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Introduction. In the theory of crossed products, a central simple algebra is con-

structed from a given normal splitting field by extending the multiplicative group

ofthat field by its Galois group and embedding the result into a ring. An analogue

of this theory for purely inseparable fields of exponent 1 was worked out by

Hochschild [2] : Given an extension E of the ground field K of characteristic

p>0 such that E" <=. K, one considers certain "regular" extensions of E—

regarded as an abelian restricted Lie algebra—by the restricted Lie algebra of

its K-derivations; an appropriate associative embedding of the resulting Lie-

algebras yields central simple K-algebras of dimension (E : K)2 split by E. This

procedure is generalized in [3], where instead of E some central simple £-algebra

A is extended by the derivation algebra of E/K. The present paper concerns

itself with a simpler, more explicit version of this construction, a version which,

for the case A = E, was already given by Jacobson [5] in 1937. Its transparency

is due to the use of only one derivation instead of a whole algebra of them. Thus

it is essentially "cyclic" and independent of the Lie structure of the set of K-

derivations of E. On the other hand, it necessarily has the disadvantage of not

being canonical.

The use of derivations in the study of algebras goes back to Teichmüller [7].

There, however, only the simplest case (E = K(z), zp e K) is treated, and the

derivations are mainly used to deduce the existence of normal fields in an al-

gebra from the existence of purely inseparable ones, just as in §6 below.

In Jacobson's short paper [5], derivations play a role more obviously analogous

to that of automorphisms in the theory of cyclic algebras. After Hochschild's

work [2; 3], the subject is again touched by Amitsur [1], who studied in detail

the ring of "differential polynomials" from which the algebras considered here

are obtained as residue-class rings. Our aim is to provide a short direct approach

to results similar to but more explicit than those of [2; 3]. The tools used are

well-known results of Jacobson [4] and Ore [8].
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1. On derivations. Throughout §§1 to 6, K will be a certain field of charac-

teristic p > 0, and Z an extension field such that Zp <= K and (Z : K) = pm. Un-

less otherwise stated, all derivations considered will be K-derivations, that is,

they will be linear over K.

The Z-dimension of the vector space Dz/K of derivations of Z into itself is

m, and, as Jacobson [4] pointed out, there always exist derivations d such that

{d,d",---,dpm '} is a basis of Dz/K over Z. Such derivations are called genera-

tors of Dz/K and characterized by the property that their null-field is precisely K.

(Clearly, then, any derivation is a generator of Dz¡Kl, where K, is its null-field.)

The characteristic polynomial/(x) (over K) of a generator is a p-polynomial of

degree pm and is at the same time its minimal polynomial. These facts follow

quickly from the paragraph after Lemma 3 in [4].

Associated with each generator d of D7jK is an additive homomorphism Td

from Z into K. If the minimal polynomial of d is f(x)= H^qX,^, then

Td(C)= Er=oA» I?=o(d"i"1Opk" for ÇeZ. In §12 of [4], Jacobson introduces

such a map and calls it V although it does depend on the choice of d(2). It is

implicit in his calculations that Td(Q =/(« -I- z) -/(«) whenever Z is contained

in a ring R, and u eR is such that uz — zu = dz for all zeZ. This is a most

important property of Td, making it an additive analogue of the norm function

on a cyclic extension field. In this context, let the cyclic extension C of K be

contained in a ring R with identity, and let ueR be such that the transforma-

tion £ -> uÇu~' i£ e C) generates the Galois group of C; then the norm of c e C

equals (uc)"u~n, where n is the degree of C.

A generator d of Dz/K will be called separable, if its minimal polynomial/(x)

is separable.

Proposition 1.1.    d is separable, if and only if dp is a generator.

Proof.   If dp is not a generator, it satisfies an equation

(dp )pn+fi„-1(dp)p''-l+ - -h H0dp = 0 (fteZ)

with n < m.This is possible only if n 4- 1 = m, but then the elements p¡ coincide

with the coefficients of the minimal polynomial of d. Evidently the latter could

not be separable. Conversely, if d is not separable, its minimal polynomial can be

written as a polynomial of degree pn'x in x", and d^id1)", -,idp)pm' 'are linearly

dependent.
Suppose now that d is a separable generator and let £ be a separable splitting

field of its polynomial. We set Z = E®KZ and extend d to Z by prescribing

die ® z) = e ® dz. In this situation, we have

(2) Let m = 1, Z=K{z). Then d:i-+\ and D:z-+z are both generators of Z>z/K-

Putting r = z*-1, we have T„(0 = f—1, whereas TD(C) = C- It is unknown whether or not

the module rd(Z) is independent of d.
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Proposition 1.2. There exist 0Ll--ctmeE, linearly independent over the

prime field, and z1---zmeZ, such that

Z = E(z1--- zm)       and       dzi = xizi.

Proof. The proper values of d form an additive group of order pm because

of the separability of d. Let {ax ••• am} be a basis of this group over the prime field,

with corresponding proper vectors zy-zm. Since the products z\l •••z¡£"

(0^V|<p) correspond to the pm different proper values of d, they span 2 over

E. Hence 7. = E(zx •••zm).

If a separable generator has all its proper values in K, it will be called regular.

A kind of converse of Proposition 1.2 is

Proposition 1.3. Let Z =K(zx ■•■zm). Given a1-ameX, linearly indepen-

dent over the prime field, there exists a unique regular generator d, such that

dz¡ = a,Z;.

This statement guarantees the  existence  of regular  generators of D2/K.

Its proof is elementary and need not be given here.

For use in §4, we shall finally establish the following property of derivations.

Proposition 1.4. Let S be a separable commutative algebra over Z. For

deDz/K, let d denote the unique extension of d to S. Then d(S) r\Z = d(Z).

Proof. Obviously, d(Z) £ d(S) HZ. Let Kl be the null field of d; (Z-.KJ = p",

Since (d(Z) :Kt) = pn- 1, it suffices to show that d(S) nZ#Z.

The minimal polynomial f(x) of d over Kt is a p-polynomial of degree p".

Let g(x) = (1/x) -f(x). For ÇeJ(S)OZ, there exists r¡eS such that dt\ = t,.

Hence g(d)(Q =f(d)(r\) = 0. If Z were equal to d(S) r\Z, we would have

g(d) = 0.

2. The ring ä[m;£>|. Let R be a ring with a given derivation D.R -» R. We

define the ring R[u;D] of "differential polynomials" to be the set of formal

polynomials

íj0 + atu + •■• + anu", OiSR,

on which addition is defined as usual and multiplication with the aid of the basic

rule

(1) ua = au + Da, aeR;

that .si strictly speaking, by the distributive law and the rule

(2) (au^bu1) =     I    (k)a(DJb)ui+'.
i+j=k \1/

is formally obtained by a fc-fold application of (1) to the product ukb, asso-
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ciativity of multiplication being assumed. Associativity of the multiplication

given by (2) is most easily verified by starting with the well-established additive

group M of these polynomials and showing that R[u;£)], as defined, is isomorphic

to the ring of endomorphisms of M generated by the maps

r : auk -* (r a)uk, reR,

and

m : auk -> auk*1 + (D a)uk,

provided, of course, that the ring R = {r\reR} is isomorphic to R (this can

be achieved by adjoining an auxiliary identity element to R, if it does not already

have one).

We note that R[w;D] is universal in the following sense. If 0 is a homomor-

phism of R into a ring R' which contains an element ü such that

ü<p(r) — <j>(r)ü=<p(Dr) (reR), then <j> can be extended to a homomorphism

<t>' : R(u ;D\ -> R' by setting <¡>'(u) = ü.

The ring defined in this section has been studied by Ore [9] and, more recently,

Amitsur [1]. In [9], it appears as a special case of a ring of "noncommutative"

polynomials. In [1], with R simple, the main emphasis is on the ideals of R[i/;D].

3. Differential extensions. A construction will be described in this section, by

which a central simple Z-algebra A can be embedded as the centralizer of Z in

a central simple K-algebra. The following assumptions must be made about A :

(1) There is a derivation d on A whose restriction d to Z is a generator of

£>z/k» and

(2) A contains an element c, such that dc = 0 and adc =f(d)(3).

Let/(x) again denote the minimal polynomial of d. We denote by (A,d,c)

the K-algebra obtained by imposing the relation/(u) = c on the ring A\u;d\

A K-algebra so constructed will be called a differential extension of A to K.

The basic theorem of this paper is

Theorem 3.1. Let B a K-algebra. B ~(A,d,c + y) with yeK, if and only

if B is central simple and contains A as the centralizer of Z.

It should be noted that c + y satisfies the same condition as c. To prove that

(A,d,c) is central simple, we first establish two lemmas.

Lemma 3.1.    The elements uk (O^k < pm) form a left A-basis of (A,d,c).

Proof. According to the preceding section, j4[m;í7] has the left ,4-basis

{uk\ k ^ 0}. Let J be the ideal in 4 [»;</] generated by/(u) - c. Since /(«) is a

K-linear combination of p-powers of u, we have ad/(u) =/(adu). Restricted

to A, this means ad/(u) =f(d) = ad c. Hence/(u) - c commutes with A. It also

commutes with u, since dc = 0. Therefore f(u) — c is in the center of A [u;d],

(3) For every r in a ring R, ad r is the inner derivation by r, mapping xto r ° x = rx — xr.
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so that J = A{u;dJ- (f(u) - c). Since/(u) - c has "degree" pmand the coeffi-

cients of the powers uk (k > 0) are in K, no nontrivial element of J can have

degree less than pn. Thus {uk 10 ̂  fc < pm} are linearly independent over A

modulo J. On the other hand, it is obvious that they span A [«; J] modulo J.

As a result of this lemma, every element of (A,d,c) can be uniquely written as

a„u + ••• + atu + a0 (0 ^ n < pm: a^A). Thus we can speak of the degree of

such an element (in the above case n, if an # 0).

Lemma 3.2. Given b = anu" + ••• + a0, there exists zeZ such that b o z # 0.

The degree of b oz is less than that of b.

Proof.    For arbitrary zeZ, it is easy to calculate that

ukz =   Z (feW'z)u*-'.
i = 0\ l I

Hence

boz= Z ak(ukz-zu*) =  Z flt Z (fcWz)u*-'.
k = 0 fc = 0        i -1 \ ' /

The last expression contains no term in u"; thus the second part of the lemma

is verified. The coefficient of u° is a„d"z + ■■■ + a0z. It suffices to show that it

does not vanish for all z; for by the previous lemma this term cannot be cancelled

by the others.

(Z:K) = pm. On the other hand, the solutions of and"z + ••• + a0 = 0

form a space of dimension at most n over K. In fact, if z0---z„ are linearly in-

dependent over K, the Wronskian det (dJz¡) (i,j = 0, •••,«) does not vanish. In the

vector   space   Z"+1   of (n + l)-tuples  in   Z,   the  vectors   Vk = (dkz0---dkz„)

(k = 0,--,n) form a basis. Hence the equation a„Vn -I-1- a^Vç = 0 is impossible
inA®KZn+l.

The first part of Theorem 3.1 can now be proved.

K is in the center of (A, d,c), since it commutes with u. Conversely, Lemma 3.2

implies that a central element of (A,d,c) must be in A, and therefore in Z; in

order to commute with u it must finally be in K. Thus (A, d, c) is central over K.

Let I be a proper ideal of (A,d,c). Since A is simple, I nA = {0}, i.e., the

degree of every element of / is positive. Let bel have minimal positive degree.

Since b ozel with smaller degree, we must have b o z = 0 for all z e Z. This

contradicts Lemma 3.2.

Finally, let Ai be the centralizer of Z in (A,d,c). It is well known that

((A,d',c):K) = (Al :K)(Z:K), so that (A^ :K) = ((A,d,c) :Z)(4). On the other

hand, A^A^ and ((^4, d, c):Z) = p'"(A :Z) = (A: K). Hence Ay = A.

(4) The equation used here follows from a general theorem of representation theory, which

will be used more fully later: let R be a simple algebra, M a representation module of R, and

5 the algebra of JJ-endomorphisms of M; then 5 ~ R' (~ denoting similarity in the sense of

Brauer and ' denoting anti-isomorphic copy) and (dim R) (dim S) = (dim M)2.
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For the second half of Theorem 3.1, we recall that every derivation from a

semi-simple subalgebra of a central simple /C-algebra B into B is extendable to

an inner derivation of B [4, Theorem 7] ; this result will in the sequel be referred

to as Jacobson's theorem. In the situation of our theorem, it follows that there

exists ueB, such that ua — au = da for all aeA. Set f(u) = c'. Obviously c'

satisfies condition (2). Thus 0 = ad c — adc' = ad(c — c'), and c — c'eZ;

furthermore d(c — c') = 0, so that c' = c + y, with yeK. We have shown that

the subalgebra of B generated by A and u is a homomorphic image of (A, d, c + y).

By simplicity of the latter and a look at the dimension ((B :K) = (Z :K)(A :K))

the theorem is established.

Theorem 3.2.   (A, d,c + yx) ~ (A, d,c + y2)  if and only  if yx - y2 e T/Z).

Proof. Let the indeterminates used in the construction of the two differential

extensions be ux and u2 respectively. Suppose an isomorphism a :(A,d,c + Vj)

-*(A, d,c + y2) to be given. It is well known that the isomorphism between o A

and A in (A, d, c + y2) may be extended to an (inner) automorphism of the latter.

Hence we may assume right away that a leaves A fixed.

Now, (ouj) oa = ouiooa = o(uxoa) = da for all aeA; in other words,

ad(<rUl) = adu2 or *«, = u2 + t (ÇeZ). Tä(Q =f(u2 + Q _/(«,) = af(ui)-f(u2)

- 7i - Jz-
Conversely, it is now clear that the correspondence ux -* u2 + £ where

ÇeTi~1(yx —y2), induces an isomorphism between the two given algebras.

Theorem 3.2 classifies differential extensions involving a fixed derivation d.

It may be added that, if d is separable, (A, d,c) ~(A,dp,cp); the proof of this

is almost obvious. In this connection, it may also be asked, if by proper choice

of d, c can be chosen in K. This can only be done if A is obtained by extending

the ground field of a K-algebra. We have the following

Proposition. f(d) = 0 if and only if A = B ®KZ, where B is central simple

over K, and d is the derivation mapping b ® z to b ® dz (beB, zeZ).

Proof. Putting A = Z, d= d and c = 0 in Theorem 3.1, one obtains a central

simple K-algebra (Z,d,0), in which Z is a maximal commutative subring.

lif(d) = 0, the differential extension (A, d, 0) can be constructed and contains

an isomorphic image C of (Z, d, 0). The centralizer B of C is another central

simple K-algebra contained in (A, d, 0). This is possible only if (A, d,0) ^ B ®KC.

In this form, A corresponds to the centralizer ofZcC, namely B ®KZ. Finally,

since the indeterminate u is in the centralizer C of B, we have db = 0 for beB

and hence d(b ® z) = b ® dz.

The converse is trivial.

This section will close with a theorem on Kronecker products of differential

extensions. For Kronecker products over K, the symbol ® will be used without
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subscript; further, the convention of denoting the anti-isomorphic copy of a

ring R by R' will be adopted. Given central simple Z-algebras A, and A2 with

extension d, and d2 of a fixed generator d of Dz/K, it is easily seen that d is ex-

tended to A, ®ZA2 by d,® zd2: a, ®za2-* d,a, ®za2 + a, ®zd2a2. We have

Theorem 3.3.   // B¡ = (Ahduc¡) (i = 1,2), then

B1®B2~(a,® A2, d, ® d2, c, ® 1 + 1 ® c2 J(5).
\       z z z z      /

Proof. Consider the Z-space M = B, ®ZB2. M = (B, ® B2)/R, where R is the

subspace of B, ® B2 spanned by the differences (zb, ®b2 — b,® zb2) (zeZ).

Obviously, R is a right ideal and the right regular representation of B, ® B2

induces a nontrivial representation of B', ® B2 on M. Hence B,®B2~B, where

B is the algebra of B', ® B2-endomorphisms of M. The previously cited relation

between the dimensions of a simple algebra, its representation module, and the

endomorphism algebra of this module shows that (B : K) = ((A, ®ZA2) : K)p2m.

Since (A, ®ZA2, d, ®zd2, c, ®zl 4- 1 ®zc2) has exactly that dimension, the

theorem will be established, if a homomorphic image of it is found in B.

Let u¡ be the indeterminate in the construction of (A¡, d¡, c¡) (i = 1,2) and

consider the subalgebra B* of B, ® B2 generated by w = ut ® 1 4- 1 ® u2 and

the elements a, ® a2 (ateA). It is easily seen that R is a natural left B*-module

and hence that there is a representation <p of B* on M. Furthermore, (j>iB*) s B.

Since iza, ®a2 - a, ® za2) Bx ® B2 £ R, (j)(za, ® a2) = <f>ia, ® za2) and

A, ®zA2 can be identified with the algebra generated by {<f>ia, ®a2)}.

Let v = <t>(w).

vo(a, ®za2) = (¡>(w o(a, ® a2))

— 4>(d, a, ® a2 + a, ® d2a2)

= d,@zd2(a, ®za2).

Fmally' f(v) = <¡>f(w) = <t>fi[u, ® 1] 4- [1 ® u2])

=   c, ®zl 4- 1 ®ZC2-

4. Existence of differential extensions. It is well known [3, Theorem 6; 4, §10]

that any X-derivation of Z is extendable to A. Of the conditions (1) and (2)

introduced in §3, the first is therefore always satisfied, and the existence of dif-

ferential extensions of A to K is equivalent to condition (2). It, too, is always

fulfilled. In fact, Hochschild [3, §3] has shown that A can be embedded as the

centralizer of Z in a suitable central simple X-algebra B. Even more generally,

if R is any simple ring with a derivation D, it is proved by Amitsur in [1, Corol-

lary 2] that R can be embedded in a simple ring in which D is induced by an

(5) For the proof, the reader is reminded of the result stated in footnote (4).
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inner derivation (although this second ring is not unique up to isomorphism,

as claimed in [1], cf. Theorem 3.2). Both these results immediately imply the

existence of differential extensions for arbitrary A. Our object is to take a more

direct route by simply verifying (2).

Theorem. Given a generator d of Dz/K, there exists an extension d to A

and an element ce A, separable over K, satisfying (2).

Proof. Let S be a separable, maximal commutative subalgebra of A. d has a

unique extension d' to S. If ¿7 is an arbitrary extension of d to A, its restriction

to S differs from d' by an inner derivation i of A, by Jacobson's theorem. Thus

d =d+ i coincides with d' on S. f(d) = 0 on S. Jacobson's theorem now implies

the existence of be A, such that ad b =f(d). Since S is maximal commutative,

beS.

Clearly, df(d)=f(d)d, or ¿(ad b) = (ad b)d. Thus for all a e A, d(boa) =
(db)oa + b o(da) = boda. Hence (db) o a =0; i.e., db e Z. By Proposition

1.4, db = dz for some z e Z. Set c = b - z. We still have ad c = ad b =f(d) ; moreover,

dc = 0.

As pointed out in [3, §3], an interesting consequence of this theorem is the

fact that the Brauer group BK of similarity classes of central simple K-algebras

is an extension of the subgroup B\ of classes split by Z by the group Bz(b).

Denoting a similarity class by square brackets, one easily sees that BK breaks

up into sets of the form {[(A,d,c + y)~] \A,d,c fixed; yeK}; these, however, are

cosetsofB^, since (A,d,c + y) ~ (A,d,c) ®K(Z,d,y), and since B\ = {[(Z,^)]},

as will be seen in the next section; finally, the map [(A,d,c + y)~] -> [4] is a homo-

morphism from BK onto Bz.

The original purpose of introducing differential extensions is the systematic

construction of p-algebras. Let £ be a maximal subfield of a p-algebra over K,

such that E = Z0 ■=> Zx => • • • dZ„ = K and Zf_ x c Z¡ (it is a well-known

peculiarity of p-algebras that they have purely inseparable splitting fields). We

fix generators d, of Dz._i/Z. (j = 1, •••,») and extensions d¡ of d¡ to the centralizers

^¡_! of Z,_j in B. Then Ai = (Ai_u d¡, c(_x) for suitable £¡.^4! and

B = (An_lf dn, c„_i) is obtained from E by n successive differential extensions.

Conversely, if n differential extensions are carried out formally, starting with E,

the result is a p-algebra over K with E as maximal subfield. To make this con-

struction explicit would be to provide an analogue of the crossed product con-

struction for p-algebras. A paper on this problem is in preparation.

5. The algebras (Z, d, y). We now specialize the considerations of § 3 to the case,

where A = Z and c = 0, and obtain the algebras already constructed,  in the

(6) By an easy induction, this actually holds for any purely inseparable Z, not only for those

of exponent 1.
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same way, by Jacobson [5]. Corresponding to Theorems 3.1 to 3.3, we then

have:

Theorem 5.1. A K-algebra B is of the form (Z,d,y), if and only if B is cen-

tral simple and contains Z as a maximal subfield.

Theorem 5.2.   (Z,d,yx) =* (Z,d,y2), if and only if yx — y2 e Td(Z).

In [5] Theorem 5.1 and the criterion, given below, for the splitting of (Z,d,y)

are proved.

Theorem 5.3.   (Z,d,yi) ®K(Z,d,y2) ~ (Z,d,yx + yz)C).

Furthermore, it is easily seen that (Z,d,0) is the algebra of matrices of degree

pm over K, so that (Z, d, y) splits over K, if and only if y e Td(Z). These results

yield an additive description of the Brauer group B%, namely

Theorem 5.4.   B\ ca K+/Td(Z), K+ denoting the additive group of K.

Proof. Consider the map o:K+->BK defined by o(y) = [(Z,d,y)]. By Theo-

rem 5.3, o is a homomorphism; its kernel is Td(Z) by the remark preceding this

theorem. Finally, since every class of B\ contains an algebra with Z as maximal

subfield, <r is surjective by Theorem 5.1.

It is apparent now that the theory of differential extensions of Z bears a strong

formal resemblance to that of cyclic crossed products. The role of the norm in

the latter is played here by the additive map Td. As Jacobson proved [4, Theorem

15], Td(z) = 0 if and only if z = dÇ/Ç for some r e Z. The map Ö : Ç -* dÇ/Ç is a

homomorphism from Z* (multiplicative group) into Z +. Thus, the exact sequence

0-+K* -*Z* iz+-\ K+ ->Bl-+0
is the analogue of

0->Kx->Cx ^ C*Z.KX -^5^0

in the case of crossed products of a cyclic extension C of K, where s(c) = c/c"

(a being a generating automorphism) and v is the norm function. The flaw in

this analogy is the dependence mentioned in §1 of Td on d.

6. Connection with crossed products. Unfortunately the method of differential

extension of a field does not allow one to construct algebras that cannot be

obtained by more classical means : the algebras discussed in the preceding para-

graph are constructible as crossed products. In fact, provided d is regular, every

description of an algebra as a differential extension (Z, d, y) canonically yields

a description of it as a crossed product. In this section, we shall discuss this duality

of possible descriptions. Throughout it; d will denote a fixed regular generator

(7) For m = 1, Theorems 5.2 and 5.3 are contained in [7] as Theorems 3 and 8.
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of Dz/K. Further fixed objects: V, the additive group of proper values of d; P,

the multiplicative group of proper vectors of d; and/(x), the minimal polynomial

of d. We note that Fis a submodule of order pm of K+, P is a subgroup of Z .

Mapping a proper vector onto the corresponding proper value yields an iso-

morphism of P/Kx and V. f(x) = ]TAeV (x — X) is separable, and so is f(x) — y

for any y e K.

The term "crossed product" will be used in a slightly wider than normal

sense. Let S be a finite dimensional, commutative, separable X-algebra with a

group G of K-automorphisms (not necessarily all). Given a factor set

a:G x G-*SX (multiplicative group) satisfying the usual associativity relations,

one obtains a X-algebra (S,G,a), a crossed product of S by G, in the usual

way. Of course, we are interested in the case where (S, G, a) is central simple

and of dimension (S : K)2. For this, Teichmüller [6] gave the following neces-

sary and sufficient conditions:

Let S = N0 © ••• © Nn, a direct sum of fields N¡.

I. If a e G and o \ N0 = 1, then a = 1.

II. G is transitive on the set of fields {N0-~N„}.

III. If se Sand sa=s, then seK.

A group satisfying I, II, III, will be called a T-group on S.

Given an algebra in the form (Z, d, y), consider the subring S generated by K

and the standard element u. Evidently, S ~ K\x\/(f(x) — y) is a separable com-

mutative K-algebra. The substitution u->u—X (XeV) defines a X-automorphism

<rx on S, because/(w — X) = y =f(u). Let G = {ax | X e V}. It is easy to find elements of

(Z,d,y) which "produce" these automorphisms: zuz~x = u — X, if z is chosen

in the coset Px of P modulo K * for which uz — zu = Xz (X e V). Selecting re-

presentatives zk e Px and putting a(ax, a^) = z^^zl^, for X, p. e V, it is obvious

that (Z, d, y) = (S, G, a). Since (Z, d, y) is central simple with Z maximally com-

mutative in it, G must be a T-group on S (a direct verification of this fact is easy).

We have shown

Theorem 6.1. In (Z,d,y), let S = K[u], and G be the group of automor-

phisms of S defined by u-+u — X (XeV). G is a T-group on S, and

(Z, d, y) = (S, G, a), where a is any factor-set corresponding to the extension P

of Kx by G.

We remark that the generating element « of S generates (in another sense)

the derivation algebra of Z, while reciprocally, the generating elements {zx} of

Z generate "the" automorphism group of S.

In [6] it is proved that (S, G, a) ~ (N0, H, a(0)), where H is the subgroup

{a e G | N"0 = N0} (isomorphic to the Galois group of N0/K), and a(0) is obtained

from a by restricting the domain to H x H and projecting the image into N0. In

our situation, the algebra (No>H,am) clearly would be a differential extension of
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the field Z0 generated by those zx for which ax e H. Z0 is also a splitting field of

iZ,d,y); its dimension is equal to that of N0. Hence

Theorem 6.2. If Z is a minimal splitting field ofiZ,d,y), then S is a normal

extension field of K, G its Galois group, and iZ,d,y) a crossed product in the

usual sense.

7. An application. Let L be a Lie algebra over a field F of characteristic

p>0 with basis B = {u0,u„••-,"„,}. For veL, the minimal polynomial of the

linear transformation ad v : u¡,-* v o u¡ divides a certain p-polynomial i¡/(x). ip(v)

lies in the center of the universal embedding algebra % of L. The idea of these

polynomials is due to Jacobson; accordingly we shall call \¡i(x) the Jacobson

polynomial of v. Let ^¡(x) be the Jacobson polynomial of u¡ and denote by y¡

the central element ¡¡/¡(u) of $i. J(B) will stand for the subalgebra of <?/ generated

by y o ■" ym- The "ng D °f quotients with denominators from J(B) is an algebra

of p-power dimension over the quotient field K(B) of J(B). Since D has no zero-

divisors, it is a division p-algebra over its center, which must be some finite

extension of K(B). It remains to mention, that K(B) = F(y0 ■ ■ ■ ym) is purely

transcendental. Details are found in [10].

In [10], Zassenhaus also shows that an F-homomorphism 9 of the center of

<% onto an extension field C of F induces an F-homomorphism of % onto an

algebra containing C in its center (the latter will be called the specialization

of % induced by 0). It was his question as to the nature of these p-algebras D

and the specializations of Ql which initiated the present investigations. Here, now,

is a fragment of an answer.

Let oc1--ameF be linearly independent over the primefield and consider the

Lie algebra Lwith basis B = {u0,u,, •■■ ,um} and multiplication utOUj = 0(i,j # 0)

and u00U; = a¡u¡. Such a Lie algebra can be described as one whose root spaces

(including the Cartan-subalgebra) are 1-dimensional and whose roots are linearly

independent over the prime field. In the notation introduced above, we have

Lemma.     The center of D is K(B).   (D : K(B)) = p2m.

Proof. For i ^ 0, it is clear that i¡/¡(x) = xp. Hence uF = y¡ e K. The minimal

polynomial of adu0 is of degree ;S m, and therefore i¡/0(x) has degree at most

pm. Hence (D : K(B)) ^ p2m.

Let K, be the center of D. adu0 defines a Xi-derivation d on the field

E1 = K1(ul-um); d(«î'---u^) = (Ir=1viai)uï1---0- Since d evidently has pm

distinct proper vectors, (E, : K,) _ pm. The dimension of D over Kj is at least

(Ei : K,)2 = p2m. The lemma is established, as we have p2m ̂ (D : K,) ^ (D : K(B))
ÛPln-

As a result of this lemma, we can write K instead of K(B).
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Theorem 7.1. D ~(E,d,y0), where E = K(ut •■■ um) and d is the derivation

induced by ad u0. d is regular.

Proof. Since (E:K) = pm, Eisa maximal subfield of D. d clearly is a regular

generator of DE/K and w0 is exactly such that dX = w0o X, for X e E. Finally >p0(x)

is the minimal polynomial of d, because it is of degree p"\ and 4/o(uo) — yo-

We make two observations :

(1) Since D is a division algebra, it is a crossed product of K(u0) by its abelian

Galois group.

(2) Every algebra of the type (Z,d,y) and of dimension p2m depends on (among

other things) m + 1 parameters from its center K, namely, y and the pth powers

of the generators of Z. If K is a field of rational functions in these parameters,

(Z,d,y) is a division algebra.

The following theorem can now be stated without proof.

Theorem 7.2. Let Z = F(z1--- zm), where zf = ftsf and ß1---ß,„ form a

p-independent set. Let d be the derivation of Z defined by dz¡ = «tzt. Then

(Z,d,ß0) is the specialization of °ll induced by the map 9 of F[y0,••■,.ym](8)

onto F for which 0y¡ = ßt.

Theorem 7.2 states that any central simple F-algebra of dimension p m,

containing a purely inseparable maximal subfield of exponent 1, can be obtained

from °M by a suitable specialization of the center of ■?/ onto F. Conversely, every

such specialization 9 maps "?/ onto such an algebra, provided that {9(y¡) | / ^ 0}

is a /^-independent set.
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