn U lies in the leaf of the foliation passing through z, i.e., z belongs

to L*.

Now we turn to the proof of (b), using the following lemma.

Lemma 3.2. Suppose that dim MX(Q) = dim My(Sl) for x,yeM and that D

is an open simply connected subset of M. Then, given xeD, ve MX(Q), there

is a unique vector field X on D satisfying: X(x) = «, Xico¡) = 0, and Xif) = 0

for allfeQ, i.e., X is an infinitesimal parallelism isomorphism that is tangent

to the leaves of the foliation x -» Mx(Cl).

Proof. First we prove the lemma in case D is sufficiently small. Consider

3.1, i.e., the conditions that a vector field X satisfy Xi(o¡) = 0 :

dioiiiX)) = ckji(OjiX)a)k.

These conditions, together with the condition Xif) = 0 for all fed, are com-

pletely integrable, i.e., the following exterior differential system in the space Dx

(space of variables (F¡)) is completely integrable:

dVi - ckJiVj(ok = 0,

clfiX) = 0 for all/eil, i.e.,/jK, = 0, where df=fiœi.

This proves Lemma 3.2 "locally." Now, a vector field X satisfying X(u)¡) = 0

is, as we have seen, determined by its value at a point. Thus, the sheaf of germs of

vector fields X satisfying X(co¡) = 0 is locally constant and the dimension of its

stalk at any point xeM is dim M ¿(SI). Thus, Lemma 3.2 now follows from

standard arguments.

Statement (b) of Theorem 1 now follows immediately from Lemma 3.2. State-

ment (c) of Theorem 1 follows also : Let A(M) denote the Lie algebra of vector

fields X on M such that X(m¡) = 0. If M is simply connected, dim A(M)

= dim MX(SÏ), for all xeM.

Lemma 3.3. If M is simply connected and if the parallelism defined by (co¡)

is complete, then the integral curves of each X eA(M) can be indefinitely exten-

ded. Let G be the simply connected Lie group whose Lie algebra is A(M). Then,

also, the action of A(M) on M can be integrated to give rise to an action of G.

The orbits of G are precisely the sets Slx, i.e., the leaves of the foliation x -» MxÇl.

First, we note that Lemma 3.3 proves (c) of Theorem 1. For the orbits of G,

i.e., the orbits of G, are open in the Slx and closed in the Qx, since the orbits

of G are closed in M [10].
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To prove the first part of Lemma 3.3, notice that any integral curve o : [0, a] ->M

of X is a straight line of the parallelism (co¡): hence can be indefinitely extended:

For,

io*(ff'(0) = £a>¿XMt)) = X(a>¿XM<T(t)) = 0

by formula 2.3 of [8]. The second part of Lemma 3.3 follows from the standard

Lie theory of transformation groups. This completes the proof of Theorem 1.

Remarks. These facts are analogous to results of K. Nomizu [11] and I. M.

Singer [13] proved in a Riemannian setting. If (c) is satisfied, then the space

M/Sl of the constant submanifolds of n is the orbit space A(M)\M, hence it is a

manifold such that the projection map M -* M/Sl is a Cœ map of maximal rank

whose fibres are the Slx. This is also true in the more general (?) case that the

holonomy group in the sense of [1] of the foliation whose leaves are the constant

manifolds of n is the identity. The proof involves a slight variant of the proof

of Theorem 4.4 of [7] and hence will be omitted.

We now turn to the proof of Theorem 2 stated in §1. Let x0'eM' and x0eM

be points such that 0(xo) = 7t(x0). Let o : [0, 1] -> M' be a curve on M' and let

oD : [0, 1] ->M be its development in M. We want to prove that, for each fe SI,

0*(/)(c(O) =/(Cfl(i))> 0 ^ t rg 1, for then we can apply Proposition 2.1 to con-

struct the desired 0, which will also satisfy 7t0 = 0. This, however, is a purely

local matter, i.e., if it can be proved whenever o is sufficiently small, it is proved

for arbitrary o by a subdivision process.

Locally, the situation looks as follows: Let fi,—,fJ¥ be functions on M/Sl

that form a coordinate system about 7t(x0), and let /j = n*(f1),---,fN = n*(fN).

There are functions FyH(u1, •••,«w), Fjujffti,";uK), ••• of N real variables

such that

Cjki  =   Fjfci(/l»"">//v)>

3.6

cjki,h = FJkith(f,-,fN), etc.

Further, we can suppose that the f's occur among the c's. We are given as

hypothesis that

3-7 c^ = FAi(0*(fi),-,0*(^)),etc.

Using 1.1, 1.2 and 1.3, we have

3-8 ¿ c'jkl{o(t)) = c'Jkl<Mt))co'h(o'(t)), etc.

Combining 3.5, 3.6, 3.7 and 3.8 with the condition that o)'h(o'(t)) = coh(o'D(t))

we see that the functions
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and

^(0*(/i)WO),-^Wn)(<x(O))

satisfy the same system of ordinary differential equations with the same initial

conditions, hence coincide. This is what we had to prove to finish the proof of

Theorem 2.

Remark. There are generalizations of Theorem 2 that one can obtain by

considering M/Í2 as a "manifold with singularities," that we hope to deal with in

another work. In case Q is locally finitely generated, i.e., M/Í2 is the base space of

a foliation on M, the generalization obtained by using the "generalized manifold"

structure for M/Q. customary in the theory of foliations is proved in precisely

the same way.

It is obvious that completeness of the Riemannian metric ds2 = co¡ ■ a>¡ implies

completeness of the parallelism ico). We may note one fairly obvious case when

the converse is true:

Theorem 3. Suppose M and the parallelism iœ) on M are real analytic

and that the parallelism is complete. Then the Riemannian metric ds2 = ova);

is complete if:

For every geodesic of the metric a : [0, 1] -> M parametrized proportionally

to arc-length the function t^cijk(o(t)) can be extended to real-analytic functions

of t over 0 g í < oo.

Proof. If o*(a>) = A¿(t)dt, it is easy to see that o is a geodesic if and only if:

3.9 ^A,(t) = cijk(o(t))Aj(t)Ak(t).

Suppose that yijk(t), 0 g t < oo, are real analytic such that yiJk(t) = cijk(t) for

0 g t g 1. Define A,(t), 0 g t < oo, so that:

3.10 ^A,(t) = yiJk(t)Aj(t)Ak(t)     for 0 g t < oo,

and

3.11 a*(co) = Ai(t)dt     for 0 g í < oo.

Of course, we must be assured that 3.10 has a solution over all of [0, oo).Trying

to apply the usual continuation arguments, suppose it is defined over [0, T).

From 3.9 and the skew-symmetry of yiJk in i and ; it follows that:

^(Ai(l)Ai(t)) = 0.

Without loss of generality, we can suppose that A^A^t) = 1. Hence
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¡-¡-Alt)! g     max     I yijk(t) \-n2       for 0 g t < T,
1 "' i j,k;0it£D

and the curve t -► (A,(t)) in R", 0 ^ t < T, has finite length. Then, lim¡^TA¡(t)

must exist for each ¡. This implies that the solution of 3.10 can be continued

beyond T. Since T was arbitrary, this implies that 3.10 has a solution over

0 rg t < oo. Now, define o over 0 rg ( < oo so that it satisfies 3.11, using com-

pleteness of the parallelism. By real-analyticity, o so extended is a geodesic. Then,

we have proved that each piece of geodesic can be extended over 0 ^ / < co,

i.e., the metric is complete, q.e.d.

4. Global reducibility. As our principal application, we discuss conditions

under which global reducibility of a parallelism can be proved knowing local

reducibility.

Suppose then that M is a space with parallelism (co,). Choose the following

range of indices and summation connections, 1 ^ a, o, c ^m; m + lrgu,

v, w, x, ••• rS n. The parallelism is said to be reducible if the basis (co¡) of invariant

forms can be chosen so that

doia =   cbca(ob A (oc

4.1

dmu =   cDWUmv A ojw.

Then, the Pfaffian system coa = 0 (resp cou = 0) defines a foliation on M. Let

x0 e M. Let F (resp F') be the leaf through x0, i.e., a maximal, connected integral

submanifold of the foliation a>a = 0 (resp cou = 0). Let i : F -» M (resp i" : F' ->M)

be the inclusion map. Then, (i*(o)u)) (resp (t'*(co„))) defines a parallelism on

F (resp F') that is complete if the parallelism on M is complete, which we will

assume.

Lemma 4.1. // M is simply connected, there is a map <p : M -» F such that

(a) (pi — identity,

(b) 4>*i*((Ou) = 03u.

Proof. We hope to apply Proposition 2.1 to prove this. Suppose then that

o : [0,1] ->M is a C00 curve with o(0) = x. Suppose o*(oj¡) = ^(OoY Suppose

°"i : [0,1] -»• F is the curve such that

ot(0)     = x0,

o*(œa)   = 0,

o*(wu)   = Au(t)dt.

In order to satisfy the hypotheses of Proposition 2.1 and hence construct the

map 0 : M -» F, we must show that :
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4.2 cuvw(a(t)) = cuvw(ox(t))       for 0 = t ^ 1, and all such a.

To prove this, define a homotopy 5(s, l), Oás,  í ^ 1, such that:

ô(s, 0)    = x0,        0 ^ s ^ 1,

ó(0, i)    =  a(i),        ¿(1, i) = Oi(t),

4.3 <5*(oj,)   = A¡(s, t)dt + B,(s, t)ds, where

Alt(s, t) = (1 - s)A0(t), 0 £ s, t ^ 1, and

4,(s, 0 = 4.(0-

(To define ¿, use the completeness of M. Use the fact that it is defined by

Cœ differential equations to prove that it is C00.) Using 4.1,

hence

Using 4.1 again,

acuvw     cuvw xo)x,

Ys (cu™i&is, t))) = cUVWiX(ô(s, t))Bx(s, t).

dAx       dBx ...
-gf-gf- - cM„x(«5(s, 0MA-

By 4.3, dAJds = 0, hence Bx, for s held fixed, satisfies a system of homoge-

neous, linear differential equations with (by 4.3) initial conditions zero. Hence,

■fa (c»vW(o(s,t))) = 0 or cu„w(o(0, i)) = cu„w(<5(l, t)).

This proves 4.2, hence proveslLemma 4.1.

Theorem 4. 7/ M is simply connected and has a complete parallelism (oj¡)

satisfying 4.1, r/ien the parallelism on M is isomorphic to the product parallelism

on F x F'.

Proof. By Lemma 4.1, construct maps 0' : M' -* F' and 0 :M->F. Since

0/ = identity and 0'/' = identity, F and F' are simply connected, as is F x F'

then. Construct the product map 0" : M -y F x F'. It is clear that it is a parallelism

homomorphism, and a local diffeomorphism. The proof will be finished on

proving :

Lemma 4.2. Suppose M and M' are spaces with absolute parallelisms, M

complete and M' simply connected. Let 0 : M -*■ M' be a parallelism homo-

morphism that is a local diffeomorphism. Then, <p is a diffeomorphism of M

with M'.
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Proof. Suppose the forms (m) (resp (co')) define the parallelism on M (resp

M). (¡> : M ^ M' is a parallelism homomorphism if: 0*(co¡) = A^co -, with

(y4j;) a constant matrix. Since we are requiring that 0 be a local diffeomorphism,

it must be a nonsingular matrix. Let a, : [0, 1] -* M' be a curve, with

<r*(co¡) = ^¡(íJíZí. By well-known arguments [1, Theorem A, p. 360], it suffices

to prove that, for each x0 e 0_1(o,1(O)), there is a curve o, : [0,1] -> M with

o(0) = x0 and 0(ff(t)) = <7i(0- Then, if ff*(a»¡) = B¡(í), we must have

¿¿i) = AtJBj(t).

Conversely, B¡(t) can be obtained by solving these linear equations, o can be

defined using completeness of the parallelism on M, and then <¡>o = a, by the

uniqueness part of 2.1.

5. Remarks on the proof of the de Rham reducibility theorem [5], using

Theorem 4. Let B be a Riemannian manifold of dimension n, lg i, j, — g n.

Let £ be a bundle of orthonormal frames over B, a manifold with an absolute

parallelism (co¡, oj¡j) defined by the Levi-Civita parallelism on B, satisfying the

structure equations [1;3]:

dco¡ = oj¡j A o)j,       cou + a>¡j = 0,

d(o,j = coik A o>kj - Rijkl(ok A co,.

To say that the holonomy group of B is reducible is (more or less) to say that the

structure group of E can be reduced from 0(n) to 0(m) x 0(n — m) in a torsion-

free way. For us, this will mean that there is a submanifold £' of frames such

that:

coau = 0 on £',   (l^fl,i),-|m;m + l|u,D,-^n).

5 í dcom = oj„w A ojwv - Ruvwxcow A cox,

d0)ab =   (Oac A COcb - Rabeare A cod-

We indicate how this is equivalent to the usual definition of reducibility. Pick

a b0eB and subspaces T,T' <= Bbo such that Bbo= T® T, dim T=m,

dimT'=n — m, and Tand T" are invariant under the holonomy group, i.e., parallel

translation of a vector of T(resp T) around a loop beginning at x0 gives a vector

in T(resp T). Let ee£ be an orthonormal basis of Bbo whose first m vectors

be in T, last n — m in T'. £' is then the set of bases of the tangent space of B

obtained by parallel translating e along all curves in B starting at £>0. Thus, we get

perpendicular fields b -»• Tb and b -* Tb of tangent subspaces of B obtained by

parallel translating Tand T 'along any curve joining b0 to b. It can be proved

that these fields are completely integrable, i.e., define two foliations on B, and

that R(v„v2) = 0 for v, e Tb, v2 e Tb,' all b e B, where R(,)( ) is the Riemann

curvature tensor.
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After making explicit the relation between parallel translation and R(,)( )

on B and the forms ©,, oj(j-, R¡jkícok A <w( on E [1], relations 5.1 are obtained.

Suppose the metric on B is complete and that B is simply connected. It is easy

to see that (a>„ coab, couv) defines a complete parallelism on E'. (In fact, the metric

d92 = a», • ü)¡ + (oab • (oab + (ouv ■ couv is complete.) However, E' is not necessarily

simply connected. To get around this, let M be the simply connected covering

space of E'. The forms pull up to M to define a complete parallelism for M again

satisfying 5.1. (We denote the forms pulled up to M by the same letters.) The map

M -* B is a fibre map, hence its fibres are connected, since B is simply connected.

The fibres are the leaves of the foliation co. = 0. By Theorem 5, M is isomorphic

to the product of the leaves F and F' of the foliation defined by: coa = 0 = œab

and o»u = 0 = couv. It is easy to see that the image of F (resp. F') is a leaf L (resp

L') in B of the folati on b -» Tb (resp b -> Tb). The isomorphism F x F' -> M

constructed by Theorem 4 then passes to the quotient to define a mapping

L x L -+ B that can be shown to be a local isometry. Theorem A,p. 360 of [1],

then proves that this map is an isometry.

Bibliography

1. W. Ambrose, Parallel translation of Riemannian curvature, Ann. of Math. (2)64(1956),

337-363.

2. E. Cartan, Oeuvres complètes, Gauthier-Villars, Paris, 1955.

3. —-, Géométrie des espaces de Riemann, Gauthier-Villars, Paris, 1946.

4. C. Chevalley, Lie groups. I, Princeton Univ. Press, Princeton, N. J., 1946.

5. G. de Rham, Sur la réductibilité d'un espace de Riemann, Comment. Math. Helv. 26

(1952), 328-344.
6. C. Ehresmann, Les connexions infinitesimals dans un espace fibre différentiable, Colloque

de topologie, Brussels, 1950, pp. 29-55.

7. R. Hermann, On the differential geometry of foliations, Ann. of Math. (2) 72 (1960),

445-457.

8. -, The differential geometry of foliations. II, J. Math. Mech. 11 (1962), 303-316.
9. N. Hicks, A theorem on affine connections, Illinois J. Math. 3 (1959), 242-254.

10. S. Kobayashi, Les groupes des transformations qui laissent invariant une parallélisme,

Colloque de topologie de Strasbourg, 1954-1955.

11. K. Nomizu, On local and global existence of Killing vector fields, Ann of Math. (2) 72

(1960), 105-120.
12. B. Reinhart, Foliated manifolds with bundle-like metrics, Ann. of Math. (2) 69 (1959),

119-131.

13. I. M. Singer, Infinitesimally homogeneous spaces, Comm. Pure Appl. Math. 13 (1960),

685-697.

14. N. Steenrod, Topology of fibre bundles, Princeton Univ. Press, Princeton, N.J., 1951.

Lincoln Laboratory,

Lexington, Massachusetts


