PROXIMITY RELATIONS
IN TRANSFORMATION GROUPS

BY
JESSE PAUL CLAY(!)

Introduction. Let (X,T) be a transformation group whose phase space X
is a uniform space. Most of the results are stated for compact X. In this paper,
four proximity relations, L, M, P, and Q, in X are defined and some of their
properties studied. The relations P and Q were first defined and studied by Ellis
and Gottschalk [5]. As a general reference for the notions occurring here, con-
sult [8].

In Theorem 1, Lis shown to be an invariant equivalence relation in X, and
in Theorem 3, L is characterized as the union of all orbit closures under (X x X, T)
which are contained in P. Theorem 3 also shows that if P is closed, then P = L and
P is a closed invariant equivalence relation in X. Theorem 4 establishes the
productivity of the relations Land M, and in Theorem 7, it is shown that (X,T)
is coterminous, i.e., P = Q = L= M, iff P = Q. Theorems 9 through 13 describe
L, M, P, and Q under various hypotheses such as (X,T) distal; (X,T) minimal
and T abelian; (X,T) regionally mixing; and the like.

Theorem 14 is an application of the general theory to obtain a characterization
of (X,T) being uniformly equicontinuous, and as such represents a strengthening
of a theorem by John D. Baum [2].

The author is indebted to Professor W. H. Gottschalk for his invaluable sug-
gestions, mathematical stimulation, and sustained interest.

STANDING NOTATION. Let (X,T)be a transformation group where X is always
a uniform space. Let o be the class of all syndetic subsets of T, let £~ be the class
or all compact subsets of T, let % be the uniformity of X, and for each x e X let
A, be the neighborhood filter of x.

DerINITION 1. (1) The (simply) proximal relation of (X,T) denoted P(X,T)
of P(X) or Py or P, is defined to be the set of all (x,y)e X x X such thatif ae %,
then there exists te T such that (xt, yt)ea.

(2) The regionally (simply) proximal relation of (X,T), denoted Q(X,T)
or Q(X) or Qx or Q, is defined to be the set of all (x,y)e X x X such that if
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ae, if Ue N, and if VeV, then there exist x, e U, y; €V, and te T such
that (x,t,y.t)ea.

(3) The syndetically proximal relation of (X,T), denoted L(X,T) or L(X)
or Ly or L, is defined to be the set of all (x,y) e X x X such that if « € %, then
there exists 4 € &/ such that te 4 implies (xt, yt) ea.

(4) The regionally syndetically proximal relation of (X,T), denoted M(X,T)
or M(X) or My or M, is defined to be the set of all (x,y)e X x X such that if
ae,if UeA,, and if Ve A", then there exist x, €U, y, €V, and 4 e & such
that (x,,y,)4 c a.

Remark 1. The following statements hold:

woL=nNU N«

ae¥% KeX teT

@M= (1 U N Kt

ace¥U KeX teT
€

@) P = oT,

aed

(4)Q=ﬂ%37,

B)AcLcMcQcXxX and AcLcPcQc X x X. Here
A = {(xx)|xeX}.

(6) L, M, P, and Q are invariant reflexive symmetric relations in X. M and Q
are closed in X x X.

DErINITION AND REMARK 2. The transformation group (X,T) is said to be
repletely distal provided that the following equivalent statements are satisfied:

(1) L=A.

(2) If x, ye X with x 5 y, then there exists « €% and a replete subset 4 of
T such that (x,y)4 c a'.

DEerFINITION AND REMARK 3. The transformation group (X,T) is said to be
regionally repletely distal provided that the following equivalent statements
are satisfied:

1 M= A

(2) If x,ye X with x # y, then there exist ae %, Ue A", and Ve A", such
that if x, e U and if y, e ¥, then there exists a replete subset 4 of T such that
(x1,y)Aca’.

STANDING HYPOTHESIS. Henceforth we will assume that all transformation
groups have phase spaces which are compact separated uniform spaces unless
statements to the contrary are specifically made.

The purpose of the next three theorems (and associated remarks) is to point
out some general facts about the basic structure of the relations P and L.

LeMMA 1. Let T be a group, and let A, A,, K, K,, B be subsets of T such
that A\K, > A, and A,K, > B. Then (A; N A,K;))K,K, > B.
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Proof. Let beB. There exist a,e A, and k,eK, such that b = a,k,.
Choose a,eA,; and k,eK, for which a,=ak;. Now b=ak,k, and
a, =ak;'e A, N A,K['. The proof is completed.

LEMMA 2. Let T be a group, and let A,,A,,K,,K, be subsets of T such that
T= AlKl = Asz. Then T= (Al N AzKl—l)Kle-

Proof. Use Lemma 1.

LEMMA 3. Let T be a group, let n be a positive integer, and let
Ay, - A, Ky, -, K, be subsets of T such that T= AK; for i=1,---,n and let
K, be the identity element of T. Then

Proof. We prove the lemma by induction. The statement is clearly true for
n=1. Let p be a positive integer and assume the statement is true for n = p.
We show the statement is true for n = p + 1. By hypothesis,

i-1

14 -1 4
- (i) f s e
i= Jj= /=

From Lemma 2, it follows that

(A (o)) () ) ()

The proof is completed.

THEOREM 1. Let (X,T) be a transformation group. Then L is an invariant
equivalence relation in X.

Proof. It remains only to show that Lis transitive in X. Let (x,y) € L and
(»,2)e L. We show (x,z)e L. Let a€ %. Choose fe % such that f? < a. There
exist 4,es/ and KeX such that T= A4,K and (x,y)4,; = . There exists
A, e such that (y,2)4,K ' < B. Set A=A, N A,K~*. Now (x,y)A = B and
(y,2)A = B, whence (x,z)A < a. Since A is syndetic by Lemma 2, (x,z) € L. The
proof is completed.

THEOREM 2. Let (X,T) be a transformation group. Then LP U PL= P.

Proof. 1t is sufficient to show PL< P and LP < P. Let (x,z) e PL. We show
(x,2)eP. Let e and ye X such that (x,y)eP and (y,z)e L. Choose fe %
such that % < «. There exist Ae «, te T, and K € . such that (y,z)A<p and
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(x,y)tK "' < B and T= AK. Choose setK-1 N A. Now (x,2)s € % = «, whence
(x,z) € P. Similarly, LP < P. The proof is completed.

LemMA 4. Let (X,T) be a transformation group where X is not necessarily
compact, and let ze L. Then zT < L.

Proof. Let wezT. We show we L. Let ae % with o = &. There exists 4 .o/
such that zAcoa. Let KeX such that T=AK. It is enough to show
wtK™'Na# @forallte T. Lette T.Assume wtK ' Na = @, thatis, wtK " 'ca’.
There exists Ue 4", such that UtK-! < «’, that is UtK-! Na= @. Choose
seT such that zseU. Since ste T= AK, it follows that stK-'NA# @,
zstK ™' N zA # @ and zA ¢ «. This is a contradiction. The proof is completed.

LeMMA 5. Let (X,T) be a transformation group, and let zeX x X such
that zT< P. Then z€eL.

Proof. Let a be an open index of X. For each we zT, there exists f,, € T such
that wt, e« and hence there exists an open neighborhood U,, of w in X x X
such that U,t, < a. Choose a finite subset F of zT so that zT < Uwe rU,. De-
fine K={t,|weF} and A={t|teT.ztea}. It is enough to show that
T=AK ™ '. Let teT. Then ztezT< Uw <r U, and there exists fe F such that
zte Uy whence ztt; e« and t€ AK ™ '. The proof is completed.

THEOREM 3. Let (X,T) be a transformation group. Then:

(1) L={z|zeXxX.zT< P} = | J{zT |zeX x X .zT < P}.

(2) The following statements are equivalent: (i) P = L; (ii) If ze P, then
zT < P.

(3) If P is closed in X x X, then P =L and P is an invariant closed equi-
valence relation in X.

Proof. Use Lemmas 4 and 5.

REMARK 4. Simple examples can be constructed in which P = L and yet P
is not closed in X x X.

REMARK 5. The following statements hold:

(1) P closed in X x X implies P = L; simple examples show that the con-
verse fails.

(2) P=L implies P(X x X) = P(X) x P(X); the status of the converse is not
known.

(3) P(X x X)=P(X) x P(X) implies P is transitive; the status of the con-
verse is not known.

REMARK 6. Let (X,T) and (Y,T) be transformation groups. Then:

(1) LX) x L(Y)=L(X x Y); (2) M(X)x M(Y) = M(Xx Y);

B PX)x LY)cPX xY); (@4 LX) x P(Y) c P(X x Y);

() X)) xM(Y)=Q(X x Y); (6) M(X) x Q(Y) =« O(X x Y);

the proof uses the method of Theorem 2.
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The next sequence of theorems and remarks investigates the productivity of
the relations L, M, and P. In the case of P, productivity is established only under
limited hypotheses.

ReEMARK 7. Let (X, T) [ iel) be a family of transformation groups with a
common phase group T and whose phase spaces are uniform spaces which are
not necessarily compact. Forjel, let 6;: (X; .1 X)* > X jz be the map such that
((x; I iel), (y; | ieD)f; = (x;y;) and let 0 : (X; 1 X)? - X; X7 be the
map such that ((x; | ieI), (y; | ieD)0 = ((x;,¥) | ie) for ((x;|ieD),(y;|iel))
€ (X; <1 X))*. Then:

(1) ze(X; < 1X;)? implies z0 = (z0; | i €1).

(2) If jel, then 0; is an open homomorphism, called the canonical homo-
morphism, of ((X;.;X)? T) onto (X2, T).

(3) 0is an isomorphism, called the canonical isomorphism, of ((X; . ; X)), T)
onto (X; .; X2 T). When no ambiguity occurs the symbol for § may be omitted
from a statement.

(4) If jel, then 0; maps R(>X;.;X;,T) onto R(X;,T), where R is P or Q
or Lor M.

(5) 0 maps R(X;;X;, T)into X; . R(X;, T), where R is P or Q or Lor M.

(6) According to (4) and (5), we may say that R(X;.;X;, T) is a canonical
subdirect product of (R(X;, T) | i€I), where Ris P or Q or Lor M.

LEMMA 6. Let n be a positive integer, let (X, T),---,(X,, T) be transforma-
tion groups, let (x;,y;) € L(X;, T) and let o; be an index of X;(i=1,---,n). Then
there exists Aef such that (x;,y,)A < a; for each i=1,---,n.

Proof. There exists A, € & such that (xy,y,)4; = a;. Let K, € X such that
T= A,K,. There exists A, s/ such that (x,,y,)4,K;' ca,. Let K,e " for
which T= A4,K,. There exists A;€ o/ such that (x,y;)45(K,K,) ' cas. Let
K5 e for which T=A;K,. This process is continued. Hence, there exist subsets
Ay, AKy, K, of Tsuch that T=A4,K;, K;e X, and (x;, p)A([[7AK) = o
for each i=1,---,n (K, =identity element in T). Define 4= ()7 - A([[;=1K) 7"
Now (x;,y)A co; for i=1,-,n. By Lemma 3, A€ «/. The proof is completed.

LEMMA 7. Let n be a positive integer, let (X, T),---,(X,, T) be transforma-
tion groups. For i=1,.--,n, let (x;,y)€e M(X;,T), let «; be an index of X,,
and let U;e V', VieN',. Then there exists p,eU;, q;eV; (i=1,--,n) and
Aeof suchthat (p;,q)A < o; fori=1,.--,n.

Proof. There exists p, e U,, q,€V;, and 4, € & such that (p;,q,)4, < «;.
Let K, € ¢ for which T= A,K,. There exists p,e U,, g, € V,, and 4, € & such
that (p,,q,)4,K; " < «,. Let K, € X for which T= A,K,. There exists p; € Us,
q;€ Vs, and A;esf such that (ps,q3)43(K,K,)"! < ay. Let K3 e for which
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T = A;K;. This process is continued. Hence, there exists p;e U;, q;e V;(i=1,---,n
and subsets A4,,---,4,,K;,---,K, of T such that T=A4,K; K;eA, and
(p»q) A(J];-4K) ™' = o;foreach i=1,---,n (K,=identity element in T). Define
A= (i-1 A(TZiK)™" Now (p,q)Aca; for i=1,--,n. By Lemma 3,
Ae . The proof is completed.

THEOREM 4. Let ((X;, T)|iel) be a family of transformation groups, and
let 0 be the canonical isomorphism of ((X; ;1 X;)%, T) onto (X; c; X2, T). Then

(D) L(Xier X, 70 = X1 LX;, T).

(2) MCXier X, T)0 = X et M(X,, T).

Proof. (1) By Remark 7, L(X; .; X;, T)0 = X; ¢; L(X;, T). It remains to show
L(XierXuT)0 > Xt L(X;, T). Let ((xiy) |i€el)e X L(X;,T) whence
(*»y) € (X, T) for each iel. It is enough to show ((x;|iel),(y;|iel)
€ L(X;1X;, T). Let J be a finite nonvacuous subset of I, and for each jeJ let
a; be an index of X . It is sufficient to prove that there exists a syndetic subset
A of T such that (x;,y;)A = «; for each jeJ. But Lemma 6 states exactly this.
The proof of (1) is completed.

(2) By Remark 7, M(X, ¢;X;,T)0 < X; M(X;,T). It remains to show
M(X;e1 X T)2 Xi e M(X;, T). Let ((x;,y) I iel)e X;M(X;,T) whence
(x;, y)eM(X;, T) for each iel. It is enough to show ((xi|ieI),(y,-|ie D)
€M(X; 1 X;, T). Let J be a finite nonvacuous subset of 1. For each jeJ let ;
be an index of X, and for each je J, let U;, V; be neighborhoods of x;,y; in X .
It is sufficient to prove that there exist p;e U;,q;€ V; (j€J) and a syndetic sub-
set A of T such that (p;,q;)A < «; for each jeJ. But Lemma 7 states exactly
this. The proof is completed.

ReMark 8. Let ((X;,T) | iel) be a family of transformation groups, and
let P(X;, T) be closed in X7 for each i e I. Then P(; . X;, T)0= X; ., P(X,, T).
Use Theorem 4 and Remark 7.

THEOREM 5. Let (X, T)[iel) be a family of transformation groups. Then
the following statements are equivalent:

(1) P(X;e1X;T) is closed in (X o1 X))

(2) For each iel, P(X;,T) is closed in X7

Proof. Use Remark 7 and Remark 8.

THEOREM 6. Let (X, T)[ iel) be a family of transformation groups. Then:

(1) (XierX;,T) is [repletely distal] [regionally repletely distal] if and
only if (X;,T) is [repletely distal] [regionally repletely distal] for each iel.

(2) There exists a least invariant closed equivalence relation S in X such
that (X/S,T) is [repletely distal] [regionally repletely distal].

Proof. Use Theorem 4 and [5, Theorem 1 and Remark 8].

This final section describes various relationships between L, M, P, and Q when
various types of hypotheses are imposed upon the transformation group (X, T).
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DEFINITION 4. Let (X,T) be a transformation group where X is not neces-
sarily compact. Then (X, T)is said to be coterminous provided that P=Q = L= M.

THEOREM 7. Let (X,T) be a transformation group. Then the following
statements are equivalent:

(1) (X,T) is coterminous.

2 PoOQ.

Proof. Use Theorem 3 and Remark 1.

THEOREM 8. Let (X,T) be a tranformation group. Let S(distal) be the
distal structure relation of (X, T) (see [S, Definition 4]). The following state-
ments are pairwise equivalent:

(1) P = S(distal).

(2) P = L = S(distal).

(3) P is closed in X x X.

Proof. Use Theorem 3 and [5, Theorem 2].

THEOREM 9. Let (X,T) be a transformation group where X is not neces-
sarily compact. Let T be abelian, let some point of X be fixed under (X, T),
and let xe X such that xT= X. Then:

(1) xT x xT < P.

2 P=Q=XxX.

Proof. It is sufficient to prove (1). Let t,se€ T, and let xe %. Let ye X such
that yT'=y. Choose Ue A, so that U x U c a. Since yt~!s =y, there exists
Ve A", such that V< U and Vi~!sc U. There exists re T such that xtreV
whence xtreU, xsr=xtrt-1seVt-1sc U, and (xtr,xsr)eU x U ca. The
proof is completed.

THEOREM 10. Let (X,T) be a distal transformation group. Then Q = M.

Proof. Let (x,y)eQ. It is enough to show (x,y)e M. Let ae#, and let
We N (.. Choose Ue A, and Ve A, such that U x V< W. Choose ye %
such that y* < a. There exist (x;,y;) €U x V and te T such that (x,t,y,0) €y,
whence y,texty. Since (X,T) is distal, (X?,T) is pointwise almost periodic
[4, Theorem 1]. Hence, there exists Be s/ such that (x,1,y,)B < x,ty x y,ty.
Now (x;t,y;1)B < y* ca. Define 4 =1tB, whence (x;,y,)eU x VW and

(x1,y1)A < a. The proof is completed.

LemMA 8. Let (X,T) be a transformation group where X is not necessarily
compact. Let T be abelian, let xe X, let t, se T, and let (X, T) be recursive
at x. Then (X x X,T) is recursive at (xt,xs).

Proof. Let We Ay .. Choose Ue A, and Ve AN, such that U x V< W.
There exist Uy, VyeA ", such that U;tc U and V;s < V. There exists an
admissible subset A of T such that xA =« U; NV,. Then xtAc U, xsdAcV,
whence (xt,xs)A = W. The proof is completed.



1963] PROXIMITY RELATIONS IN TRANSFORMATION GROUPS 95

THEOREM 11. Let (X,T) be a minimal transformation group where T is
abelian. Then Q=M.

Proof. Let ze Q. We show ze M. Let « be an open index of X and let U
be an open neighborhood of z. There exists we U and te T such that wt ea.
Choose Ve A, such that V< U and V¢ < a. There exists xe X and se T such
that z; =(x,xs)e V. Since z, is almost periodic under (X x X, T) by Lemma 8,
and a N z; T+# @, there exists A€ o/ such that z;4 c a. Hence z e M. The proof
is completed.

LemMAa 9. Let (X, T) be a transformation group, let xe X, let T be almost
periodic at x, let Ue A",, and let xT be infinite. Then there exists te T such
that xte U and xt # x.

Proof. There exists A € .o/ and a finite subset K of T such that T= AK and
xA < U. It is enough to show x4 # x. Suppose x4 = x. Then xT = xAK = xK
and xT = xK which is a contradiction. The proof is completed.

THEOREM 12. Let (X, T) be an expansive pointwise almost periodic trans-
formation group. Suppose for each xe€ X, xT is infinite and let T be abelian.
Then

M # A

Proof. There exists an open index é of X such that ze X x XN A’ implies
z2TN & # @. For ae, let E, be the set of all ze X x X such that z is almost
periodic under (X?,T) and zTNa+# @. By Lemma 9, {E,Nd'|ac?} is a
closed filter base on X x X. It follows that &' N ﬂa caE,# 8. Since
M > (), caE. the proof is completed.

THeoReM 13. Let (X,T) be a regionally mixing transformation group for
which T is not compact. Then:

1 Q=X x X.

(2) If T is abelian and (X, T) is minimal, then P # Q.

Proof. (1) Let (x,y)eX x X. It is sufficient to show (x,y)eQ. Let ae %,
UeA',, Ve, It is sufficient to show (U x V)TNa#@. We may assume
Vx Vea. There exists K € X such that 1 e T— K implies UtNV#@. There exists
HeX for which ViNnV+#¢@ forte T— H. Now (T— H)N(T-K))=HUK
and hence (T— K)N(T—H)# @ since T¢ # and Hu K e A. Choose
se(T— K)N(T—-H), x;€U, and y; eV such that x;seV and y;seV. Now
(x1,y)€UxVand (x;s,y;5)€a, whence (Ux V)T Na # @. Therefore (x,y) € Q.

(2) By[8,10.07] if x # yand y e xT, then(x,y) ¢ P. Therefore P # X x X =0Q.
The proof is completed.

LemmA 10. Let T be a topological group and let R be a right replete subset
of T, that is to say, for each K € X", there exists te T such that Kt = R. Then:
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(1) tRNR#Q for all teT.
(2) T= AR for any Ae .

Proof. (1) Let te T Let K ={e,t™'}. Since there exists seT such that
Ks <R, setRNR.

(2) Let Ae s/ and KeX such that T= AK. Since there exists se T such
that Ks c R, T= AKs < AR and T= AR. The proof is completed.

THEOREM 14. The following statements are equivalent:

(1) T is uniformly equicontinuous.

(2) For each a €, there exist a right replete subset R of T and fe % such
that (x,y)€p implies (x,y)R c a.

Proof. It is sufficient to show (2) implies (1). We first show Q = P. It is suf-
ficient to show @ < P. Let (x,y)e Q. Let ae %, let R be a replete subset of T,
and B,y % such that B* = « and yR < B. There exist x, €xy, y,eyy and teT
such that (x,t, y,t) € y. Now, by Lemma 10, we may choose s€tR N R, whence
(x5, ys) = (xs,%,5) (X5, 1) (¥15, ys) € B> = a. Therefore (x,y)e P and P = Q. By
Theorem 7, P=L=M = Q. It remains to show that Lc A. Let (x,y)e L. Let
ae€, and let R and f be such that SR —a. There exists A€ ./ such that
(x,y)A = B, whence (x,y)AR < R ca. But by Lemma 10, T= AR whence.
(x,y)T = a for each a € %. Therefore x =y and L= Q = A. The proof is com-
pleted.

REMARK 9. Theorem 14 weakens the hypothesis of a theorem by John D.
Baum [2] in that he required T to be abelian and R to be a replete semigroup

of T.
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