
SCATTERING FOR HYPERBOLIC EQUATIONS(i)
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Introduction.   Consider the equations of evolution (— oo < t < + oo)

(0) dru/df = Au,

(1) d'u/dt' = Au + Tu,

where u has values in a topological linear space K, and A and T are (possibly

nonlinear) operators acting on a class of functions with values in K. In a general

way, assume that the Cauchy problem for these equations is well-posed. Con-

sider (0) as a 'known' equation and (1) as a perturbation of it. Then a natural

problem is this: For each u0 in a given class H0 of solutions of (0) with a given

topology, can we find a solution t/j of (1) with the following property (P)?

(P): If Mqs) is the solution of equation (0) with

dJV0s)/dtj\l=s = dhijdt%=s U-0,l,-,r-l),

then u0s) converges to u0 in the topology of H0 as s -> + oo.

This might be called the Cauchy problem at + oo for (1). The mapping u0 -* ut

is called the wave operator W+, and similarly one has the wave operator W_

by requiring the same condition except s -» — oo. The scattering operator is

then S=H/+1lf_ (where defined) and roughly describes the 'scattering' by

(1) of the solutions of (0) from the early past to the late future.

We shall discuss scattering in the case when : K is a Hubert space, Ais a fixed

non-negative self-adjoint operator on K, T satisfies a Lipschitz condition and is

sufficiently small at infinity, and r = 2. As H0 we take the completion, with

respect to one inner product of a quite natural class of inner products, of the

collection of solutions of (0) with 'smooth' initial conditions. The two wave

operators then have equal ranges and S is a nonsingular operator on H0.

Our primary application is to perturbations

n

(1*) D « = m2u + Tu,       D = - d2/dt2 + Z d2/dxf ,

of the Klein-Gordon equation. First, the space of solutions of the Klein-Gordon
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equation ((1*) with Tu = 0) is characterized in terms of the initial conditions

of its elements on spacelike hyperplanes. In quantum field theory this space is

relevant to a neutral scalar meson field (cf. [1], for example). §2 treats the scat-

tering problem in the framework indicated above, which is immediately applic-

able to equation (1*). All solutions considered are global. Related considerations

for (1*) are also made in §3 concerning the wave operators in cases not covered

by the abstract treatment.

Nonrelativistic scattering theory, which is concerned with the case when r = 1

and A and T are fixed linear operators on K, has recently been treated with

considerable success [4]. Niznik has considered a linear relativistic scattering

problem from a more restrictive point of view [5].

In §5 the common range HT of the two wave operators is considered in its

own right. Although the scattering operator is not in general unitary, there does

exist a uniquely determined sfcew-symmetric form on HT derived from the one

on H0. This form, analogous to the fundamental form of classical mechanics,

is basic to the quantization of equations such as (1*) [6]. Following a general

suggestion of Segal [6], another way of obtaining a Hubert space of solutions

of (1*) in the linear case is by invoking the theory of eigenfunction expansions

([2], for example). For (0) an 'infinitesimal eigenspace' can be obtained relatively

easily (§4) and the result is H0 itself.

It is a pleasure to take this opportunity to thank Professor I. E. Segal for

having introduced me to this research and taken a continuing interest in its pro-

gress, and for the many suggestions of his that have been realized in this work.

1. The Klein-Gordon Hubert space. We shall consistently use the following

notation. E1 is the real line ('time') with points denoted by either í or x,;

E"~l is (n — l)-dimensional Euclidean space ('space') with points x = (x2,---,xn);

n ^ 2; the n-tuples x = (t,x) = (xx,x2,---,xn) are in E". For x and y in E", de-

note x-y = xxyx — x-y, where x-y = Z"= 2x}y}.

The Laplacian E"=232/öx2 acts on the space of distributions on £"-1 and

-d2/dt2 + A = D on E", A being the Laplacian. C?(E") denotes the C00 func-

tions with compact support on E" and S'(En) the tempered distributions. The

points of the dual space R" of E" are denoted by k = (kx,k) = (kx, k2, -•-, kn);

k2=kk = fc2- Z"=2fej-; dk = dk2---dkB, dk = dkxdk, dx = dx2 ■■■ dx„,

dx = dtdx. The superscripts * and ~ will always mean Fourier transform with

respect to n and n — 1 variables, respectively :

u(k) = (27t)"/2 f exp(-ix-k)u(x)dx

where xk is the Lorentz inner product; it is defined as usual.

Mm is the hyperboloid [k|keiî" k-k = m2], a C°°-manifold with a local coor-

dinate system for each sheet given by the last n-1 coordinates k2,---, k„;fix wi^O.
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Lemma 1.1. The measure (k2 + m2) ll2dk is the unique measure (up to a

constant factor) on Mm which is invariant under the  Lorentz group of R".

Proof. We may considerjust the positive sheet of Mm on which k, = (k2 + m2)112.

Let p be the measure with 'volume' element dp(k) = <p(k,)dk, where <p is some

measurable function of k„ and assume that p is Lorentz-invariant. This implies

that for any a > 0, <p(k,)dk2---dkn equals

<¡>(k,coshu. + fc2sinha) (dk, sinha 4- dk2 cosh a) dk3 ■••dkn.

Since k,dk, = ¿Z'J=2kjdkj on Mm, it follows that k,<p(k,) is a constant and p

is as required; as the computation indicates, p is Lorentz-invariant. Now let q

be an arbitrary Lorentz-invariant measure on the positive sheet of Mm. By a

general theorem concerning quasi-invariant measures on homogeneous spaces,

q is unique up to absolute continuity ; hence, dq(k) = 9(k)k~[x dk for some

measurable 9. But since 9 is invariant under rotations in R"_1, it must be

just a function of k,. Hence, we are reduced to the case considered above.

We shall be concerned with the Klein-Gordon (KG) equation D"o = m2u0.

Any solution u0 has the property that its Fourier transform has support on M„„

because (k2 — m2)û0 = 0. The real (complex) KG Hilbert space Km of mass m

consists of all real-valued (complex-valued) tempered distributions m0 on E" of

the form

(2) u0(x) = 2-i(2nT12 {     e-'*-k<b(k)dp
J Mm

where p is the measure of Lemma 1.1, and <j>eL2(Mm,p). Km is considered as

a Hilbert space by transference of the Hilbert space structure of L2(Mm,p) to

Km via (2) (with a normalization factor 7t): ||u01| \m = n~l JVJ0 \2dp-

Equation (2) can also be written as

(3) F_1«o(k) = <p(k)<5(k2-m2)

where F is the Fourier transformation in E" and where

2<5(k2 - m2) = k'-^k, - k') + ô(k, + ik')], k' = (fc2 4- m2)1'2.

Later we shall show how in a slightly more general situation an equation such

as (3) expresses u0 as an eigenfunction of (j>. Using the notation k, = (k2 4- m2)1/2

-rom now on and putting <¡>±ik) = (¡>i± k„k), we can write this more explicitly:

(4) u0it,x) = 2-1Or"/2 íle-ukik-l<t>+(k) + e"*'fc"ty-(*)] e*'kdk,

(5) 4«||«oui, = jfr+Wk^dk -rjlcp-iQfk^dk.

If L is a Lorentz transformation on E" and z e £" and if w0 e Km, define

U(L,z)u0(x) = u0(L~1x+z).   Because  the   measure  p  is  Lorentz-invariant,
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U(L,z) is an orthogonal operator on the real KG space and U is an irreducible

orthogonal representation of the inhomogeneous Lorentz group.

Now equations (4) and (5) show that, if m > 0, u0 is a square-integrable func-

tion on £"_1 for every t. On the other hand, if m = 0, we must and do assume

that n > 2 in order that the function fc1"1</»(fc) be locally integrable; (4) is then

interpreted by means of Fourier transformation on the tempered distributions

onJÎ""1. The following explicit characterization of Km expresses the KG inner

product in terms of the values of the functions on any hyperplane t = constant.

(For any function or distribution /, / ' shall denote df/dt.)

Theorem 1.1. Let u0 be a function of t with values in S'(£"_1) and assume

it is twice differentiable. Then: u0eKm if and only if u0 satisfies the KG equa-

tion and

(6) f |ö0(i,fc)|2fcidfc + f |ö0'(f,fc)|2fcf ̂ fc

is finite for some t (for all t if m = 0). // «0,t>o 6 Km,

(7) (u0,v0)Km = j[ü0(t,k)(voy (t,k)k, + ü¿(t,k)(v¿T (t,k)k^dk,

the right-hand side being independent of t.

Proof. First assume u0eKm. From (4) u¿ is obtained by formal differentia-

tion under the integral sign. Using the Fourier inversion formula on this result

and on (4), and solving the result for (¡)+ and <p_, we obtain

(8) (h±(k) = í»1/2exp(± itkJlk^k) ± iü¿(t,k)l

Putting (8) into (5), we conclude that (6) is equal to || u0 ||£m for all t

and that it is finite. Equation (7) is obtained by polarization. We have the con-

verse left to prove. Assume that u0 satisfies the KG equation and (6) is finite for

a fixed t = t0 (for all í if m = 0).

Define (/>+((, k) as the right-hand side of equation (8) for all t. Strictly speaking,

define its action on testing functions in the obvious way (no problem here for

m = 0 because of the additional assumption). Then

d<p+/dt = (27i)1/2/exp(iifc1)[M0"+fc12Mo] = 0

and, therefore, <p+ is independent of i; similarly for <p-. Now put (p equal to

(¡)+ on the positive sheet of Mm and (/>_ on the negative sheet. Then (j) satisfies

(2) and is square-integrable on Mm, so that u0eKm.

Corollary 1.1. Let m5;0. The collection of all elements u0 of Km with

u^to^eC^E"'1) and u0(t0,-)eC™(En-1) for a given t0,   is  dense    in Km.

Proof. This is equivalent to showing that C"(£"-1) is dense in the Hubert

space JV = [/|fc}/2/(fc) is square-integrable on i?"-1] as well as the same space
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with k\t2 replaced by /q1'2- Let us take the first case and m = 0, the other

cases being simpler. Let/eiV. Let gj be a sequence of elements of C"(ÄM_1)

converging to the square-integrable function |fe|1/2/(fc) in the mean square

sense as /-> oo. Let h¡ be a C°°-function on R"~l equal to 1 for i'1 < \k\ < i,

between 0 and 1, and vanishing outside the set (i + 1)_1 < \k\ < i + 1. Then

ftJ converges to/ in N, where fu(k) = \k\~ll2hi(k)gJ(k)eC"(R"_1), as i,j -> oo.

Thus the space S(E"'1) of rapidly decreasing functions is dense in N, and,

therefore, so is C?(E"~!), since the latter is dense in S(E"~1).

Denote the complex KG Hubert space temporarily by Km. It has two dis-

tinguished subspaces: the real KG Hubert space KTm, and the complex Hubert

space Km consisting of all elements of Kcm whose Fourier transforms as tem-

pered distributions on E" have support on the positive sheet of Mm.An element

of the latter space is said to have positive frequencies. These spaces and their

inner products are Lorentz-invariant [7].

KH is naturally isomorphic to Krm when the latter is endowed with a certain

complex structure. In fact, let J0 be the Hubert transform with respect to time;

J0 is the operation of convolution by the Fourier transform of the function

-isgn(fe1) on R", kx here being the variable dual to t. It is easy to see that J0

is an isometry on Km which commutes with Lorentz transformations and that

Jo — —I on Km. Now define multiplication by i on K'm to be the operator J0,

and the imaginary part of the inner product of u0 and v0 to be(J0u0,i;0)/m

(u0,v0eKm). Now K¡¡, is mapped into Km by M0->Re(u0). If we consider Krm

as a complex Hubert space in this way, then this mapping is an isomorphism

of complex Hubert spaces which commutes with Lorentz transformations, as is

easily seen by Fourier transformation.

Alternatively, ß0(u0,v0) = (J0u0,v0) may be considered as a certain skew-

symmetric bilinear form on the real KG space. This real space, together with the

form ß0, is relevant to a neutral scalar meson field.

Let u0,v0 be in K£. Then cb_ =0 in the notation used earlier. By equation

(8), ü'0 = + ikxü0 and the same for t>0; therefore,

("o^o)x„p, =- i \íüo(t,k)(v¿)~(t,k)- «ó(í,/c)(v0)_(í,/c)]dfc

(9)

= - i I   [u0£0 - u¿v0] dx.

This is a standard formula [1].

We conclude this section with a brief survey of certain Green's functions

for the KG equation. The Riemann function D is the tempered distribution

given by

(10) Dit, k) = O)- 1/2(k2 + m2)-1/2 sin l(k2 + m2)ll2t].
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It is the unique solution of the KG equation with the initial conditions:

D(0,x) = 0, D'(0,x) = o(x). Let Y(t) be 1 for i>0 and 0 for t < 0. Let

Dret (r,x) = - Y(t)D(t,x) and Dadv (t,x)= Y(-t)D(t,x). It is then immediate that

Dret and Dadv are elementary solutions of the KG equation ; that is, solutions

of (D — m2)u = Ô. Dret is the only elementary solution vanishing for negative t.

From the definition of D one may calculate that

D(k) = -isgn(fc!)5(k2- m2) and Ê(k) = c5(k2 - m2)

where E = dD/dt. For specific values of n, these functions may be calculated

without the intervention of Fourier transforms. For instance, if n = 4, we

have [1]:

(11) Diet(x) = (2ry1ô(r-t) + (m/2)y(i)T(f2 - r2)z(xylJ Amz(x))

where r = \x\, a(x) = (r2— r2)1/2 , and Jx is the Bessel function of order one.

For every n ^ 2, D has support in the solid light cone [x | x e £", 11 | ^ | x |]. For

even n ^ 4 and m = 0, the support of D is on the surface of the cone (Huygens'

Principle).

2. Nonlinear scattering. In this section K is a fixed Hilbert space (real or

complex, separable or inseparable) and its inner product and norm are denoted

simply by ( , ) and | |, respectively. Also a non-negative self-adjoint operator

A with bounded inverse is given on K. For convenience, let B denote Ai/2.

Most of the functions considered in this section will be functions of t

(— oo < t < + oo) with values in K. The terminology of Hille and Phillips,

[3, Chapter 3], on vector-valued functions will be followed. In general, u' de-

notes du/dt, D(A) denotes the domain of A, etc.

First we set up the Hilbert space of solutions of the 'free' equation :

(12) -d2u0/dt2 = Au0(t)

Definition 2.1. H0 = H0(K,A) is the set of all X-valued functions u0 of t

satisfying: (a) u0 is strongly differentiable, and its derivative u¿ is absolutely

continuous and strongly differentiable a.e.; (b) uo(0)eD(A) and

u¿(0)eD(B); (c) u0 satisfies (12) a.e.

Lemma 2.1.   For any u0,v0eH0, the function

x(t) = (u0(t),v0(t)) + (B-'u^tlB-'vfc))

is constant.

Proof, a is differentiable a.e. and a direct calculation shows that oc'(r) =0 a.e.

by using the fact that u0 and v0 satisfy (12). But since a is absolutely continuous,

it is constant.

Lemma 2.2.   Every element u0eH0 is represented uniquely as

(13) u0(t) = cos(îB)u0(0) + sinOB^u^O)
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and therefore, u0(t)eD(A), u'0(t)e D(B) for all t, u'¿ is strongly continuous,

and (12) is satisfied everywhere.

Proof. Let v0(t) be the right-hand side of (13) and let w0 = u0 - v0. Then

w0 e H0 and w0(0) = 0, w0(0) = 0. By the preceding lemma, w0 vanishes identi-

cally. Therefore, (13) holds and the rest is immediate.

Proposition 2.1.   For any u0,v0eH0, the function

ß(t) = (B2u0(t),B\(t)) + (Bu'0(t),Bv'0(t))

is constant. If we define (u0,v0)Ho = ß(t), then H0 becomes a Hilbert space.

Proof. Let M be the collection of u0eH0 with u0(0)e D(B6) and u¿(0)eD(B6).

By Lemma 2.1 applied to B4u0eH0 and v0, ß(t) is constant for any w0eM and

v0eH0. Since [u0(0) | u0 e M] = D(B6) is dense in K, we have for any (

sup „oeM (B2u0it), B\(t)) = |B2»0(0|2 and hence, sup „oeM ß(t) = | B2v0(t)\2

+1 Bv¿(t)\2, the latter independent of t. Since v0 is an arbitrary element of H0, ß(t)

is constant for any two elements of H0 by polarization. Obviously, H0 is a pre-

Hilbert space. To show completeness of H0, note that by Lemma 2.2 it is iso-

morphic to the direct sum of D(A) and D(B) furnished with the norm

(|/4/|24- |Bg|2)1/2 for feD(A), geD(B). The latter is a Hilbert space.

Definition 2.2. X will denote the collection of all X-valued functions / of

t,— oo < t < + oo, such that:/is strongly differentiable with a strongly continuous

derivative /',/(() e D(A),f'(t)eD(B) for all t, and

||/|U=sup[|X/(0|24-|B/'(0|2]1/2
t

s finite. Then X is a Banach space with the above norm. To show that X is com-

plete, assume that f„f2,--- is a Cauchy sequence in X. Then both fn(t) and

/„'(0 are convergent uniformly in i, strongly in K. By standard reasoning, apply-

ing the mean value theorem to the numerically-valued function (fn(t),h) where

heK, fn converges in X to an element of X.

Definition 2.3. Let T be any mapping defined on X whose range consists

of functions defined for a.e. t with values in K. We shall call Tan admissible

perturbation if it satisfies the following conditions:

(a) TO = 0 a.e.; Tu(t)eD(B) a.e. (all ueX).

(b) Tu(t) is a strongly measurable function of t (u e X).

(c) If u, v e X then we have

(14) | B[Tu(t) - 7Xr)] | ^ ö(i) | A[u(t) - v(t)] | a.e.

where 9 is a fixed integrable function.

Lemma 2.3.   For any ueX, let Lu be defined by
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(15) (Lu)(t) =   -f   sin[B(r- s)] B~l(Tu) (s) ds.
J — 00

Then (Lu)'=(d/dt)(Lu) exists strongly, (Lu)" exists strongly a.e. and both of

these are obtained by formal differentiation of the integral. All the integrals

exist in the sense of Bochner ('are B-integrable').

Proof. We show the last statement first. To show that the integrand in (15)

is B-integrable, we need two things: that it is absolutely integrable and a strongly

measurable function of s. The measurability has been relegated to Lemma 2.4

below, which applies because sin[ß(r — s)] is certainly strongly continuous,

being just a linear combination of exponentials. On the other hand,

r» I /» + oo

\sin[B(t-s)']B-1Tu(s)\ds   ^ ¡A~1\\-9(s)-\Au(s)\ds
J — 00 J  — 00

è  || A -11| • i 9(s)ds-1| m || x < oo.

Similarly, the formal derivatives are given by B-integrals (see below). Now to

show that Lu is differentiable, it suffices to consider an integral such as

em$-xg(s)ds = v(t), where g(s) =e~iBsB~1Tu(s). For any t, ¡l00g(s)ds is in

D(B). Combining the fact that elB'x is strongly differentiable if xeD(B) with the

theorem on differentiation of indefinite B-integrals [3, p. 88], it follows by a

standard argument that v'(t) exists a.e. and equals the formal derivative. There-

fore, (Lu)' exists a.e. and

(16) (Lu)'(O = - [     cos [B(i - s)] Tu(s) ds
J— 00

a.e. Since Lu is strongly absolutely continuous, it is the indefinite integral of

the right-hand side of (16) (a strongly continuous function) and therefore, (Lu)'

exists strongly everywhere and (16) holds for all t. The rest is similar. Indeed,

(17) (Lu)"(t) = B [      sin[B(i - s)] Tu(s)ds - Tu(t) a.e.
J— 00

Lemma 2.4. Let x(t) be a strongly measurable function of t with values

in K and U(t) a strongly measurable function whose values are bounded self-

adjoint operators on K. Then t-*U(t)x(t) is also strongly measurable.

Proof. If h e K, then x(-) + U(-)h is strongly measurable and | x(-) +U(-)h\

is measurable, and so is (U( ■ )x(■ ),h). It remains to show that U(-)x(-) is almost

separably-valued [3], but this is easily seen to be the case because U(-) and

x(-) are.

Finally, we have the following standard lemma about Volterra operators.
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Lemma 2.5. Let Y be L^E1) with the sup norm. Define(Gf)(t)= jLa>g(t,s)f(s)ds

for allfe Y, where g is a given function satisfying |g(r,s)| ^ a(s) (all s, t),a(-)

being an integrable function. Then the iterated operator G" is bounded in norm

by U*(s)dsY/(n-1)1

Proof. We assert that if g„ denotes the kernel of the iterated operator G",

then

n-l

(n- 1)!.(18) \gn(t,s)\ rg oe(s) \)«(r)dr

Assuming inductively that (18) is true for « = m — 1,

\gm(t,s)\  £  ¡)gM-t(t,r)\ \g(r,s)\dr

Ú   [(m - 2) !] - la(s) J" a(r) [£a(p)dp
m-2

dr.

Upon integrating this by parts, (18) is obtained for n = m. This proves (18).

Using this result,

G Y H r  Ú sup, r \g„(t,s)\ \f(s)\ds
J — OO

^ [[a(r)d/-]"   /(«-!)! ■ |/|y,

proving the lemma.

We make the following two conventions. First, for weX, \\w\\Ho

= || w ||ho(0 = [|^4vv(012 + |Bw'(f)|2]1/2 even if w is not an element of H0.

Second, if N : X -> X and || Nv — Nw || x ^ k | v — w || x for all v, weX, then

I N || will denote the smallest such constant k.

Theorem 2.1. For any u0eX, the equation u = u0 + Lu has a unique

solution ueX. If u0eH0 then u satisfies

(19) - u" = Au + Tu

a.e.; this equation is satisfied everywhere in case Tv(-) is strongly continuous

for all veX.

Proof. Let u, v e X. For each t we have Lu(t) e D(A) and (Lu)'(t) e D(B) and

\A\Lu(t) - Lv(t)-] | S P-oo |B[Tu(s) - Tv(s)-]\ ds; \B[(Lu)'(t) - (Lv)'(t)]\ is

bounded by the same quantity. Therefore, for all t



22 W. A. STRAUSS [July

|| Lu -Lv || Ho(t)   ^ 21/2i     \B(Tu(s)-Tv(s)~]\ds

(20) J~°°

-r.#(r, s) ||u-u|| Ho(s)ds

by (14), where g(t,s) = 2l/29(s). Now let G be the Volterra operator with kernel g.

Then ||L"|| ^ ||G"]| (n ^ 0) and ||Gm|| < 1 for some m, by Lemma 2.5. Let u0 e X

and Mu = Lu + u0 (ue X). Then L and M are bounded operators on X and

Mm is a contraction mapping. Therefore, M has a unique fixed point u in X and

indeed, u may be obtained as the limit in X as p -* oo of M'"pu0. Now if w0 e H0

then (12) is satisfied. But (17) tells us that (Lu)" = —ALu — Tu a.e. (everywhere

under the additional assumption on T). This, together with the fact that u is

a fixed point of M, shows that (19) is satisfied.

The solution u of u = u0 + Lu satisfies exactly the desired property that it is

asymptotically equal to u0 as t -» — oo (see the following theorem). The corres-

pondence u0 -* u is called the wave operator W_ for the pair of equations (12)

and (19); that is, W_ is the restriction of the operator (I — L)~y to H0. The

other wave operator W+ is strictly analogous: simply substitute

(Ladvt;)(t)  =   f   C°ún[B(t-s)-]B-1(Tv)(s)ds

for L= LTel, and define W+u0 as the unique solution v of the equation

f = u0 + Ladvt>. Then W+ is asymptotically equal to u0 as (-* + oo. The next

theorem shows in particular that any solution of (19) satisfies u = u0 + Lu

for some u0eH0.

Theorem 2.2.(a) W_(H0) consists precisely of those elements u of X such

that u" exists strongly a.e. and u satisfies (19) a.e.

(b) Let u0eH0 and u = W-u0. Define

mos)(0 = cos[B(i - s)]u(s) + sin[B(i - s)]B~V(s)

(- oo < í < + oo). Then u0s) converges to u0 strongly in H0as s -» — oo. (Pro-

perty (?) of the introduction.)

(c) Ifu0 is a given element ofH0, then W_u0 is the unique element of W-(H0)

satisfying property (P).

Proof, (a) Let ueX with second derivarive existing a.e. and satisfying (19)

a.e. Define u0 = u — LueX. Then — u'¿ exists and equals An + Tu — ALu — Tu

= Au0 a.e. Hence u0eH0 and obviously W-it0 = u. (b) Let u,u0,UQS)be as

defined. Then || Lu \\Ho(t) ̂ f_  g(i,s)|| u \\Ho(s)ds < oo for all t by (20). Hence,

(21) || u - u0 \\Ho(t) ̂ 0       as t - - oo.
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However, u(0"(0 = "(0 ar>d "0° (0 = "(0> so that (P) holds, (c) Suppose that

u0eH0 and v is in the range of W_ and v satisfies (P). Then (21) holds with u

replaced by v. If v0 = WZ1v then for any t

II "o - »o ILO) ̂ IIv - "o !k(o + Ilv - V0 IUoCO,
which converges to 0 as ( -* — oo. But as the left-hand side of this inequality

does not depend on t, v = W_u0.

Corollary 2.1.   W_H0 = W+H0.

Proof.   Exactly the same theorem holds for W+ with the obvious changes.

Definition 2.4. The scattering operator is the one-to-one mapping of H0

onto itself defined by S = W+ 1W_.

Lemma 2.6. (I — L)-1 is bounded on X with a bound not more than (\—a)'1 ß,

where a = || Lm|| < 1 and ß = I + ¡L¡ + ••• 4- | Lm_1||.

Proof. Since 1" — Lis a one-to-one mapping of X onto itself, the closed graph

theorem could be applied in the linear case, but to find a specific bound, consider

two elements u0,v0 of X and let u = (I — L)~1u0 and v = (I — L)~1v0. Then,

as we observed previously, u = limp_tooMmpu0 = ÏZq=0L''u0 and similarly for v.

Hence

||u-t>|U   ^ I'm   I ||[L""(/4-L4-- + Lm-1) + L""'][u0-i;0]|x

s¡   f a"ß\\u0-v0\\x = (1 -«)_1/î||wo-»o||x.
«=o

Thus is the required inequality.

Corollary 2.2. There are positive constants c„c2 such that for every u0 e H0

«i1«o||h0 ^ IISuo||ho ̂  c2 || u0 flno-

Proof.   S is the restriction of (/ — Ladv)(J - L)-1 to H0. The inequalities fol-

low by the preceding lemma applied to L and Ladv

Theorem 2.3. Let T„, T be admissible perturbations with wave operators

WÍn\ W- respectively (n = 1,2, ■■■). Assume that there is a sequence 9'n of

integrable functions with the property that ¡9¡,(t)dt^0 as n -> oc and 0„'^O

and that

| B[Tn(v - w)(t) - T(v - w)(t)-\ \K Ú 9'n(t) | A {v(t) - w(t)} \K

for a.e. t, for all v, weX (n = 1,2,---). Then W^ converges to W_ strongly

in X as n -* oo.
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Proof. Let 9„ be an integrable function associated with T„ in the sense of

(14), and 9 such a function for T. Let L„ and Lbe the associated integral opera-

tors (15). The hypothesis implies that we may choose 9„ = 9 + 9'„. It may be

assumed that \9'n(t)dt < 1 for all n. For any positive integer m, let L" denote

L„ iterated m times. Then, by Lemma 2.5 and (20) with appropriately added

subscripts, we have \\Lmn\\ g [21/2 $9n(s)ds]m/[m-1] ! ̂  2m/2[1 + f0(s)ds]7[m -1] !

for all m > 0, n > 0. Fix m so large that the right-hand side of this inequality is

less than 1. Lemma 2.6 then shows that ¡(/ — L„)_1|| ÚC,C independent of «.Now

if m0 eH0, u = W^u0, and un= Win)u0, then u„-u = (I-L,y1(L-L„)(I-L)~iu0,

so that|| u„ - u || x ig C || L- L„ || || u || x- But by Lemma 2.5 and (20) applied to

the perturbation T„ — T, we have

¡Ln-L\\  g 2ll2J9'n(t)dt.

Hence || un - u || x -» 0 as n -* oo, proving the theorem.

Theorem 2.4 (Finite Cauchy problem). Let t0 be real and let feD(A),

ge_D(B). Then there is a unique u in the range of the wave operators with

u(to) =/ and u'(t0) = g.

Proof. Let v0 be the (unique) element of H0 with v0(t0) =/ and v¿(t0) = g.

Instead of defining L by (15), define it by the same formula with /'_„

replaced by J"'0. The equation u = v0 + Lu can again be solved in the same

way and we immediately get m(/0) =/ and u'(t0) = g. This demolishes the present

theorem. Let W(t0) be the operator v0 -* u defined in this way, let W(— co)= W_,

let W(+ oo) = W+, and let S^tJ = WitJ^Wito). Then S = S(- oo, oo). All

these wave operators W(t) have equal ranges and each S(t,s), — co :g r, s :g + oo,

is nonsingular by the same reasoning.

Now let us not assume that A has a bounded inverse, but still assume that A

is one-to-one. Here is a summary of the changes needed to make most of the fore-

going treatment apply in this case. Let D = D(A3) C\D(A~1). Define H'0

exactly as H0 except to require that m0(0) and u¿(0) are in D. Lemmas 2.1-2.2

and Proposition 2.1 hold for all u0,v0 e H0 except that H'0 is no longer complete.

Define X as before, and to the definition of admissible perturbation add the

condition: (d) For a.e. r, Tu(t)eD(B~1), and for all ueX we have (for j = 0,

j = — 1) $\BJTu(s)\ds < oo. Assume K separable. Then Theorems 2.1-2.3 and

Corollary 2.2 hold provided that H0 is replaced by H0 and Theorem 2.2(a)

is replaced by: (a') W-(H'0) contains all ueX such that u" exists strongly a.e.,

« satisfies (19) a.e. and u(t), u'(t) e D for all t.

3. Scattering for the KG equation. We apply the results of §2. For this purpose,

let m ^ 0 and choose K to be the Hilbert space of all tempered distributions/ on

E"'1 such that (fc2 + m2)~3/*f(k) is a square-integrable function of fc, with

(f,g)n=  $R*-i(k2+ m2y3,2f(k)g(k)dk.   The   differential   operator   - A + m2
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operating on C™(E"~l) has a unique self-adjoint extension on K, which is our

choice for A. D(A) consists of all functions such that J(fc2 + m2)1/2|/(/c)|2dk< oo,

and on this domain we have (4/) ~(k) = (k2 + m2)f(k).

Let m > 0. Then A has a bounded inverse and the KG space coincides with

the space H0(K,A) by Theorem 1.1. Indeed, it is straightforward that the de-

rivatives of elements of Km exist in the appropriate sense. We remark that K

was chosen in just such a way that the elements of Km as well as their first two

derivatives with respect to time would all have values in K. From §2 we get

Corollary 3.1.TLer K,„ = H0 be the complex or real KG space with m > 0.

Let T be an admissible perturbation in the sense of Definition 2.3. Then for

every u0 in H0 there is a function u = W_u0 satisfying:

(a)   For each t, u(t,-) is square-integrable and

(22)       sup(íí|«(a)|2Mkl1/2 + [ flirru^fcr'dfcl1/2 < oo

(where kx = (k2 + m2)1/2).

(23)(b) □« = m2u + Tu a. e.

(c) // Uqs)ís the element of H0 with the same Cauchy conditions as u on the

hyperplane t = s, then wos)->-u0 in H0 as t-* — oo.

Furthermore, properties (a)-(c) characterize u uniquely in the sense that

any two such functions agree a.e. For convenience, all derivatives are taken

in the sense of distributions.

Proof. This is just a restatement of parts of Theorems 2.1 and 2.2. Every-

thing is immediate but the uniqueness ; for this, mimic the proof of Theorem 2.2,

keeping in mind the weaker sense in which derivatives are taken.

Corollary 3.2. In the same situation, the wave operators have equal ranges

and S is a one-to-one mapping of H0 onto itself, bounded with bounded inverse,

and linear if Tis linear.

Proposition 3.1. In the KG situation with m > 0, a sufficient condition for

T to be an admissible perturbation is

(a) For every function satisfying (22), Tu is a measurable function on

E". If u = 0 a.e. then Tu = 0 a.e.

(b) There is an integrable function 9 such that

|| Tu(t) - Tv(t) ||Ll(£»-i) Ú 0(0 i u(t) - v(t) || t2(JEn-i)

a.e. if u and v satisfy (22).

Proof. For such u and v,
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|| Ail2[Tu(t) - 7,(0] ||K =  || A^%Tu(t) - Tv(ty\ \\Ll

ú m-1/2||Tu(í)-Tt;(í)||L2

^ (l/m)9(t)\\All\u-v)(t)\\L2

= (l/m)9(t)\\A(u-v)(t)\\K.

To show that T is admissible, it remains to show that Tu is a weakly measurable

X-valued function of í. But J Tu(t, x)g(x)dx is in fact an integrable function for

g e L2(E"~1),   u satisfying (22).

For instance, T is admissible if it is multiplication by a function V = V(t,x),

measurable, such that I F || ¿,^(£«-1) is integrable. Or, if T is of the form

Tu(t,x) = ¡V^Ux - y)u(t,y)dy, where || V^t,-) || WR»-i)is integrable.

We remark that if we wish to prove smoothness of u = W_u0 (if u0 and T are

sufficiently smooth), the same successive approximations technique can be used by

varying the sense in which the approximations are required to converge.

Now let m > 0 and K and A chosen as above. Then

(24) (Lu)~(f,fc)=-       fct 1sin[(í-s)fc1](Tt¿)~(s,fc)ds
J— OO

and by (10) the integral equation we solved was

(25) u = u0 + Dret*Tu.

With Dret replaced by an arbitrary elementary solution of the KG equation,

(25) is still formally equivalent to (23).

Consider perturbations which are not admissible as previously defined. If we are

not concerned with the existence of solutions of (23) but actually have a particular

solution at hand, when is it a solution of the Cauchy problem at t = ± oo ? We

say it is, if there is a uQeH0 such that property (P) holds, i.e., (21) holds. In

case u satisfies (25) and for some t0

(26) f*    ¡k:1,2(Tu)~(s,k)\\L2ds < co,
J— CO

(24) implies that for t < t0

1«-«o||h„(0 ^ 21/2 f  ||fci/2(ru)~(S)fc)||t2ds
J— 00

(fci = (fc2 + m2)1'2), so that (21) does hold. Replacing (26) by a condition in-

dependent of m, we have the following criterion (to be applied below).

Proposition 3.2. Let m 2; 0. Let u0 e H0 and assume that u satisfies (25)

and that indeed Z/Lo-L'^Wo converges to u in the sense of distributions for
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some positive integer q. Let X' be a Banach space containing v0 (see below)

with the following properties: (a) X' consists of functions defined on E" with

supports contained in the half space t<t0 (t0 fixed), (b) L maps X' into itself

and for all weX', || w||x. = supt<ro|| w||Ho(0. Assume that T maps X' into

measurable functions, that TO = 0 and that

(27) P   || k;ll2[_(Tw)~(t, k) - (Tv)~(t, fc)] |L2di Í c || w-v || x.
J   — CO

for all w,veX', c being constant. Then || « — u0 ||//0(i) —> 0 as t-* — oo.

Proof. Let v0 be equal to w0 for t < t0 and zero otherwise. Using (27), (25)

can be solved in the space X' by successive approximations, obtaining a function

weX' such that w = ¿Z°°=0LqJv0 converges in X'. Therefore, w = u on the set

[x 11 < i0] as distributions. Hence, (26) is satisfied for u and the conclusion

follows.

Similar considerations apply of course for W+.

Now consider the vanishing mass case. The remarks at the end of §2 could

be applied here, but the results are not as sharp as those obtained directly, as

follows. Let H0 be the KG space with m = 0. Suppose that 70 = 0, Tu is meas-

urable and

||fc-1/4[(rU)~(í,/c)-(Tt;r(í,/c)]|| S 0(O||fc1/4[fí(f,/c)-t5(U)||

a.e., for all u, v satisfying (22), where 9 is integrable and || || is the norm in

L2(R"~1). Then Corollaries 3.1 and 3.2 hold.

We show specifically that the wave operators can sometimes be defined even

if T does not satisfy these conditions. For instance, T can be multiplication

by a function independent of t in the following case. Take m = 0, n — 4. By

(25) and (11) the equation to be solved is

(28) u(t,x) = u0(t,x)+ i (Tu)(t-\y\,x-y)\2y\-1dy.

This is solvable in the following way. Let Y be the Banach space of all functions

u on E" with I « ||y = sup, j\u(t,x)\dt < oo.

Lemma   3.1.   H0 o Y is dense in H0.

Proof.     The Riemann function for the wave equation is

D(t,x) = (2r)~1[ô(r - t) - ô(r + t)]   (r=\x\, n = 4).

If g is in C"(£"_1), let ug = D*'g where *' is convolution in £"_1. Then

iig(t,x) = (20_1 J"|y| = |f|g(* — y)d%iy), where dL is the euclidean surface element

on the sphere; and
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f     |ti,(i,jc)|d/   ̂    f   \g(x-y)\ |y|_1dy

is uniformly bounded. Hence, ugeY~ and similarly, u¡eY. But a dense subset

of H0 consists of the functions of the form ug + u'f where/,geC".

All of these are in Y.

Theorem 3.1.   Let m = 0, n = 4, «0 e 7. Assume TO = 0 and

|(Tm- ri>)(r,x)|d* ^ «(x)|M-o||y

/or all xeE3 and all u, veY, where sup^ J|^(v)| |x— y|~1dy = cr is finite.

Then: (a) [h 6 Y and D" = Tu} if and only if u satisfies (28) for some u0eY

satisfying the wave equation; (b) if cT < 1 then there is a unique ue Y satis-

fying (28).

Proof, (a) Let ( , ) denote the distribution pairing and let <peC™(E*)

andt;eY. Then, by using the explicit formula for D, (Lv, <f>) = (Dret * Tv, <p)

= (Tv, Dadv * (j)). Hence, (rjLv, <j>) = (Tv, D öadv * <¡>) = (Tv, <¡>), from which (a)

follows immediately. Using (28) it is easy to see that || Lu — Lv || YS cT \\ u — v \\Y.

By successive approximations (28) can, therefore, be solved if cT< 1.

If T is multiplication by a function of x, say V, then

(29) cr = sup f   \V(y)\ \x-y\-ldr,
x    Je1

and cT is finite if Kis integrable and square-integrable, by Schwartz's inequality.

If m = 0 and n is even, then Proposition 3.2 can be applied relatively easily,

as we shall now show. For in that case there is a class of functions dense in the

KG space H0 with supports contained in a set of the form

[x|x££n, |í|-d<|x|<|í| + d]

for some d > 0 (d depending on the function). To show this, let u0eH0 with

„o(0,0 =/ and «¿(0,0 = g both in Cf (E"'1). Then (if ug= D *'g) u0 = ug + u'f.
The assertion follows because D has its support on the set [x | | ( | = | x |] for

even n, and the set of such u0 is dense in H0.

For each u0 in this dense set H¿, suppose we have a solution u of (25) with

the property stated at the beginning of Proposition 3.2. Assume that T is causal

in the sense that if v vanishes on a backward (solid) light cone C, then Tv also

vanishes on C. Since £>ret has support on a forward light cone, the operator L

given by DKl * Tv is causal in this sense if T is. Therefore, u vanishes on a back-

ward light cone if u0eH¿. To apply Proposition 3.2, we choose X' to consist

of functions which vanish on backward light cones. Putting this together with

Theorem 3.1, we have
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Theorem 3.2. Let m = 0, n = 4. Let T be multiplication by a function V

independent of t. Assume cT< 1 (cf. (29)) and also that | V(x)\-=0(\x\~2~e) as

\x\ -> oo/or some £ >0. T/ien i/tere are maps W- and W+ defined on H'0 such

that if u = W_u0 then : (a) □« = Tu, (b) || u - u0 ||Ho -> 0 as t -»• oo, (c) u e Y,

(d) u vanishes on the same backward light cone as u0; and similarly for W+.

Proof. By rough estimates, (27) (or a slight variant thereof) is seen to hold

for w, veX' provided

J
Í0

ess sup    | V(x) I dt
-00    |*|S|i|

and

SIS V(x)\2dx
1/2

dt

are both finite for some i0. But they are finite under the growth hypothesis on

V. Hence, the existence of W- is assured by Theorem 3.1 and the asymptotic

condition by Proposition 3.2.

Finally it should be mentioned that the case when T is multiplication by a

function V 5: 0 of x (and not i) can be treated differently provided we restrict

our attention to positive-frequency solutions of the KG equation and equation

(23); i.e., complex-valued solutions u such that w(k) = 0 for fct < 0. The key

to this is the observation that a positive-frequency element u0 e Kp satisfies the

equation u'0(t) = + i(— A + m2)1/2u0(r), and hence the theorem of Kuroda [4]

can be applied. Under certain conditions on V, a solution of u'(t) = iHu(t) is

obtained which satisfies the asymptotic property (P); here the Hilbert space in

question consists of all complex-valued functions/ with J|(fc2 + m2)1/4/(fc)|2^fc

finite, and H2 is a self-adjoint realization of — A + m2 + V. Then u is necessarily

positive-frequency, as can be shown to follow (not surprisingly) from the fact

that u is obtained as u(t) = exp(+ itH)u(0), H 3ï 0. It seems difficult, however,

to find convenient criteria for the conditions on V to hold. Nor does it seem

possible to use Kuroda's theorem for general real solutions of the equations,

either by using the positive-frequency result or by reducing the equations to a

system of differential equations of the first order in d/dt.

4. Infinitesimal eigenspaces of — d2/dt2 — A. Let R be any self-adjoint

operator on a separable Hilbert space Jf with associated spectral measure £(•).

There is a measure p(-) on the real line (with support on the spectrum of R)

relative to which all the countably additive set functions (E(-)f,g),f,g inJt,

are absolutely continuous. To fix ideas, let us assume that Jf = L2(E") and

R : C™(£") -* C"(£"). Suppose that for each/e^f there is a one-parameter family

of distributions /„ (depending on /) such that
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(30) (fx, g) = j^ (£( • )/, g), a.e. [p]

for all testing functions g, where ( , ) is the distribution pairing (cf. [2]). Then

we have the expansion (f,g) = ¡(fx,g)dp(ai), and it is easy to see that for a.e. a

the equation Rfx = afx holds weakly. The question arises : for fixed a, how does

the class of generalized functions/a describable in this way, with / ranging through-

out stf, compare with the spaces H0 and HT ( = the common range of the wave

operators) when R is appropriately chosen? In this section we shall consider the

case of H0.

Now consider any non-negative self-adjoint operator A on a Hilbert space K.

For instance, K is L2(E"~1) and — A is the Laplacian. (This notation conflicts

with that of §§2, 3 and 5.) Let Jf j be the Kronecker product of L2(El) with K.

It may be regarded as consisting of strongly measurable iv-valued functions of t;

fe^fi if and only if $\f(t)\2dt is finite. Let D2 be the self-adjoint realization of

- d2/dt2 on L2(£ l). Let i?t be the infinitesimal generator of the Kronecker

product of the one-parameter unitary groups generated by D2 and — A, by Stone's

theorem. Formally, Rx = —d2/dt2 — A operating on^Cy. In case/e 2tfx of the

form j \,i) = F(t)v, with veK and FeL2(£1), / is in the domain of Rt if and

only if veD(A) and F is in the domain of D2, and in this case

(RJ)(t) = (D2F)(t)v - F(t)Av.

We intend to show that the infinitesimal eigenspaces of Rx for positive eigen-

values correspond to the free Hilbert spaces H0 (with the appropriate change

of K and A to agree with the usage in §2). Let £(•) be the spectral resolution

of 2?!. Let JP[ be the set of all/etf x with J*|/(i) \Kdt finite. Let tf be the range

of the projection £([0,oo)), R the restriction of Rt toJf riD(R1), and Jif '=je nje[.

Theorem 4.1. The operator R is absolutely continuous. For a > 0, let

Gx(s,t) = (A + a)_1/2cos[(i -s)(A + a)1/2]. Then

(31) ^(£(a)/,g)#1 = jj(Gx(s,t)f(s),g(t))Kdsdt

for all f and g in#?\ and all a > 0.

Proof. The first statement means that (E(-)f,g)# is absolutely continuous

with respect to Lebesgue measure for all f,geJt. Note that (31) is invariant

under unitary transformations of K. Therefore, we may assume that K is the

Hilbert space L2(M,dk), where (M,dk) is a measure space, and that A is mul-

tiplication by a real-valued measurable non-negative function a(-) on M.Then

J^x may be identified with L2(Ex x M). Denote Fourier transform with respect

to í by F, the dual variable of t by k1} and a Borel set contained in the interval

[0, oo) of the real line by Q. Then F~1E(Q)F is multiplication by the charac-
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teristic function of the set SiQ) = [ik,,k)\ik„k)eR1 x M and fc2-a(fc)eß].

Therefore, for f,geJ^i,

iEiQ)f,g)^l =   ff     Ff(k„k)Fg'(k„k)dk,dk.
J J S( Ö)

Breaking this up into two parts, corresponding to k, positive or negative, and

in each part substituting a = k,2 — a(k), the double integral becomes

|   dk f da(2k*y1 [F/(fc*, k)Fg~(k*, k) + Ff(-k*, k)Fg~(- k*, fc)]
J M      J Q

where fc*= + [a(fc) -I- a]1/2. The Fubini theorem may now be applied, pro-

vided the integrand is a measurable function of (fc,a) in the product space M x Q.

This is clear in case/ and g are simple X-valued functions of t. On the other

hand, an arbitrary B-integrable function / can be approximated in the space

of B-integrable functions by a sequence of simple functions f¡ [3]. This implies

that, for fixed k„ Ffj(k„k) ->■ Ff(k„k) as j -» oo for fc outside of a set of measure

zero. If these Fourier transforms are redefined to be zero on this null set, the

convergence holds everywhere. Approximating g similarly, we conclude that

the integrand is measurable in the required sense and the integrals may be inter-

changed. In particular, it follows that the operator R,E([0,oo)) is absolutely

continuous and hence so is R.

Writing out the Fourier transforms explicitly in the iterated integral and com-

bining terms, we obtain

f  dot f   dkÎïdsdtk*-1 cos[(( - s)fc*]/(s,fc)g(t,fc).
J Q J M J J

The integral over M can be exchanged with the two inner ones and therefore,

(£(0)/»*)*, =|   dajjdsdt(Ga(s,t)f(s),g(t))K

if Q is a Borel set contained in the interval (e, oo) for some s > 0. This gives equa-

tion (31) for a.e. a > 0; since the right-hand side of (31) is continuous in a for

a > 0, the equation may be said to hold for all a > 0 by regarding E( ■ ) as a func-

tion of a real variable in the usual way. This completes the proof.

Now let a be a fixed positive number. For each t, for feJf' and veK, consider

j(Ga(s,t)f(s),v)Kds. This is a continuous linear functional of v and therefore

there exists fa(t) e K such that

(32) (fa(t),v)K = \(GJis,t)f(s),v)Kds.»)*=Jc
From the preceding theorem we have
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(33) fómfig)* =jif*(t),g(t))Kdt  = j(f(t),gx(t))Kdt

for all geJf' (gx being defined asfx was), the last equality holding because the

operators £(0 are symmetric. We shall say that/, is the ^.-component of/ in

the eigenfunction expansion of R. This terminology will be justified shortly.

Equation (33) shows that the left-hand side actually depends only on /„ and ga,

not on / or g. Define Jtf"x as the set of all «-components of elements of Jf".

Lemmaj 4.1.   Jtf"a is a pre-Hilbert space when furnished with the inner product

(34) (L,gX = £-iEi«)f,g)„.
ace

Proof. We have just observed that this is well defined, and it is easily a bilinear

hermitian non-negative form. Now assume/e Jt' with (fx,fx)x = 0. By Schwarz's

inequality, (fx,gx)x = f if.it), git))Kdt = 0 if geX". On the other hand, by the

preceding theorem the last equality holds if g is in the range of £((— oc,0)),

and therefore for all ge#£"x. Now choose g(t)~n(i)v, where veK and

neLiiE1) r\L2iEl). Then ¡n(t)(fx(t),v)Kdt = 0 for all such n. But (32) implies

that (fx(t),v)K is a bounded continuous function of t, hence, identically zero.

So/«(0 = 0for all t.
Define J4?x to be the completion of Jt"a. Then Jf is the direct integral (con-

tinuous direct sum) of the spaces ¿4?x (a > 0) with respect to Lebesgue measure.

This means, in particular, that

/CO

(f»gX da

for / and g in 3%". This follows directly from (34).

Now we shall show that, for fixed a > 0, 2^x is the same as H0(K',A') for a

certain choice of A' and K' (cf. Definition 2.1). For convenience denote

B = (A + a)112. If u,veK, define (u,v)' = (B~3u,v)K. With the inner product

(,)', K becomes a pre-Hilbert space. Let K' denote its completion.

Lemma 4.2. The operator B = (A + a)112 has an extension B' which is a non-

negative self-adjoint operator on K' with bounded inverse. Define A' = B'2.

Also D[B'(n+3)/2] = D[B"/2]/or n = integer ^ 0.

Proof. B has a bounded inverse. Since (B~1u,B~lu)' ^ c(B~3u,u)K = c(u,u)'

for u e K (c = constant), B'1 has a unique extension to a self-adjoint bounded

operator C on all of K'. It is not difficult to see that C is one-to-one, and if we

define B' = C-1 with domain equal to the range of C, then B' is self-adjoint.

The other assertions are easily proved.
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Theorem 4.2. ¿f"x is a dense subset of H0(K',A') and the Hilbert space

structures agree. Indeed, u0e^fx if u0eH0(K',A'), uo(0)eD(A'3/2)and

«o (0)eD(A'). Therefore, Jex may be identified with H0(K', A').

Proof. We shall first show fxeH0 = H0(K',A') for/e J^'. Note that the kernel

Gx can be written as

(35) Gx(s, t) = B*l [cos(sB) cos(tB) - sin (sB) sin (fJS)].

Let weK be defined by (w,v)K= - \(ún(sB)f(s),v)Kds for all veK. Then

by (32) and (35)

(36) fx(t) = cos (tB)fx(0) + sin (tB)B~x w.

Because weKc D(B') and/a(0)eD(B) c D(A'), Lemma 2.2 shows that fxeH0

and that w=fx(0). Note:

K(0)=-jsin(tB)f(t)dt

(37)

fa(0) = ¡B-1Cos(tB)f(t)dt¡

for future reference. Now if/, geffî' we obtain

(L,gX = (BfM,ga(0))K + (B"7Ä0),?Mi = (f., go) Ho,

using (34), (35), (37).

It remains to show the density of M"x in H0. Let vieD(A'3'2) = D(B312) and

i>2eD04') = D(B1/2)- We shall construct fe Jif" such that/, has the initial con-

ditions t'x and v2. We may again assume that K = L2(M,dk), that A is multipli-

cation by a non-negative measurable function a(-) on M and that Jf x = L2(£ xx Ai).

Let m>2 = Bf ! + iv2 and Wx = Bz^ — iv2, both regarded as square-

integrable functions on M. For any positive integer n, let M„ =

[fc|fceM,(n-l)a/2^a(fc)<na/2] and z„ = (a/2)1/2[(n + l)1/2 - n112 ].Le

j^C^E1) with the following properties: j„(0).= l, j'„(r) = 0 for |i|^2n,

0^j„<¡ l,and |/¡(0| ^ 2z;1 for all i. Define /¡(fc1;fc) to be equal to

Jn(fci - o(fc))w!(fc) if fct ̂  0, fceM„; and equal to j„(kv + b(k))w2(k) if kx ̂  0,

keM„ (« = 1,2,•••); where b(k) = (a(fc) + a)1/2. Finally, let/=F_1/î, F the

Fourier transform with respect to t, and kx the variable dual to t.

Then/is measurable on E1 x M;/isin J^f because

j \h\2úÍ2zn\    [|w1(fc)|2+|w2(fc)|2]dfc<oo
^ Rl*M n = t J M..

and because h(kuk) vanishes for fc2 — a(k) < 0 by  construction  (as is  easily

verified). Now
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f     \eh/ôk,\2 £ f f   [Kw^+i^wpW-1**
J R'XM n = lj M„l J

- c„^i L [iwi(fc)i2+iw2(fc>i2]*(fc)dfc

(c independent of n), using the bound for )'„ and the fact that z„ = 0(n~1/2) as

n ->• co. Since w„w2eD(B l/2), dh/dk, is square-integrable. The product of the

two square-integrable functions (1 + 11 | )~ ' and (1 -I-11 \ ) \f(t)\ K is integrable,

so that/e Jt'. Because ;'„(0) = 1, we have, for fc e M,

fexp( - itb(k))f(t,k)dt = h(b(k),k) = w,(k)

and $exp(itb(k))f(t,k)dt = w2(k). From this follows ¡B~lcos(tB)f(t)dt = v,

and - Jsin(íB)/(Odí = v2. Thus/,(0) = v, and /„'(0) = p2 by (37), proving the

theorem.

Had we completed the set of a-components (defined in the same way) of elements

of X[ with respect to the inner product (34), we would have obtained no more

than the Hubert space H0(K',A'). This is proved in exactly the same way.

Consider the case when K = L2(£"_1) and A is the self-adjoint realization of

- A on K. Then Jf, = L2(E"), R = D, and X consist of all elements feX,

with/(fc1;fc) = 0 for k2 = fc2 - fc• fc < 0. Let E = dD/dt, D the Riemann func-

tion for the KG equation of mass m > 0, and letfeJf'. From (32) follows that

fmi = E*f and hence fmi(k) = <5(k2 - m2)/(k), so that fmi depends only on the

restriction of /to the mass hyperboloid Mm. Intuitively,/ is a result of 'extra-

polating /m2 off the mass hyperboloid'. The decomposition in this case is well

known.

Recall that the real KG Hubert space has the natural skew-symmetric bilinear

form ß0(u0,v0) = (Jou0,v0)Ho associated with it. In the context of the present

section we shall show how ßQ is the infinitesimal form of a form on Jt. Let J0 be

the Hubert transform with respect to time defined on L2(£1) and therefore, also

on Jt, and Jf. (The spaces may be real or complex.) Let a > 0 and let J0 also

denote the operator on J^x = H0iK',A') which acts formally as the Hubert

transform; i.e., writing any element of Jfa as in (36), J0(sm) = cos and

J0(cos) = - sin. Define the bilinear form ß0 on Jfa exactly as in the real KG

case. Let Fa(s,0 = — B-1sin[(i — s)B] (essentially the Riemann function in the

KG case).

Proposition 4.1. Letf,ge J#" and a > 0. Then for all t

(a) (Jo/)«(0 = ^o(/J(0= SFais,t)fis)ds ithe first equality holding only if

J0fe X").
(b) íi{FJ(s,t)f{s),git))Kdsdt = ß0if*,gx) = if:it),g*it))K-Uxit),g:it))K for

all t, the second equality holding for allfa,g,eXa.
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Proof. The second equality in (a) follows from the definition of fx and the

formal properties of J0. As for the first one, J0 commutes with A and with

D2= — d2/dt2, hence, with Rl5 with £(-); and with the operation /-*/„ (for

JofeM"). The first equality in (b) follows from (a) and (33); and the final one by

a simple calculation, after expanding /„ and gx as in (36).

5. Forms on the space of solutions. Let K, A (with bounded inverse),

B = y41/2, Banach space X, and admissible perturbation T be as in §2. Recall

that, for u0eJi0, \\u0-W+u0\\Ho(t)-+0 as i-» + co, that HT denotes the

range of W+, and that S = W+^W- maps H0 onto itself in a one-to-one manner.

We shall need iff = [t'|peHT, v(t)eD(B3), v'(t)eD(A) for all r] to be dense

in H T. To assure this, substitute for X the Banach space X' which has the norm

|| w\\x. = sup,( | B3u(t) |2 + | Au'(t)\ 2)1/2; with this change, and with the assump-

tion that |¿[TM(í)-rt;(í)]|á0(O|B3[w(t)-i;(O]| a.e. (u,veX') (cf. (14)),

§2 carries through as before with the obvious changes of domain, and it follows

that H'T is dense in HT. Assume this additional condition on T, which is assured

by the assumptions of Proposition 3.1, throughout this section.

For u, veHT, define the inner products (u,v)±=(W±lu, W±lv)Ha. Corollary 2.2

states exactly that the two metrics on H T given by dist±(u, v) = || W±~ 1u - W±~ \ || /io

are equivalent. When we speak of topological properties of HT, we are referring to

the topology induced by these two metrics, which is the same as the relative

topology of HT as a subset of X. In case T is linear, so is HT and each of the

inner products defines H T as a Hilbert space. The two metrics are equal if and

only if the scattering operator is isometric; in the linear case, if and only if HT is

defined uniquely as a Hilbert space in this way.

If nu(t) = | Au(t)\ 2 + |Bu'(t) |2, where ueH?, then nu is everywhere differen-

tiable and n'u(t) = - 2Re(Au'(t),Tu(t)) a.e. The latter equation holds everywhere

in case (Tu)( •) is strongly continuous. Since || u \\2± =lim,_±007t„(i),S is isometric

if and only if, for u in a dense subset of H'T, we have Re J^000(^m'(í)»7'u(í))ííí = 0.

Proposition 5.1. Assume that the strongly continuous perturbation T is of

the form (Tu)(t) = V(t)u(t), ueX, where V(t) is a transformation on K such

that \_g\geK, V(t)g = 0] is not dense in K and (in the complex case) such that

V(t) commutes with multiplication by the scalar 1 + i, for each t. Let

- oo < tx g + oo. For any s<tx and ueX, let (Tsu)(t) be equal to (Tu)(t) if

s < r < ii and equal to zero otherwise. Let Ss be the scattering operator asso-

ciated with the perturbation Ts. Then [s|s < tu Ss is isometric] has no finite

accumulation point.

Proof. Let ueH'T. There is a unique veHjs which coincides with i/ in the inter-

val s ^ í ^ ii (s fixed). This follows from Theorem 2.4 (with t0 = s) and the formu-

las for u and v obtainable from that theorem. Then, n'v(t) = 0 for t < s and for



36 W. A. STRAUSS [July

tx < t. Letting 7t„(±co) = limt^±œ7t1,(i), we then have nv( - oo) = nv(s) = nu(s)

and nv( + oo) = nv(tx) = nu(tx). Hence, nu(s) = Tiu(tx) if Ss is isometric. Now

suppose that Ss is isometric, for s in a set of reals with an accumulation point c.It

follows that 0 = 7T,',(c)=-2 Re(.4u'(c),V(c)«(c)). Therefore, 0=(4m'(c),K(c)ii(c))

for all u e H'T. Hence V(c)g = 0 for all g e D(53) by Theorem 2.4. This contra-

diction shows our supposition to be impossible.

As an example, let a and d be positive constants, take A = a and Tuit) = d«(0

for t2 < t < tu Tuit) — 0 otherwise. Then H T can be explicitly calculated, and

the scattering operator is unitary if tx — t2 — Innia + d)~)/2, n = integer.

Now let ß0 be the bilinear skew form on H0 (cf. Proposition 4.1). We shall

show that the two forms on H T which are obtainable from ß0 via the wave opera-

tors (see below) are identical. In fact, the following theorem gives both forms as a

time-independent expression ß which is formally the same as the one obtained for

ßQ in Proposition 4.1.

In the present notation (with K, A equal to the K', A' of §4), we have

ßo(u0,Vo) = (J0Uo,Vo)h0 = (Bu'0 (t),Av¿(t)) - (Au0(t),Bv¿(t)).

DefineX-wo operators J+ and J_,each mapping BT onto itself,by J± = W±J0W±~\

They are anti-involutions: J2+ — — I.

Theorem 5.1. Assume that T is symmetric: for u, veHT and a.e. t,

(u(t), Tv(t)) = (Tu(t),v(t)). Define

(38) ß(u,v) = (Bu'(t),Av(t))- (Au(t),Bv'(t))

for u,veHT. Then ß(u,v) is independent of t and

ß(u,v) = (J+u,v)+ = (J_M,t))_.

Proof. For the latter notation, see the beginning of this section. Let u,veH 'T.

Let ß(t) be the right-hand side of (38). Writing ß(t2) - ß(tx) as an integral of its

derivative, we calculate

ß(h) - ß(h) = j*' l(B3u(t),v"(t)) - (u"(t),B3v(t))-]dt = 0

because u and v satisfy (19) and T is symmetric. Therefore ß is independent of f.

Since H'T is dense in HT, the same is true for all u,veHT. Now let u,veH r,

u0 = WIlu and v0 = WI1v. Then we have

(j-u,v). = (WZ1J-U, WIlv)Ho = (J0Mo»»o)h0-

Expanding the time-independent expression for the latter term using the equations

u0 = u + Lu and v0 = v + Lv, where L is the integral operator (15), we obtain

eight terms of which two give us ß(u, v). We claim that the other six terms all

converge to zero as t -> — oo. Indeed, a typical such term is bounded by
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| (Bu'0 (t), ALv(t))K | S || «o ||//oI ALv(t) \ K -> 0 as t -+ - co.

The two time-independent expressions ß(u,v) and ßo(u0,v0) are therefore equal

modulo terms which vanish at — oo. So they are always equal. Similarly ß(u,v)

= (J+u,v)+.

Corollary. 5.1. S ¿5 symplectic with respect to ß0; that is, ß0(Su0,Sv0)

= ßo(u0, v0)for u0,v0eH0.

Proof. By the preceding theorem we have (J_ W_u0,W_v0) = (J+ W+Su0,W+Sv0).

Therefore, (Jou0,v0)Ho = (-foSu0,Sv0)Ho.

Consider the case when H0 is the real KG space for some positive mass. Let L

be any Lorentz transformation on £". If u is a function on £", then uL is defined by

ul(x) = m(L_1x). TL is the admissible perturbation defined by TLu = \T(uL)~\L~l.

Let W±(T) denote the wave operators for a perturbation T. Then it is easy to

ascertain that: (a) [W±(T)u0]L = W±(Tl)(uq) if L is orthochronous, the signs

on the right-hand side being reversed if L is not; (b) ß(uL,vL ) = ± ß(u,v) for all

L, with a plus if L is orthochronous and a minus otherwise.
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