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Introduction. Let iX,T) be a transformation group whose phase space X

is a uniform space. Most of the results are stated for compact X. In this paper,

four proximity relations, L, M, P, and Q, in X are defined and some of their

properties studied. The relations P and Q were first defined and studied by Ellis

and Gottschalk [5]. As a general reference for the notions occurring here, con-

sult [8].

In Theorem 1, Lis shown to be an invariant equivalence relation in X, and

in Theorem 3, L is characterized as the union of all orbit closures under (X x X, T)

which are contained in P. Theorem 3 also shows that if P is closed, then P = L and

P is a closed invariant equivalence relation in X. Theorem 4 establishes the

productivity of the relations Land M, and in Theorem 7, it is shown that {X,T)

is coterminous, i.e., P = Q = L= M, iff P = Q. Theorems 9 through 13 describe

L, M, P, and Q under various hypotheses such as (X,T) distal; iX,T) minimal

and Tabelian; (X,T) regionally mixing; and the like.

Theorem 14 is an application of the general theory to obtain a characterization

of iX,T) being uniformly equicontinuous, and as such represents a strengthening

of a theorem by John D. Baum [2].

The author is indebted to Professor W. H. Gottschalk for his invaluable sug-

gestions, mathematical stimulation, and sustained interest.

Standing notation. Let(Z,T)be a transformation group where X is always

a uniform space. Let sé be the class of all syndetic subsets of T, let J>f be the class

or all compact subsets of T, let ^ be the uniformity of X, and for each x e X let

jVx be the neighborhood filter of x.

Definition 1. (1) The isimply) proximal relation ofiX,T) denoted PiX,T)

of PiX) or Px or P, is defined to be the set of all (x,y) e X x X such that if <x e <?/,

then there exists t e T such that (xi, yt) e oc.

(2) The regionally isimply) proximal relation of iX,T), denoted QiX,T)

or Q{X) or Qx or Q, is defined to be the set of all (x,y) e X x X such that if
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ae°U, if UeJfx, and if VeJfy, then there exist xx eU, yxe V, and te T such

that (x1í,j'1í)ea.

(3) The syndetically proximal relation of (X,T), denoted L(X,T) or L(X)

or Lx or L, is defined to be the set of all (x,y) e X x X such that if a e ^c, then

there exists /I e sé such that í e A implies (xt, yt) e a.

(4) The regionally syndetically proximal relation of(X,T), denoted M(X,T)

or M(X) or Mx or M, is defined to be the set of all (x,y)eX x X such that if

ae<%,if Ue J^, and if Fe Jfy, then there exist xt eU, yxe V, and v4 e si such

that (Xij.yJA c a.

Remark 1.   The following statements hold:

a) L = n u n«**»
set     KeX'      teT

(2) m= n un <**<>
I6K   K e Jf    reí"

(3) p = n ar>
CI 6 *

(4) e = n «t.
« e«

(5)AcLcMcßc:A:xA' and AcLcPcQcXxX. Here

A = {(x,x)\xeX}.

(6) L, M, P, and Q are invariant reflexive symmetric relations in X. M and Q

are closed in I x I,

Definition and Remark 2. The transformation group (X,T) is said to be

repletely distal provided that the following equivalent statements are satisfied:

(1) L=A.
(2) If x, yeX with x # y, then there exists aet and a replete subset A of

T such that (x,y)A c a'.

Definition and Remark 3. The transformation group (X,T) is said to be

regionally repletely distal provided that the following equivalent statements

are satisfied:

(1) M = A.
(2) If x,yeX with x =£ y, then there exist aef, UejVx, and Ve Jfy such

that if *! e U and if yt e V, then there exists a replete subset A of T such that

(xuyx)A c«',

Standing hypothesis. Henceforth we will assume that all transformation

groups have phase spaces which are compact separated uniform spaces unless

statements to the contrary are specifically made.

The purpose of the next three theorems (and associated remarks) is to point

out some general facts about the basic structure of the relations P and L.

Lemma 1. Let T be a group, and let Au A2, Kx, K2, B be subsets of Tsuch

that AxKy => A2 and A2K2 => B. Then (Ax n A2KX1)K1K2 => B.
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Proof. Let beB. There exist a2eA2 and k2eK2 such that b = a2k2.

Choose a,eA, and k,eK, for which a2 = a,k,. Now b = a,k,k2 and

a, = a2k^ eA, n XjKf1. The proof is completed.

Lemma 2. Lei Tbe a group, and let A,,A2,K„K2 be subsets of Tsuch that

T= A,K, = A2K2. Then T=(A,C\ A2K^)K,K2.

Proof.    Use Lemma 1.

Lemma 3. Let T be a group, let n be a positive integer, and let

A,,---,An, K,,--,K„ be subsets of T such that T= A^for i = í,---,n and let

K0 be the identity element of T. Then

T={p,Ai{jJ1Kj)~1) Û,K>-

Proof. We prove the lemma by induction. The statement is clearly true for

n = 1. Let p be a positive integer and assume the statement is true for n = p.

We show the statement is true for n = p + 1. By hypothesis,

T= ÍQ/' (ÑKj)   ) ft Ki and T=Ap+1Kp+i.

From Lemma 2, it follows that

t= ((rU( jj^)1) ni4'+»(n*«) ') {u,Ki)Kp+i

/p+i  />-i \-i\ p+i- (qMjïA') ),üA'
The proof is completed.

Theorem 1. Lei (X,T) be a transformation group. Then L is an invariant

equivalence relation in X.

Proof. It remains only to show that L is transitive in X. Let (x,y) e L and

(y,z)eL. We show (x,z)eL. Let net. Choose j?e* such that ß2cza. There

exist /^ej^ and KeJf such that T=A,K and (x,}>) ¿j <= /?. There exists

A2 esi such that (y,z)A2K~x c /?. Set ,4 = ^ n 42K_1. Now (x,y)A <= ß and

(y,z)A <=. ß, whence (x,z),4 er a. Since /I is syndetic by Lemma 2, (x,z) 6 L. The

proof is completed.

Theorem 2.   Lei (Z,T) be a transformation group. Then LP UPL= P.

Proof. It is sufficient to show PL<= P and LP <= P. Let (x,z)ePL. We show

(x,z)eP. Let aef and yel such that (x,y)eP and (>>,z)eL. Choose ße^

such that ß2 cz a. There exist Ae si, teT, and Ke Jf;such that (y,z)^c=yS and
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(x,y)tK~x c ß and T= AK. Choose setK~l n^. Now (x,z)seß2 a a, whence

(x,z)eP. Similarly, LP <= P. The proof is completed.

Lemma 4. Let (X,T) be a transformation group where X is not necessarily

compact, and let zeL. Then zT c L.

Proof. Let wezT. We show weL. Let aef with a = a. There exists A es/

such that zAaa. Let KeJT such that T=AK. It is enough to show

wtK'1 (~\<x^ 0 for allie T. Let re T.Assume wrK"1 Ha = 0, that is, wrK_1c:a'.

There exists UeJrw such that UlK-1 c a', that is £/íK-1n¡x = 0. Choose

seT such that zse U. Since sreT=/lX, it follows that stK~1r\A=£ 0,

zsííC-1 O zA 5¿ 0 and z4 d: a. This is a contradiction. The proof is completed.

Lemma 5. Let (X,T) be a transformation group, and let z e X x X such

that zfc P. Then zeL.

Proof. Let a. be an open index of X. For each wezT, there exists tweTsuch

that wtw e a. and hence there exists an open neighborhood Uw of w in X x X

such that Uwtw<= a. Choose a finite subset F of zT so that zTc (JWEf Uw. De-

fine JC = {îw|weF} and A = {í ¡ re T. ztea}. It is enough to show that

T=AK~X. Let reF. Then zrezTc \JweFUw and there exists/eF such that

zteUf whence zttfeoc and leAK-1. The proof is completed.

Theorem 3.   Lei (X,T) be a transformation group. Then:

(1) L= {z|zeA-xX.zTc P} = \J(zT \ zeX x X . zfc P}.

(2) The following statements are equivalent: (i) P = L; (ii) // zeP, then

zfc P.

(3) If P is closed in X x X, then P = L and P is an invariant closed equi-

valence relation in X.

Proof.   Use Lemmas 4 and 5.

Remark 4. Simple examples can be constructed in which P = L and yet P

is not closed in X x X.

Remark 5.   The following statements hold:

(1) P closed in X x X implies P = L; simple examples show that the con-

verse fails.

(2) P = L implies P(X xX) = P(X) x P(X); the status of the converse is not

known.

(3) P(X x X) = P(X) x P(X) implies P is transitive; the status of the con-

verse is not known.

Remark 6.   Let (X,T) and (Y,T) be transformation groups. Then:

(1)  L(X) x L(Y) = L(X x Y);      (2)   M(X) x M(Y) = M(Xx Y);

(3)   P(X) x L(Y) c F(Z x y);      (4)   L(Z)   x P(Y) c P(X x 7);

(5)   ßPO x M(T) cz Q(X x T);       (6)   M(X) x Q(7) c g(Z x 7);
the proof uses the method of Theorem 2.
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The next sequence of theorems and remarks investigates the productivity of

the relations L, M, and P. In the case of P, productivity is established only under

limited hypotheses.

Remark 7. Let ((X¡, T) \ ieI) be a family of transformation groups with a

common phase group T and whose phase spaces are uniform spaces which are

not necessarily compact. For j e I, let dy. (X¡ ei-^Q2 -* X2 be the map such that

((x, | i el), iy, | iel))6j = (xpy¡) and let d : (Xie/^)2 - XniX2 be the

map such that ((x¡ \iel), (y, \iel))0 = ((x¡,yt) \iel) for ((x¡| ieI),(y¡| ieI))

e(Xie/^)2-Then:

(1) zeÇXfiXd* implas zO = (z0, \ i el).

(2) If je I, then Q¡ is an open homomorphism, called the canonical homo-

morphism, of ((X¡6/*¡)2,T) onto (Xj,T).

(3) 0 is an isomorphism, called the canonical isomorphism, of ((X¡ e¡X¡)2,T)

onto (XiejXf, T). When no ambiguity occurs the symbol for 0 may be omitted

from a statement.

(4) If je I, then 0} maps R(X¡eiX¡,T) onto R(XP T), where R is P or ß

or L or M.

(5) 0 maps R(X¡eiX¡,T) into X¡ e/R(X¡, T), where R is P or ß or Lor M.

(6) According to (4) and (5), we may say that R( Xi e¡X¡, T) is a canonical

subdirect product of (R(X¡, T)\ ie/), where R is P or ß or Lor M.

Lemma 6. Lei n be a positive integer, let (Xx,T),---,(Xn,T) be transforma-

tion groups, let (x;,y¡) £ L(X¡, T) and let a¡ be an index of X¡ (i = 1, •••,«). Then

there exists Aesé such that (x¡,y¡)A czatfor each i= l,---,n.

Proof. There exists Ax e sé such that (xx,yx)Ax c: ax. Let KxeJf such that

T= AXKX. There exists A2esé such that (x2,y2)A2Kx1 c a2. Let K2e3f for

which T= A2K2. There exists y43ej/ such that (x3,y3)A3(KxK2yi c a3. Let

K3eJf for which T= j43K3. This process is continued. Hence, there exist subsets

Ai,-,An,Ki,-,Kn of Tsuch that T=AlKi, K,eJT, and (XfrflMXTB-iK/T1 c a,
for each ¿= 1, •••, n (K0 = identity element in T). Define A=> f^-iAtiflJZiKj)'1.
Now (x¡,y¡)A <= a¡ for i = 1, ••-,«. By Lemma 3, ,4 e ¿a/. The proof is completed.

Lemma 7. Lei n be a positive integer, let (Xx, T),---,(X„, T) be transforma-

tion groups. For i = l,---,n, let (x¡,y¡)e M(X¡, T), let a¡ be an index of X¡,

and let Ule.Arx., V^J^y.. Then there exists PieU¡, ^¡6^ (i=l,---,n) and

Aesé such that(pi,qi)A cz a¡ for i = 1, ••-,n.

Proof. There exists pxeUx, qxeVx, and Axesé such that (px,qx)Ax <^a.x.

Let Ki e Ctf for which T= AXKX. There exists p2 e U2, q2 e V2, and A2 e sé such

that (p2, q2)A2KÏ1 <= a2. Let K2 e JiT for which T= A2K2. There exists p3 e U3,

q3eV3, and A3esé such that (p3,q3)A3(KiK2)~1 <= a3. Let K3eX~ for which
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T= A3K3. This process is continued. Hence, there exists p, e Vi,q¡e V¡(i = 1, •••,«

and subsets A1,---,A„,Kl,---,K„ of T such that T= Afa, K;eJf, and

(P;> Ii) A¡( YYfJiKjY1 c a,- for each i = 1, • • -, n (K0 = identity element in T). Define

A= (y^^A^r^Kj)'1. Now (¿„«(Mea, for i = l,-,n. By Lemma 3,

y4e.s/. The proof is completed.

Theorem 4. Lei ((Ä^, T) | i e F) be a family of transformation groups, and

let 0 be the canonical isomorphism of ((XieiX¡)2,T) onto (XiejX2,T). Then

(1) L(Xie¡Xi,T)9   = XieIL(Xt,T).

(2) M( X/ s / A-i; T)9 = Xi./ M(X„ T).

Proof. (1) By Remark 7, L( X¡ « / *¡, T)0 <= X¡ e / ¿(X¡> 71). It remains to show

U Xi .i Xi9 T)0 => Xi. i UXu T). Let ((*,, y¡) | i e /) e X; e i L(Xh T) whence
(xi,yi)eL(Xi,T) for each iel. It is enough to show ((x¡| iel),(yi\ iel))

e L( Xi eiX¡, T). Let J be a finite nonvacuous subset of /, and for each jeJ let

a,- be an index of Xj. It is sufficient to prove that there exists a syndetic subset

A of Tsuch that (x},yj)A c a¡ for each jeJ. But Lemma 6 states exactly this.

The proof of (1) is completed.

(2) By Remark 7, M(X, siX¡,T)0 c Xie/M(Zt,T). It remains to show

MÍXuAD^Xu,M(X¡, T). Let ((x„ V¡) | ¿6/)6 X,./M(Zt, T) whence
(xi,y,)eM(Xi,T) for each iel. It is enough to show ((x¡| iel),(y¡\iel))

eM( Xi bíXí, T). Let J be a finite nonvacuous subset of L For each jeJ let a¡

be an index of X¡, and for each j e J, let U}, Vj be neighborhoods of xp yj in X¡.

It is sufficient to prove that there exist p¡ e U¡, q¡ e V¡ (j e J) and a syndetic sub-

set A of T such that (pj, q¡)A a a¡ for each J e J. But Lemma 7 states exactly

this. The proof is completed.

Remark 8. Let ((X¡,T)\ieI) be a family of transformation groups, and

let P(A-;, T) be closed in X2 for each iel. ThenP( X¡ e/*;, T)9= Xi siP(Xt, T).

Use Theorem 4 and Remark 7.

Theorem 5. Leí ((X¡,T)\ieI) be a family of transformation groups. Then

the following statements are equivalent:

(1) P(Xi.iXi,T) is closed in (XaiX,)2.

(2) For each iel, P(XitT) is closed in X2.

Proof.    Use Remark 7 and Remark 8.

Theorem 6.    Let ((X¡, T)\ie I) be a family of transformation groups. Then :

(1) (X¡e/-X¡>F) is [repletely distal} [regionally repletely distal} if and

only if (XhT) is [repletely distal] [regionally repletely distal] for each iel.

(2) There exists a least invariant closed equivalence relation S in X such

that (X/S,T) is [repletely distal] [regionally repletely distal].

Proof.   Use Theorem 4 and [5, Theorem 1 and Remark 8].

This final section describes various relationships between L, M, P, and Q when

various types of hypotheses are imposed upon the transformation group (X, T).
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Definition 4. Let (X, T) be a transformation group where X is not neces-

sarily compact. Then (X, T) is said to be coterminous provided that P=Q = L = M.

Theorem 7.   Let (X,T) be a transformation group.  Then the following

statements are equivalent:

(1)  (X, T) is coterminous.

(2)     P3ß.

Proof.    Use Theorem 3 and Remark 1.

Theorem 8. Let (X, T) be a tranformation group. Let S(distal) be the

distal structure relation of iX,T) (see [5, Definition 4]). The following state-

ments are pairwise equivalent:

(1) P = Sidistal).

(2) p = L = S(distal).

(3) P is closed in X x X.

Proof.    Use Theorem 3 and [5, Theorem 2].

Theorem 9. Let iX, T) be a transformation group where X is not neces-

sarily compact. Let T be abelian, let some point of X be fixed under (X, T),

and let xeX such that xT=X. Then:

(1) xT x xTc P.

(2) F = Q = XxX.

Proof. It is sufficient to prove (1). Let t,seT, and let <xe<W. Let yeX such

that yT= v. Choose LSeJfy so that U x U <= a. Since yt~is = y, there exists

Ve^Vy such that VcU and Vt~iscz U. There exists re T such that xtreV

whence xtr e U, xsr = xtrt~ 1s e Vf ls <= U, and (xtr,xsr) eU x U ca. The

proof is completed.

Theorem 10.   Let (X, T) be a distal transformation group. Then Q= M.

Proof. Let (x,y)eQ. It is enough to show (x,y)eM. Let aet, and let

WeJi(x^y Choose \JeJfx, and VeJVy such that U x V<= W. Choose ye<W

such that y4 <= a. There exist (x,,y,) eU x V and teT such that (x,t,y,t)ey,

whence y,tex,ty. Since (X, T) is distal, (X2,T) is pointwise almost periodic

[4, Theorem 1]. Hence, there exists Besi such that (x,l,y,t)B czx,ty x y,ty.

Now (x,t,y,t)B ay4- cza. Define A = tB, whence (x„y,)eU x V cz W and

(x,,y,)A cr a. The proof is completed.

Lemma 8. Let (X, T) be a transformation group where X is not necessarily

compact. Let T be abelian, let xeX, let t, seT, and let (X,T) be recursive

at x. Then (X x X,T) is recursive at (xt,xs).

Proof. Let WeJi(xi^y Choose UeJTxt and VejVxs such that U xVczW.

There exist U,,V,ejVx such that U,tczU and V,s c V. There exists an

admissible subset A of T such that xA c U, n V,. Then x^4 c U, xsA c V,

whence (xt,xs)A <= W. The proof is completed.



1963] PROXIMITY RELATIONS IN TRANSFORMATION GROUPS 95

Theorem 11. Let (X,T) be a minimal transformation group where T is

abelian. Then Q = M.

Proof. Let z e Q. We show zeM. Let a be an open index of X and let U

be an open neighborhood of z. There exists weU and i e T such that wt e a.

Choose VejVw such that F<= U and Vt c a. There exists xeX and se F such

that zy =(x,xs)e F. Since zt is almost periodic under (X x X, T) by Lemma 8,

and «nz, T^ 0, there exists /Iesé such that Zj/1 c a. Hence zeM. The proof

is completed.

Lemma 9. Lei (X, T) be a transformation group, let xeX, let Tbe almost

periodic at x, let VeJ/"^ and let xT be infinite. Then there exists teT such

that xteU and xt # x.

Proof. There exists A ese and a finite subset K of Tsuch that T= AK and

xA <r U. It is enough to show xA # x. Suppose xA — x. Then xT= x,4iC = xX

and xT = xX which is a contradiction. The proof is completed.

Theorem 12. Let (X, T) be an expansive poinlwise almost periodic trans-

formation group. Suppose for each xeX, xT is infinite and let T be abelian.

Then

M £ A.

Proof. There exists an open index b of X such that zeïxInA' implies

zTO <5' i=- 0. For aef, let Ex be the set of all zeX x X such that z is almost

periodic under (X2,T) and zTC\a^0. By Lemma 9, {F^ná'lae*} is a

closed filter base on X x X. It follows that ô' n p)ae<vEx^$. Since

M => P),, 6«£a, the proof is completed.

Theorem 13. Lei (X,T) be a regionally mixing transformation group for

which Tis not compact. Then:

(1) Q = X x X.

(2) If T is abelian and (X, T) is minimal, then P ^ Q.

Proof. (1) Let (x,y)eX x X. It is sufficient to show (x,y)eQ. Let aef,

U eJ^x, VeNy. It is sufficient to show (U x F)TOa# 0. We may assume

Vx V<=a. There exists Ke ¿f such that leT-K implies (7tnF#0. There exists

tfeJf for which FiHF^0 forieT-H. Now ((T- H)n(T- K))' = H UK

and hence (T- K) n (T - H) ¿ 0 since T¿ Jf and Hu KeX~. Choose

se(T-.K)n(r-.fi), XiEl/, and yteF such that XyseV and jveK Now

(x^y^el/x Fand (x1s,)'1s)ea, whence (i/x F)Fria ^ 0. Therefore (x,y) e Q.

(2) By [8,10.07] if x ¥= y and y e xT, then (x,j>) £ P. Therefore P # X x X = Q.

The proof is completed.

Lemma 10. Let Tbe a topological group and let R be a right replete subset

of T, that is to say, for each Kecf, there exists teT such that Kt c R. Then:
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(1) iRHR^ 0/or all teT

(2) T= AR for any Aesé.

Proof. (1) Let teT. Let K = {e,t~x}. Since there exists seT such that

KscR, setRnR.

(2) Let Aesé and KeJf such that T=AK. Since there exists 5 6 T such

that Ks c R, T- AKs <= 4R and T= AR. The proof is completed.

Theorem 14.    The following statements are equivalent:

(1) T is uniformly equicontinuous.

(2) For each aef, there exist a right replete subset R of Tand ße°ll such

that (x,y) e ß implies (x,y)R c a.

Proof. It is sufficient to show (2) implies (1). We first show ß = P. It is suf-

ficient to show ß <= P. Let (x,y) e Q. Let aef, let R be a replete subset of T,

and ß,ye°U such that ß3 <= a and yR c /?. There exist xx e xy, yx e yy and t e T

such that (xxt,yxt)ey. Now, by Lemma 10, we may choose setRn R, whence

(xs,ys) = (xs,xxs)(xxs,yxs)(yxs,ys)eß3 <= a. Therefore (x,y)eP and PczQ. By

Theorem 7, P = L= M — Q. It remains to show that LcA. Let (x,y)eL. Let

a e ffl, and let R and ß be such that /?R c a. There exists ,4 e sé such that

(xj)Ac^, whence (x,y)AR c ßR c a. But by Lemma 10, T= AR whence

(x,y)Tc a for each ae®. Therefore x = y and L= ß = A. The proof is com-

pleted.

Remark 9. Theorem 14 weakens the hypothesis of a theorem by John D.

Baum [2] in that he required Tto be abelian and R to be a replete semigroup

of T.
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