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Introduction. Let K be a commutative ring with unit, and let R be a com-

mutative unitary K-algebra. We shall be concerned with variously defined co-

homology theories based on algebras of differential forms, where R plays the

role of a ring of functions.

Let TR be the Lie algebra of the X-derivations of R, and let E(TR) be the exterior

algebra over R of TR. We can form HomR(E(TR), R) and define on it the usual

formal differentiation. If R is the ring of functions on a C""-manifold then the

elements of TR are the differentiable tangent vector fields, and the complex

HomR(E(TR), R) is naturally isomorphic to the usual de Rham complex of dif-

ferential forms. In [5, §§ 6-9] the complex UomR(E(TR),R) is studied. It is shown

that if K is a field contained in R, and if either R is an integral domain finitely

ring-generated over K and TR is R-projective, or R is a field, then the homology

of this complex may be identified with Extv(R,R), for a suitably defined ring V.

§§1-6 of the present work are primarily a straightforward generalization of the

results of this portion of [5] to the case in which K and R are arbitrary (commu-

tative) rings.

In making this generalization we are led naturally to replace TR by an arbitrary

Lie algebra with an B-module structure which is represented as derivations of

R and which satisfies certain additional properties satisfied by TR. We give these

properties in §2. Lis essentially a quasi-Lie algebra as defined in [3]. The precise

definition given corresponds to that of a d-Lie ring given in [8], where also the

cohomology based on HomR(£(L), A) is defined.

In §2 we define an associative algebra V of universal differential operators

generated by R and L. In case L operates trivially on R, V is the usual universal

enveloping algebra of the R-Lie algebra L. In §3 we prove a Poincaré-Birkhoff-

Witt theorem for V. In §4 we show that if Lis B-projective then for any F-module

A we may identify the cohomology based on HomR(E(L),A) with Extv(R,A),

which we denote by HR(L,A). In particular, the de Rham cohomology of a C00-

manifold is thus identified with an Bxtv(R,R).
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§5 deals with certain functorial properties of HR(L,A), and §6 with the opera-

tions which generalize the usual Lie derivation and contraction operations on

the algebra of differential forms.

Let S = R®KR. There are standard products under which Tors(R,R) and

Exts(R,R) become skew-commutative A-algebras. Let DR be the Ä-module of

the formal differentials of R (see §9). Let E(DR) be the exterior R-algebra built

over DR. There is an isomorphism from DR onto Torf(R,R), which, extends

canonically to an algebra homomorphism from E(DR) into Toxs(R,R). There

is also a natural homomorphism from Toxs(R,R) into HomR(Exts(R,R), R).

Ext^RjR) is isomorphic with TR, so that Exts(R,R) contains a canonical

homomorphic image of E(TR) (assuming that 2 has an inverse in R). Thus there

is a homomorphism from Toxs(R,R) into HomR(E(TR), R).

It is shown in [5] that, if K is a perfect field and R is a regular affine /C-algebra,

all the homomorphisms of the preceding paragraph are isomorphisms. Hence in

this case Tors(R,R) is an algebra of differential forms. In §§7-10 we are con-

cerned with operations on Toxs(R,R) analogous to the usual operations on dif-

ferential forms, in the general case in which K is an arbitrary commutative ring

with unit and R is a commutative unitary ZC-projective X-algebra. In §7 we de-

fine, in a general setting, a pairing between Ext and Tor which, in the present

case, defines a right Exts(R,R)-module structure on Toxs(R,R). By means of this

module structure, elements of Ext£(/?,/?) act as endomorphisms of degree — n,

and those endomorphisms corresponding to elements of degree 1 are anti-deriva-

tions analogous to the contraction operators on differential forms. In §9 we de-

fine the operations on Toxs(R,R) analogous to the usual Lie derivations of differ-

ential forms, and show that the usual relations involving contraction and

Lie derivations obtain. In §10 we define a formal differentiation map for Toxs(R,R)

generalizing the differentiation of formal differentials.

This work was done as a doctoral thesis under the direction of Professor Ger-

hard Hochschild, for whose encouragement and generous advice and instruction

the author is deeply grateful.

1. Preliminaries. Henceforth, we shall always assume that all rings have an

identity, and that all modules and ring homomorphisms are unitary.

Lemma 1.1. Let R be any ring. Let X¡,for each i in some index set, be a

right R-module, and let A be a projective left R-module. Let "f|" denote the

(strong) direct product. Then the natural homomorphism: (Y\¡X¡)®RA-*

[^¡(Z;®^), is a monomorphism.

Proof. Choose a free R-module F = HjRj, where each Rj is a copy of R,

such that A is a direct summand of F. ( Y[iX¡) ®rF = 2/ n¡-^¡) ® Jt-fy = ?i ll>^y>
where each XV} is a copy of X¡. The latter may be viewed as a subset of

P i £/*U = Eli £/*i ®*Rj) = IK*; ® *F)-The lemma follows, since (Ipfi)®rA
is a direct summand of (JpQ®RF-
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If R is a commutative ring and P <= R is a prime ideal =¿ R, denote by RP the

corresponding local ring; that is, RP is the set of equivalence classes of pairs

r/s where r and s are elements of R, s £ P, and where Tjl/sj is equivalent to r2/s2

in case there is a v<£ P such that »(r^ — r2Sy) = 0, with addition and multipli-

cation defined in the obvious way. There is a canonical homomorphism ßP:R-> RP

which sends r onto the class of r/1. The kernel of ßP is HP = {r e R : 3 v $ P b rv = 0}.

Let Ji be the set of all maximal ideals of R. We can define a homomorphism ß

mapping R into TTpe.* R-p sncn tmît tae Pp-component of ß(r) is ßP(r).

Lemma 1.2.   ß is a monomorphism.

Proof. Let O^reJ?. Set Ir = {s e R : rs = 0}. Then Ir is a proper ideal of

R. Choose Pe Jt such that P zz> Ir. Then r £ HP. We conclude from this that

Ope^ ^p = (0)- This proves Lemma 1.2.

2. (R, R)-Lie algebras and their enveloping algebras. Let K be a com-

mutative ring, and let R be a commutative R-algebra. In the sequel, all

R-modules will be regarded as R-modules in the natural fashion (k ■ m = (k • 1) • m).

Let L be a Lie ring that is also an R-module. Suppose that we are given a Lie

ring and R-module homomorphism from L to the R-derivations of R. If p e L,

we will denote the image of p under this homomorphism by r -» p(r). Suppose

finally that, for all a, peL, and reR,

(2.1) [a, rp] = r[a, p] + a(r)p.

We will call such an L a (K,R)-Lie algebra.

We can make the direct R-module sum R + Linto a R-Lie algebra by defining

[r + a, s + p~] = (a(s) - ¿i(r)) + [a,/i].

Form the tensor algebra over K of R + L, and factor by the usual ideal to obtain

U, the universal enveloping algebra of the R-Lie algebra R + L. Let U+ be the

subalgebra generated by the canonical image of R + Lin U. For reR and z an

element of the R-module R + L, let r • z be the result of operating on z with r,

and denote by z' the canonical image of z in C/+. Let P be the two-sided ideal of

C/+ generated by all elements of the form (r• z)' — r'z', with reR and zeZ.

Define

F(R,L) = l/+/P.

A module for R-Lie algebra R + L is called an R-reguiar L-module in case

for all r e R, z e R + L, and meM,

r-(z-m) = (r-z)-m.

The canonical map: R + L->V(R,L) endows any F(R,L)-module with the

structure of an R-regular L-module. Thus we have a one-to-one correspondence
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between F(R,L)-modules and R-regular L-moduIes. In particular, R has a natural

structure as an R-xegulax L-module, and the representation of R thus obtained

is faithful. Hence the map: R->V(R,L) is a monomorphism. Henceforth we

will identify R with its image in V(R,L).

Note that if we take K = R, and let each element of L act as the zero derivation

of K, then Lis a (K,R)-Lie algebra, and V(K,L) is the usual universal enveloping

algebra of the K-Lie algebra L.

If A and B axe F(R,L)-modules, we can define an R-regular L-module structure

on tlomR(A,B) such that, for reR, peL, aeA, and feHomR(A,B),

(r-h)(a) = r- h(a) = h(r■ a), and (p-h)(a) = p-h(a) — h(p• a). We can also de-

fine an /^-regular L-module structure on A®RB such that, for reR, peL,

aeA, and b e B, r ■ (a ® b) = (r • a) ® b = a ® (r • b), and p ■ (a ® b) = (p • a) ® b

+ a<S)(p-b). We have

Lemma 2.1. Let B be a left V(R, L)-module. The V(R,L)-modules

HoxnR(V(R,L), B ) and B®RV(R,L) as defined above are isomorphic respectively to

HomR(V(R,L),B) and V(R,L) ®RB with the usual left V(R,L)-module structures.

The proof can be read verbatim as the proofs of Lemmas 6.1 and 6.2 of [5],

substituting Lfor TR and V(R,L) for VR.

3. A Poincaré-Birkhoff-Witt theorem for V(R,L). Denote by L the image of

L in V(R, L), and by p the image in L of p e L. Let VP(R, L) be the left Ä-sub-

module of V(R,L) generated by products of at most p elements of L. We have

thus a filtration of V(R,L). Denote by G(V(R,L)) the associated graded R-

module; i.e., the direct sum of the Ä-modules KpCR.D/Fp-!(/?,£), where

V_1(R,L) = (0). Remark that if zeVp(R,L) and reR, rz - zreVp.x(R,L).

Hence the left and right .R-module structures on G(V(R,L)) axe the same, and

we may regard G(V(R,L)) as an Ä-algebra. Denote by S(L) the symmetric R-

algebra on L.

Theorem 3.1. // L is R-projective, then the canonical R-epimorphism,

S(L) -> G(V(R,L)), is an R-algebra isomorphism.

Proof. First we prove the result under the assumption that L is K-free. In

doing so, we adapt the notation and proof of [1, Lemma 3.5, p. 271]. Let {p¡}

be an ordered R-basis of L. Let u¡ denote p¡ considered as an element of S(L).

If / is a sequence ix <£ ••• <j i„, let Uj = utl ••• u¡_. If / is the empty sequence,

let Uj = 1. Write j ^ I in case either j g ix or i is empty. We will define the

structure of an R-xegulax L-module on S(L) such that, whenever,/ ^ /, p¡ • uI=ujuI.

The resulting F(.R,L)-module structure for S(L) will have the property that,

for any ordered sequence {ij.—.^J —I, (ph-..fiin)-l = u¡. Noting that the

u/s form an R-basis for S(L), we see that this suffices to prove Theorem 3.1.
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Let SP(L) denote the homogeneous component of degree p of S(L). Let

op = Hq=0S9(L). We proceed inductively to define a R-bilinear map from

L x S(L) to S(L), denoted by (p,u)->p-u, by defining its restriction:

Lx ßp->op+i for each p, subject to the following conditions:

(3.1) VLj'ui — ujui whenever jfLI, u¡eQp;

(3.2) p • (a • u) = a • (p ■ u) + [p,<¿\ -u if p, a e L, u e Qp_ y ;

(3.3) fij-Uj - UjU,eQq if u¡eQq,qz<Lp;

(3.4) (rp)-(su) = r(s(p-u) + p(s)u) if r,seR, peL, ueQp.

For p = 0, define p-r = rp + p(r), satisfying (3.1) through (3.4).

Now suppose we have already defined an action: Lx Qp-y->Qp satisfying

the conditions corresponding to (3.1) through (3.4). In order to extend this, we

first define the action by the [elements p¡ mapping SP(L) into Qp+1. We may

assume inductively that we have defined this action for all p¡ such that j < i.

Consider an element uI e SP(L). If i ^ /, define pi-uI = u¡Uj. If not, then / = (j,J),

with j < i, and we define p¡u, = p¡-(p¡-Uj) + \_p¡,Pj] -Uj. Now we define the

action by p¡ on all of SP(L) by defining p¡(ru¡) = r(/vMj) + Pi(r)u! if reR, and

extending by R-linearity. Thus we have defined the action by the elements p¡.

To define the action on SP(L) by an arbitrary element of L, define (rp¡)-u

= r(p¡-u)i{reR,ueSp(L), and extend by R-linearity. Conditions (3.1)^(3.3),

and (3.4) are clearly satisfied. The verification that

Pj • (ßk' «i) =* P-k • (ßj ■ "j) + [ßj> /**]•«/    iî u,e S"'\L)

does not involve consideration of the R-module structure and so is identical

with the corresponding part of the proof that we are adapting [1, p. 273]. Using

this and (3.4), together with the property of L assumed earlier, (Equation (2.1))

the verification of (3.2) is a straightforward computation. Thus we have an action

by elements of L on S(L). We use this to define an action of R + L on S(L) in

the obvious way. Using (3.2) and (3.4) one sees easily that this endows S(L)

with the structure of an R-regular L-module. This proves Theorem 2.1 when

L is R-free.

Now assume only that L is R-projective. Let P be any prime ideal of R. Con-

sider the R-algebra RP. If p is any R-derivation of R, the formula

p(r/s) = (sp(r) — rp(s))/s2 extends p to a R-derivation of RP. Thus L is repre-

sented on RP. Let LP = RP ®RL with the natural RP-module structure. We can

define a commutation on LP such that, for x, yeRP, <x,peL,

(3.5) [x® a, y ® p~] = xy ® [a,¿i] — yp(x) ® a + xa(v) ® p.

(This commutator is clearly additive in all four terms. Hence it is only necessary

to verify that, e.g., [rx®a,y®p] = [x®m,y®p] for reR.  Using (2.1), this
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is a straightforward computation.) The commutation is clearly anti-commutative,

and one checks without difficulty that it satisfies the Jacobi identity. Thus Lp

becomes a Lie algebra. The elements of LP act as derivations of RP in the natural

fashion, and it is immediate that this gives a representation of the K-Lie algebra

Lp, and that LP thus becomes a (K,RP)-Lie algebra. Let V(P) = V(RP,LP).

Since Lis R-projective, so is S(L), and hence the monomorphism ß of Lemma

1.2 induces a monomorphism: S(L) = R ® RS(L)-> (f\RP) ® RS(L), v/hexe the

product is taken over all maximal ideals of R. By Lemma 1.1, the latter is naturally

injected into J~[(Rp®S(L)) = J| S(LP). The natural R-module and Lie algebra

homomorphism : R + L-> RP + LP defines an R-algebra homomorphism :

V(R,L)^V(P). These in turn yield a map: V(R,L) -+ l\V(P). This map is com-

patible with the filtration of V(R,L) and the V(P)'s, so that we obtain a map:

G(V(R,L))-+Y[G(V(P)). Since Lis R-projective, LP is Rp-projective. Hence,

since RP is a local ring, LP is RP-free [7]. By the first part of the proof of this

lemma, the map S(LP) -* G(V(P)) is therefore an isomorphism. Hence we have

the commutative and exact diagram

0

S(L) -> G(V(R,L)) -* 0

o ̂ rwp)- n^w)-* °
from which we deduce that the top row is a monomorphism. This completes

the proof of Theorem 3.1.

Note that in the particular case in which /? = K and L operates trivially, this

theorem is the statement that the usual Poincaré-Birkhoff-Witt theorem holds

whenever L is /C-projective.

4. Exty(R,A) as a cohomology of differential forms. Let £(L) denote the graded

exterior R-algebra over L. Consider the graded group V(R,L) ®RE(L) where

V(R, L) is an .R-module by right multiplication by elements of R, and where the

graded components are V(R, L) ®RE"(L). We wish to show the existence of an

endomorphism d of degree — 1 on this group such that, for v e V(R,L) and p¡ e L,

n

d(v®p1--pn)   =    Z (-1)'-V¡®/¿1 ••■ ßt — Un

(4.1)

+  I (-í)+kv®ÍPJ,pk¡Pi-fij-fik-pn

where "" " indicates that the corresponding term is omitted. In order to do so,

we define a map d from the cartesian product of V(R,L) with n copies of L to
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F(R,L)®R£n-1(L) such that d(v,py,---,pn) is the right-hand side of (4.1). Then

d is clearly additive in each component. In V(R, L)

(4.2) rp= pr — p(r) for reR, peL.

Using this and (2.1), it is a somewhat long but straightforward computation

that, for reR,

d(v,rpy,p2,---,p„) = d(v,py,-,rp¡,--;p„)

for every i. Also, one checks without difficulty that d(v,py,---,pn) = 0 when-

ever Pi = Pj with some i^j- Hence d induces a map: V(R,L) x E"(L) ->

V(R,L)®REn-\L). Finally, again using (2.1) and (4.2), one verifies that, for reR,

d(vr,py,---,p„) = d(v,rpy,p2,---,pn).

Hence d induces the desired map d.

Define d: V(R,L) ®R£°(L) = V(R,L) -> R by d(v) = v 1. Let X denote the re-

sulting augmented graded group. One checks directly that d2 = 0 on X. If we

give X the usual V(R, L)-module structure (vt • (v2 ® py ■ • • p„) = VyV2 ® pt ■ ■ ■ pn)

then d is visibly V(R, L)-linear.

Now assume that L is R-projective. Then so is £(L), and hence each

V(R,L)®RE"(L) is F(R,L)-projective. Therefore (X,d) is a F(R,L)-projective

complex over R. We wish to show that this is actually a projective resolution;

i.e., that X is acyclic. In fact, we do more: We show that X has an R-homotopy

and so also defines a (V(R,L),R)-projective resloution of R, in the sense of [4].

Define XP = R+ 2ZqVp.q(R,L)®Eq(L) for p ^ 0, and Xp = (0) otherwise.

Note that since each E\L) is R-projective, Xp may be identified with its cano-

nical image in X. Each Xp is visibly stable under d, and we have thus defined a

filtration of X by R-subcomplexes. The associated graded complex can be iden-

tified with G(V(R,L))®RE(L) (augmented over R). Denote this by

GpQ= lGp(X)= IV*f-i-
p »

By Theorem 3.1, the latter is R-isomorphic with S(L)®RE(L) (augmented over

R). The boundary map induced by d on the latter is given by

M

d(u®py-p„) =  Z (-l)'-1 up,®p1 — fit— p„.
¡ = 1

Let Lbe a direct summand of a free R-module F. Then S(L) ®R£(L) becomes

a direct R-complex summand of the usual Koszul complex S(F) ®R£(F). This

has an R-homotopy [4, p. 259], which induces an R-homotopy on S(L) ®R£(L).

Hence we have an R-homotopy h on G(X). Further, the homotopy of the Koszul

complex is such that each GP(X) is stable under h.

Since, by Theorem 3.1, Vp(R, L)/Vp_y(R,L) is R-isomorphic with S"(L), Xp/Xp^y

is R-projective. Hence the sequence 0 -> Xp_ y -»• Xp -*• Xp/Xp-y -> 0 splits. Hence,
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by induction on p, there is an R-isomorphism a: X -> G(X) such that a(Xp)

= Yq=oG9(X),and(zd-da)(Xp)<=:TpqZ0Gq(X).(2) Setting g0 = a~1hoi and

g = 2g*_1 - gfc-idgjt-i - dgk_u we verify inductively that (gkd + dgk - 1)(XP)

<=Zp_2k, and (gk- gk-i)(Xp)cz Xp-2k-,. Hence we can define an R-endo-

morphism g of X to coincide with gk on X2k_!. Then gd + dg= 1; i.e., g is

the desired homotopy.

Note that the existence of the isomorphism a shows incidentally that X is

R-projective.

We have proved

Lemma 4.1. // L is an R-projective (K,R)-Lie algebra, then the complex

V(R,L)®RE(L) = X, as defined above, is a V(R,L)-projective resolution of R

which has an R-homotopy. X is R-projective.

If L is a (K,R)-Lie algebra, and A is an R-regular L-module, we will write

HR(L,A) = -ExtV(R>L)(R,A).

Note that, if L is represented trivially on K, HK (L,A) is the usual Lie algebra

cohomology of L.

If Lis .R-projective then, by Lemma 4.1, HR(L,A) is the homology of the com-

plex HomK(Jj L)(V(R,L)®RE(L),A) = HornR(E(L),A). If we write the elements of

the latter as R-multilinear maps with arguments in Land values in A, which are

strongly alternating in the sense that they vanish whenever two arguments are

equal, the boundary map is given by

(4.3)     (/>/)(/*!,-,/0=   £(-l)'~Vi(/0'i."-,A,"-,/O)
¡=i
+ I (-l)i+kf(lPj,Pk],Hu-,P-j,-,fik,-,P„).

j<k

Hence we have

Theorem 4.2. // L is an R-projective (K,R)-Lie algebra, then HR(L,A) is

the cohomology K-space based on the strongly alternating R-multilinear maps

from Lto A under the usual formal differentiation map.

In particular, let M be a real Cœ manifold, and let R be the ring of the dif-

ferentiate real-valued functions on M. Let K be the reals, and let T be the

Cœ vector fields on M. Then T is a (K,R)-Lie algebra in the natural fashion.

Moreover, Tis .R-projective. Indeed, M can be C°°-imbedded in Euclidean space

of sufficiently high dimension. Then a subset of the tangent bundle over the

latter forms a trivial bundle over M, and this bundle is the direct sum of the

tangent bundle and the normal bundle over M. Hence T, the cross sections of

(2) For the details of this last section of the proof, see the last part of the proof of Theorem

7.1 in [5].
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the tangent bundle over M, is a direct summand of the cross sections of a trivial

bundle, and the latter form a free R-module. Hence Theorem 4.2 holds, and

we conclude that the de Rham cohomology of M is ExtF(RT)(R,R).

5. Functorial properties of HR(L,A). HR(L,A) isacovariantfunctorof^4,and as

such associates with F(R,L)-exact sequences 0->B->;4->C->0 connecting homo-

morphisms HR(L,C) -*■ HR+1(L,B) as usual. Moreover, HR(L,A) is a contra variant

functor of pairs (R,L) in the following sense: Let R and R' be R-algebras, and

let Land V be (K,R)- and (R,R')-Lie algebras, respectively. Suppose we have a

R-algebra homomorphism from R to R' (denoted r-*r') and a Lie algebra

homomorphism from L to L' (denoted p->p'). Suppose further that

(rp)' = r'p' and (p(r))' = p'(r') for all reR, peL. Then we obtain a R-Lie

algebra homomorphism from R + Lto R' + L', and thus a ring homomorphism

from V(R,L) to V(R',L'), in the natural fashion. Write V(R,L) = V, V(R',L) = V.

Let X be a F-projective resolution of R. The homomorphism V-* V yields a

F-module structure for every F'-module. V ®VX is a K'-projective complex

over V ®VR, and the homomorphism R-> R' yields a natural epimorphism

from the latter onto R'. Thus V ®VX is a K'-projective complex over R'. Let

X' be a F'-projective resolution of R'. Then, as usual, there is a map from

V ®VX to X' over the identity; and there is thus induced, for each K'-module A,

a unique map from ExtK.(R',^4) to the homology of Homv.(V'®VX,A). But

the latter is canonically isomorphic to Homv(X,A). Hence we have a well-defined

map from HR.(L,A) to HR(L,A).

Now suppose that the natural map: R' ®RL-+ L is surjective, so that V is

generated by elements of the form sft'x ■"/*'■ with seR', p1,---,p„eL. Then

the above map: V ®VR -* R' has an inverse given by s -» s ® 1. Hence V ®VR

and R' are isomorphic, so that V ®VX is a projective resolution of R' precisely

when it is acyclic; i.e., when Tor%(V',R) = (0) for all n ^ 1. If this is the case,

then the map HR.(L,A) -* HR(L,A) is an isomorphism.

In particular, suppose that L is R-projective. We can make R' ®RL into a

(R,R')-Lie algebra in the natural fashion (cf. Equation 3.5). By Lemma 4.1,

Tory (V(R',R'®RL),R) is the homology of the complex V(R',R'®RL)®rV®RE(L)
= V(R',R'®RL)®RE(L) = V(R',R'®RL)®R.R'®RE(L) = V(R',R'®RL)

®R£(R' ®RL). But R' ®RLis R'-projective, and hence by Lemma 4.1 the latter

has zero homology in positive degrees. Hence

HR.(R'®RL,A) *HR(L,A).

(Note by Theorem 4.2 this isomorphism is just that induced by the canonical

identifications HomR.(£(R' ®RL),A) = HomR,(R' ®RE(L),A) = HomR(£(L), A).)

Hence in the projective case we may always assume R = R'.

Product. Let L be R-projective. Write V= V(R,L). Then V is R-projective

by Theorem 4.2. Hence if X is a F-projective resolution of R, it is also R-projective.
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Therefore, by Lemma 2.1, X®RX is still F-projective. X®RX is a complex

over R ®RR = R, and its homology is TorR(R,R), which is zero in degree ^ 1.

Hence X ®RX is again a F-projective resolution of R. Therefore the natural

map Homv(X,A)®KHomv(X,B)-*liomy(X ®RX,A®RB) induces a product

map HR(L,A) ®KHR(L,B) ->■ HR(L, A ®RB). One proves as usual that this product

is associative, and, in case A — B = R, anti-commutative.

The product is induced by the usual "shuffle product" for alternating maps

on the complex of Theorem 4.2. See [5, §9] for details.

6. Operations on HR(L,A). Let Vbe any ring, and let A and B be left F-modules.

Let /? be a derivation of V. A pair of homomorphisms f,p:A^B will be called

a ß-pair in case/ is F-linear, and p(va) = vp(a) + ß(v)f(a) for every aeA,veV.

A similar definition holds for right modules. The following is shown in [6]:

Let X and Y be F-projective resolutions of A and B, respectively. Then there is a

jS-pair (/, p) : X -» Y, where /and p axe of degree zero, commute with the boundary,

and lie over/ and p, respectively, in the usual sense. The pair (f,p) is unique up

to homotopy. If C is a left F-module, and (n, a) : C -» C is a ß-pair, we define a

map Homv(Y,C)-^~Homv(X,C) carrying g eHoi%( Y,C) onto agf—hgp. This

induces a uniquely defined map ExtY>ß((f,p), (h,oi)) : Extv(B,C) -» Extv(A,C).

Similarly, if D is a right F-module and (h, a) : D -* D is a /?-pair, we define a map

D®VX-» D®VY such that, if deD and xeX, d®x is carried onto

a(d)®f(x) + h(d)®p(x). This induces a uniquely defined map

Toxv'ß((h,a),(f,p)): Toxr(D,A)->Toxv(D,B).

We will frequently have cause to consider pairs (l,oc) in which the linear map

is the identity. To simplify notation, we denote such pairs by a, and write, e.g.,

ExtF</i((/,/i),a) for ExtVß((f,p),(i,ot)).

Let Tbe a (K,R)-Lie algebra, and let Lbe an ideal of T which is also an R-sub-

module. Let peT. Then p defines a /¿-derivation of R + L by operation on R

and commutation on L, and this in turn extends to a ZC-derivation of the ring

V(R,L). Denote this derivation by /?„, and continue to write V for V(R,L). If B

is any R-regular T-module, let pB be the ZC-linear endomorphism of B corres-

ponding to p. Then (l,pB) is a /L^-pair. Hence we obtain an endomorphism

ExtVtß (pb>Ha) of Exty(B,A) for any F-modules A and B. Denote this endomor-

phism by Op.

Let cueT. Note that the commutator [/?„,/?,] is the map ß[ll>ay Hence, if (l,pB)

is a iVpair over (i,pB) and (l,aB) is a J?a-pair over (l,ccB), (l,[/IB,äB]) is a

/WrPair over (^[aíb^b]) = (1,Cj"' <*]*)• Hence we conclude

[Ö/..ÖJ = 9[llAl.

If peL and X is a F-projective resolution of B, then we can choose pB = px,

and by F-linearity the resulting map on Yfon\v(X,A) will be zero. Hence

Proposition 6.1.   If peL, 9^ = 0.
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Therefore p^>6ß induces a representation of the R-Lie algebra T/L on

Exty(B,A).

Now we restrict our attention to the case in which B = R and L is R-projective.

Then we have

Proposition 6.2. For every peT, du is a derivation of HR(L, A) with respect

to the product defined in the previous section.

Proof. Let X be a F-projective resolution of R. Let (l,pR) be a /?„-pair on

X over (l,pR). Then there is a R-linear map pR of X®RX such that

pt(x ® y) = pR(x) ® y + x ® pR(y). It is easily verified that (l,pR) is a /^-pan-

over (i,pR). Denote by B)t the maps on Homv(X,^)and HomF(X,£)corresponding

to pR, and the map on Homv(Z ®RX,^4 ®RB) corresponding to p*. Then, for

feUomv(X,A) and geKomv(X,B), we have Stl(fg) = Bll(f®g) = pA@B(f®g)

- (f<s>g)pí= (pAf)®g +f®(pBg)-(f®g) (pr® i + i ® pr) = GuO ® g
- (fßR)®g+f®(pBg) -f®(gßR)}= B„(f)®g+f®efl(g). This' proves the
proposition.

Now let X be the resolution of Lemma 4.1. Then it is readily seen that we may

choose pR such that
n

PR(v®Py-p„) = ßfl(v)®py-pn+   Z  V®py-[p,Pi]---pn.
¡ = 1

The resulting map on HomR(£(L),4) is given by (Q^f)(py, -,p„) = p(f(Pi, -,Hn))

- 'E"=yf(py,---,[p,pi'],---,pn), from which we see

Proposition 6.3. // L is R-projective, then 9^ is induced by the usual Lie

derivation of degree zero, corresponding to p, of the complex of differential

forms.

Suppose peL. Then by the proof of Proposition 6.1, 6^ is homotopic to zero;

i.e., there exists an endomorphism c^ of degree — 1 on HomR(£(L),^4) such that

(6.1) cßd + dCfl = 6p.

We may choose c^ to be the usual contraction corresponding to p,

(c,J)(ßi,---,P„) =f(p,py,---,pn);

6.1 holds and becomes the familiar relation among these three maps on the al-

gebra of differential forms.

7. A pairing for Ext and Tor. Let S be a ring. Throughout this section we

will write Ext for Exts and Tor for Tor^ Consider an S-exact sequence

(7.1) 0->£-► X„_!-►•••-► X0-► ,4->0

of left S-modules. Denote the homomorphisms in the above sequence by d,

and write £ = d(X„). Then, for 0 S k < n and m S 0, the exact sequence
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0^d(Xk+l)^Xk-+d(Xk)-+0

yields a connecting homomorphism

(7.2) Extm(d(Xk+l),C) -* Extm+1(d(Xk),C),

where C is an arbitrary S-module. Iterating these, we obtain a homomorphism:

(7.3) Extm(£,C)->Extm+n04,C).

Similarly we obtain homomorphisms

Extm(C,yl)->Extm+n(C,£),

(7.4)
Torm+B(2M)->Torn(D,E)

where D is any right S-module. These are called the iterated connecting homomor-

phisms corresponding to (7.1).

Now suppose that (7.1) has been obtained from a projective resolution, X,

of A, by setting £ = d(X„). Equation (7.2) can be imbedded in an exact sequence

Extm(Xk,C) -» Extm(d(Xk+ t),C) -> Extm+ \d(Xk),C) -* 0

and Extm(Xk,C) = (0) unless m = 0. Hence (7.3) can be imbedded in an exact

sequence

Extm(Xn_uC) -> Extm(d(X„), C)-> Extm+n04,C) -» 0.

Similarly, (7.4) can be imbedded in an exact sequence

0 - Toxm+„(D,A) - Torm(LV(X„)) - Torm(D,X„. t).

Let n ^ 1, m ^ 0. For A e Homs(d(X„), B), where 5 is a left S-module, consider

the compositions
A*

Extm(B,C) -> Extm(d(X„),C) -> Extm+n(^,C),

(7.5) n*
Torm+n(D„4) - Torm(D,d(Z„)) -» Torm(/),B)

where A* is the map induced by A.

If A is the restriction to d(X¿) of an element of Homs(-X„-i,B), then the maps

(7.5) are zero. Indeed, in this case A is a composition d(X„) -» X„-Y -» B, so that

the sequences (7.5) factor:

ExtM(B,C) -> Extm(Xn_x,C) -» Extm(d(Xn),C) -» Extm+n(^,C),

Torm+„(D„4) -> Toxm(D,d(X„)) -> Torm(Z),X„_ t) - Torm(D,B).

In these latter, the last three terms of the first and the first three terms of the

second form exact sequences. Hence both compositions are zero.

Then, via the exact sequence
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Homs(X„_ y,B) -* rloms(d(X„),B) -+ Ext"(^,B) -♦ 0,

the mappings which send h to the sequences (7.5) define actions by elements of

Exf(^,B) mapping Extm(B,C) into Extm+"(A,C) and Torm(D,A) into Torm_„(D,B),

where we consider Tort = 0 for k < 0. If ßeExt"(A,B), peExtm(B,C), and

aeTor„,(ö,^4), denote these actions by p->ßp and oe->a/?. We extend these de-

finitions to the case n = 0 in the natural fashion, so that, if h e Homs(A,B), the

homomorphisms p->hp and a -» an are the usual maps (denoted above by n*)

corresponding to n.

These definitions are independent of the choice of the resolution X. Indeed,

let Y be another projective resolution of A. Let ß e Ext"(A,B), and let n be an

element of Hom(d(Xn),B) whose image under the iterated connecting homo-

morphism is ß. Let g : Y-> X be a map over the identity. We obtain commutative

diagrams

Extm(d(X„),C) -+ Extm+"(^,C)     Uoms(d(X„),B) -* Ext"(A,B)

Y 6 Y YO Y

Extm(d(Y„),C) -> Ext"+"(i4,C),     Homs(d(Yn),B)  -» Extn(A,B),

where g* is induced by g, and the right-hand vertical maps are the identity. We

imbed the first of these in the commutative diagram

h*
Extm(B,C)     ->     Extm(d(X„),C) -> Extm+n(A,C)

(7-6) i (g*(h))*        8*^ ^
Extm(B,C) -> Extm(d(Y„),C) -* Extm+n(A,C)

and from the second we conclude that g*(h) also maps onto ß, so that the rows

of (7.6) are the action by ß defined by using X and Y, respectively. Hence the

independence of the choice of resolution. A similar proof obtains for the action

on Tor.

Let/eHoms(C',C), where C is also a left S-module. Then the diagram

Extm(B,C') -* Extm+a(A,C)

if* f*i
Extm(B,C)  -> Extm+n(A,C)

is easily seen to be commutative, where the horizontal maps correspond to an

element ß e Ext"(A,B). As a special case, we obtain a commutative diagram

Homs(B,B) -> Exf(A,B)

if* if*
Homs(B,C) -* Exf(A,C)

where/eHoms(B,C). Remarking that the image of the identity homomorphism
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in Homs(B,B) under the horizontal map is ß, and that its image under/* is/,

we conclude that ßf=f*(ß). Note that by definition a similar statement holds

for left operations by elements of degree 0; i.e., if geHoms(A,B) and

peExtm(B,C), gp = g*(p).

Proposition 7.1. Let X be an S-projective resolution of the left S-module A.

Let ßeExt (A,B) be represented by feVLom(Xn,B). Let Y be a projective re-

solution of B, and let

■■•   -»   Xk + n   -»    •••    -*   Xn+1   ~*   Xn       r

(7-7) lfk + n ifn+1 lfn\
— -> Yk 3 -*■ - -* Yt       -> T0 -» B

be commutative. Then if peExf(B,C) is represented by geHoms(Tm,C), ßp is

represented in Homs(Xm+n,C) by (-\)mngfm+„;andifn S m,andtxeToxm(D,A)

is represented by aeD®sXm, aß is represented in D ®sYm-„ by

(-l)(m+1)"(l®/J(a).

Proof. Consider->Xk+1->Xk->->Xn, suitably renumbered, as a pro-

jective resolution of d(X„). The identity map defines a map of complexes,

- - Xk+1 - Xk - .» -> X. -* Z„_! - - - X0 - 0

(7.8) . II II I
- - xi+1 - xk -....-* XB -»   0     -»...->  o -► 0,

and thus a map: Extm(d(Z„),B) -> Extm+"(^,B). This map differs from the iterated

connecting homomorphism by a multiplicative factor of ( — 1)', where

t = mn + n(n + l)/2 [1, Proposition 7.1, p. 92]. Let /' e Homs(iZ(X„),B) be the

element represented by/; i.e., let/=/'</, where d is the boundary map on X.

Then we conclude from the above that / ' is mapped by the iterated connecting

homomorphism onto (—l)'ß, where r==n(n + l)/2. Since f=f'd, the maps fk

of (7.7) define a map over/' from a projective resolution of d(X„) to a projective reso-

lution of B. Hence/ '*(p) e Extm(d(Xn),C) is represented by gfm+n e Homs(Xm+„, C).

Therefore the image of f'*(p) in Extm+nL4,C) under the iterated connecting

homomorphism is represented by (—V)tigfm+„, where ti = mn + n(n +1)/2. Hence

we conclude that ßp is represented by (-l)'+,1g/m+n= (-l)m"g/m+n, which proves

the first part of the proposition.

The map : Torm(iM) -> Toxm_n(D,d(X„)) induced by (7.8) differs from the iterated

connecting homomorphism by (-l)s, where s = mn + n(n - l)/2. Using this, the

second part of the proposition is proved in analogous fashion to the first.

Proposition 7.2. Let ß e Ext(A,B), p e Ext(B,C), a e Ext(C,E),and a'eTox(D,A).

Then (p»a = ß(pa), and (u,'ß)p = x'(ßp).

The proof is straightforward, using Proposition 7.1.
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It follows from Proposition 7.2 that under the operations defined in this section

Ext(^4,^4) becomes a graded ring, and Tor(D,^4) becomes a graded right Ext(A,A)-

module.

8.   Relations with other products.   For n ^ 1, consider an S-exact sequence

(8.1) 0-»£-> £„_!->■->E0^A-+Q.

We may associate with such an n-fold extension of B over A its characteristic

element; i.e., the image in Exts(v4,B), under the iterated connecting homo-

morphism corresponding to (8.1), of the identity homomorphism in Homs(B,B).

Let X be a projective resolution of A. Then we can find maps over the identity

of A such that

0 -► d(X„) -* X„_y -» ••• -» X0 -► A - 0

h\ i i       i

0 -> B-► £„_! -►•••-> £0 -» 4 -> 0

commutes, whence we obtain a commutative diagram

Homs(B,B)-> Ext"s(A,B)

A* | |

Homs(d(Z„),B)   -► Ext"s(^,B)

where the horizontal maps are iterated connecting homomorphisms and the

right-hand vertical map is the identity. Remarking that the image under n* of

the identity homomorphism is h, we conclude from the latter that h may be used

to define the action on Exts(B,C) and Tors(D,A) of the characteristic element of

(8.1). Then from the commutative diagrams

Extms(B,C)-> Extns+"(A,C) Tor?„(£U) - Tor^y(D,d(Xn))

|n* i i ih*
ExtZ(d(X„),C) - Extms+n(A,C), Torsm(D,A) -. Tor*_„(Z),B),

we conclude that these actions coincide with the iterated connecting homo-

morphisms corresponding to (8.1).

Consider the diagram

Homs04,¿) -► ExtPs(C,A)

i i
Ext"s(A,B)     -* Exfs+P(C,B)

where the vertical maps are iterated connecting homomorphisms corresponding

to (8.1), and the horizontal maps are operation by some element ß e Extp(C,A).

It follows at once, from the same property for similar diagrams in which all

maps are iterated connecting homomorphisms, that this diagram commutes or

anti-commutes according as np is even or odd. Remarking that the image in
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Exts(C,A) of the identity homomorphism is ß, we conclude that right operation

by the image of the identity homomorphism in Extg(A,B) differs from the

iterated connecting homomorphism corresponding to (8.1) by a multiplicative

factor of ( —l)"p. But it is easily shown, by induction on n, that the image in

Ext!|(,4,B) of the identity homomorphism in Hoxns(A,A) differs from the charac-

teristic element of (8.1) by a multiplicative factor of ( — 1) ' where t = n(n 4- l)/2.

(See [1, p. 308, Exercise 1] for the case n = 1.)

We have proved

Proposition 8.1. The maps from Exts(B,C) to ExtsL4,C) and from Toxs(D,A)

to Toxs(D,B) corresponding to the characteristic element of (8.1) coincide with

the iterated connecting homomorphism corresponding to (8.1). The map from

Exts(C,A) to Extns+P(C,E) corresponding to the characteristic element of (8.1)

differs from the iterated connecting homomorphism corresponding to (8.1) by

a multiplicative factor of ( —l)s, where s = np + n(n + l)/2.

It is shown in [9] that associating with each n-fold extension (8.1) its charac-

teristic element yields a one-to-one correspondence between natural equivalence

classes of such n-fold extensions and Exts04,B). In the light of this fact, the first

sentence of Proposition 8.1 is seen to characterize the action by elements of

Ext"s(A,B), if n Ü 1.

Given an m-fold extension 0 -> C -* Dm_ L ->-> D0 -> B -> 0, we may use (8.1)

to form an  m + n-fold extension 0^C^Dm_1^->D0 ->£„_!-»->E0

->A-+0. An operation by elements of Ext%4,B) mapping Extm(B,C) into

Extm+"(^,C) is thus defined in [9]. It clearly coincides with the iterated connecting

homomorphism corresponding to (8.1). Hence, by Proposition 8.1, the product

for Ext defined in [9] is the same as that defined in the previous section.(3)

Now let Kbea commutative ring, and let R be a K-algebra. Let R* be the

anti-isomorphic ring to R, and let S = R ®KR*. Then every two-sided R-module

becomes a left S-module, and vice-versa, in the usual fashion,

((/i ®r2\)-m = ri-m- r2.) If A and B axe S-modules, A ® R B becomes an S-mo-

dule in the natural fashion. ((rt ® r*)(a ®b) = r^a ® br2.)

Assume that R is /¿-projective. Then S is projective both as a left and a right

R-module. Let X be an S-projective resolution of R. Since S is R-projective,

so is X. Hence the homology of the complex X®RX is TorR(R,R), which is

zero in positive degrees. Since R is /¿-projective, X ®RX is S-projective. Hence

X ®RX is again an S-projective resolution of R®RR = R. Hence, if A and B

are S-modules, the canonical map from HomsLY, A) ®K Homs(X, B)

to   Homs(X®RX,A®RB)   induces   a   product:   Extns(R,A) ®KExt"(R,B) -*

(3) The correspondence between Ext" and n-fold extensions given here differs from that

used in [9] by a factor of ( — 1)', where t = n(n + l)/2. Hence the product of [9] actually differs

from those given here by ( — l)nm.
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Ext's+" (R,A®RB). This is the product V, as given in [1, Exercise 2, p. 229],

and used in [5]. Observe that, if R is commutative, V can be taken to be

defined on Exts(R,/l)®RExts(R,B).

There is a natural map (h -» 1 ® n) of Homs(X,B) into Homs(y4 ®RX,A ®RB).

The homology of A®RX is TorR(A,R), which is zero in positive degrees. Hence

A®RX is an acyclic complex over A®RR = A, so that there is a uniquely de-

fined map from the homology of Homs(^®RX,A®RB) to Exts(A,A®RB). Com-

bining these two maps, we obtain one from Exts(R,B) into Exts(A,A ®RB).

Combining this in turn with the product defined in the previous section, we

obtain a product:

(8.2)   Exts(R,A) x Exts(R,B) -* Exts(R,A) x Exts(A,A ®RB) -> Exts(R,A ®RB).

Proposition 8.2. Let S, R, A, B be as above. The product V coincides

with the iteration (8.2) (4).

Proof. Referring to the preceding paragraph, let Y= X®RX. Define a map

4> : Y-> X such that, if x 6 Xp and y e Xq, (p(x ® y) is zero unless q = 0; and if

q = 0, (¡>(x® y) = xe(y), where s:X0-*R is the augmentation map. Then (p

is a map over the identity. Let ß e Exts(R, A) be represented by feHoms(Xn,A).

Then ß is also represented by f(j) e Homs(y„,^).

Let Z be an S-projective resolution of A. Then there is a map p:Z-+A®RX

over the identity. If p e Ext"(R,B), denote by p the image of p in Exts(;M ®RB)

under the homomorphism used in (8.2). If p is represented by g e Homs(Zm,B),

p is represented by (1®g)p,„eHoms(Zm,A®RB). Then iîfn,f„+y,- are homo-

morphisms such that

Ym + n  ~*   '"   ~*   ^ii+1   ->   *n     f í

ifm + n fn+li J ni   \

Zm      -►•••-►     Zy     ->Z0 -» A

is commutative, ßp is represented by (-l)m"(l ® g)pmfm+„ (Proposition 7.1).

Suppose /„', /„'+!,-■• are homomorphisms such that

(8-3) !/;+. fUii fñi\
A®RXm-y ■■■ -> A®RXy -» A®RX0-* A

is commutative. Then as usual the maps defined by the homomorphisms pk-„fk and

f'k are homotopic; i.e., there are homomorphisms hk:Yk-> A ®RZt_B+1 such that,

if k ^ n and d denotes the differentiation on Yand X, pk-nfk —fl= (1 ®i4-n+i)rt*

+ hk.ydk   (where   we   take   rt„_1 = 0).    Then    (1 ® g)pjm+n - (1 ® g)f'm+n

(4) The product /\ of [1, Exercise 2, p. 229] can be expressed as an iteration:

Tors (HomR(^, B),R) x Exts(R, A) -* Tors (HomR(A,B),A) -> Tors(5,Ä). Similar results can

be obtained for the products V and A °f I1» PP- 205-206].
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= (1 ® g)(0 ® dm+1)hm+„ + hm+tt-.1dm+n) = (l® gdm+1)hm+n + (1 ® g)Am+n_ 1dm+n.

But g is a cocycle, so that gdm+1=0. Hence (l®g)p,„/m+„ - (1 ® g)f'm+,,

= (l®g)Am+„_1dm+„, which is a coboundary. Hence (-l)m"(l ® g)f'm+„ also

represents ßp.

In particular, we can define fp+q on Xp ®R Xq to be 0 unless p = n, and to be

(-1)"7® 1 in this case. Then (8.3) will be commutative. But then (1 ® g)f'm+n

is (-1)"1"/® g on X„ ®RXm and is 0 on Xp ®RXq unless p = n, q = m. Hence

( — l)m"(l ® g)/m+„ also represents ß\Jp. This proves the proposition.

Note that, in the case A = B = R, Proposition 8.2 is the statement that the

product V on Exts(R,R) coincides with the product defined in the previous section.

Now let R and S be commutative rings, and let £ : S -» R be a ring surjec-

tion. Then e defines on R the structure of a left S-module in the usual fashion.

(s-r = e(s)r.) Let X be an S-projective resolution of R. Then X®SX is still a

projective complex over R®SR = R, so that there is a map over the identity

fromX ®sXto X which is unique up to homotopy; and a map is thus uniquely

defined from the homology of R®SX®SX to Tors(R,R). Then the natural

map: (R ®SX) ®S(R ®SX) -» (R ®SR) ®SX ®SX = R ®SX ®SX defines a pro-

duct: Torf(R,R)®sTor£(R,R)-rTor„s+m(R,R). This is the product ^ of [1, p.

211]. If A :X®SX->■ X is a map over the identity, and <¡> :(R®SX)®S(R®SX)

-*R®SX®SX is the map above, ™ is induced on R®SX by (1 ®h)<p. Note

that Toro(R,R) = R and that on it ™ and ring multiplication coincide.

A graded algebra is skew-symmetric in case, whenever a has degree n and b

has degree m, ab = ( — í)"mba. Tors(R,R) is skew-symmetric under m; and, if /?

is commutative, so is Exts(R,R) under V- In addition, element of Torx have

square zero. An endomorphism D of degree k of a graded algebra is a derivation

in case, whenever a has degree n,D(ab) = D(a)b + ( — l)nkaD(b).

Proposition 8.3. Let ßeExtl(R,R) with R and S as above. Then right

module multiplication by ß is a derivation ofToxs(R,R).

Proof. Choose a projective resolution X of R, with X0 = S and with aug-

mentation e. Let y = X ®SX. Then we can find a map A : T-> X over the identity

which is the natural isomorphism on X0 ®SX and X ®SX0. Let ge HomsLïj.R)

represent ß. Let f:X^X be a map with degree -1 such that sfi — g. Then

if aeTor;„(R,R) is represented by a e R®sXm, aß is represented by

(-l)m+1(l®/J(a) (Proposition 7.1). Define f':Y^Y such that, if xeX„,

yeXm,f'(x®y) = (-1)7«® y + x®f(y). Then fh and! A/' are two maps

from Yto X with degree -1. But by the naturality of A and the S-linearity

of / they agree on Yt. Hence by the usual argument they are homotopic.

Hence (-l)"+m+1/A is homotopic to (-l)n+m+1A/', which suffices to prove

this proposition.

Suppose that 2 has an inverse in R. Then Tors(R,R) and Exts(R,R) contain the

images of the exterior R-algebras over Torj(R,R) and Exts(R,R), respectively,
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under canonical algebra homomorphisms. From Proposition 8.3 we deduce that,

on these images, the pairing between Tors(R,R) and Exts(R,R) agrees with the

usual pairing between the exterior algebra over a module and the exterior algebra

over its dual.

9. Contraction and Lie derivation on Tor. Let R be a commutative ring,

and let R be a commutative R-projective R-algebra. Let S = R®KR. Referring

to the two previous sections, we see that Exts(R,R) and Tors(R,R) are graded

skew-commutative rings (and hence algebras over Ext°(R,R) = R = Toro(R,R)),

and that the latter is a graded right module for the former. Let J be the kernel

of the canonical epimorphism s:S^>R. Then Exts(R,R) is naturally isomorphic,

via a connecting homomorphism, to Homs(/,R). If n e Homs(/,R), the R-endo-

morphism p of R defined by p(x) = h(\ ® x — x ® 1) is a derivation. Conversely,

if p is a R-derivation of R, the homomorphism h:S-+R defined by

n(x ® y) = xp(y) is S-linear when restricted to L We have thus an R-module

isomorphism between Extj(R,R) and the R-derivations of R. We continue to de-

note the latter by TR. When convenient, we shall regard elements of TR as elements

of Exts(R,R) under this isomorphism, and vice-versa.

For x 6 R, write d(x) = 1 ® x e S. Then the latter, with its usual left R-module

structure, is spanned by elements of the form yd(x), with x,yeR. Let DR be S

modulo the R-module generated by elements of the form d(xy) — xd(y) — yd(x).

Then DR is the R-module oí formal differentials of R. TR is isomorphic to

HomR(DR,R) via the pairing (p, xd(y)) -> xp(y) ; and DR is isomorphic to I/I2

via the map that sends xd(y) onto the coset of x ® y — xy ® 1 [2]. Tors(R,R)

is naturally isomorphic, by means of a connecting homomorphism, with

R ®SI = I/I2, so that the above pairing gives an isomorphism between Exts(R,R)

and HomR(Torf(R,R),R) via the pairing (ß,cc) -* ccß. More generally we define a

homomorphism from Ext'¿(R,R) to HomR(Tor^(R,R),R) in a similar fashion. This

homomorphism is the same as that used in [5].

We use the dual of this last homomorphism in the following way. For

Py,---,p„eTR, considered as elements of Exts(R,R), and for aeTorf(R,R),

define a*(py,---,p„) = apy- pneR. a* is R-multilinear and, since Exts(R,R) is

skew-symmetric, is (weakly) alternating in the sense that permuting the argu-

ments changes the value of a* by the sign of the permutation. There is a skew-

symmetric "shuffle product" of alternating multilinear maps which is the usual

wedge product for forms over a manifold and which is defined as follows: Let

n and k be maps of degree m and n, respectively, and define

(hAk)(py,-,pm+n)= 'L\a\h(paa),---,pa{m))k(p^m+1),---,paim+n))

where the sum is taken over all permutations a of 1,2, -^m + n such that

a(l) < ••• < a(m), and a(m + 1) < ••• < a(m + n), and where | a | is the sign of a.

Let aeTorm(R,R) and ß e Tor„(R,R). Then, by Proposition 8.3,
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(«P>1 -/VH. = ((«Hl)ß + (- l)m<*(ßHl))Hl ■■■ ßm + n-

Using this,  it is easy  to  prove  by induction  that  (aß)* = a*/\ß* for all

a,ße Tors(R,R). Hence we have

Theorem 9.1. Let R be a commutative K-projective K-algebra, and let

S = R ®KR. Then the map a -* a* defined above is an R-algebra homomorphism

from Tors(R,R) into the R-algebra of the alternating differential forms on TR.

Let peTR. Let ßp be the endomorphism of S such that ßß(x ® y) = p(x) ® y

+ x® p(y). Then ßß is a derivation of S, and (1,/t) is a /L^-pair on R (cf. §6).

Denote the endomorphisms Toxs'ß»(p,p) of Tors(R,R) and ExtS/} (p,p) of

Exts(R,R) by 0„.

As in §6, we easily show

Proposition 9.2.   0p is a derivation of Tors(R,R).

Proof.   Let X be an S-projective resolution of R, and let (l,p) be a /?,,-pair

on X over (l,p). Let Y=X®SX, and define fi' : Y-* Y such that p'(x®y)

= p(x) ® y + x ® p(y). Let A : y-> X be a map over the identity. Then (\,ph)

and (1,A/Z') are both /L^-pairs over (l,/¿) from y to X and hence are homotopic.

This suffices to prove the proposition.

In the sequel, we will need the following properties of the maps discussed in §6.

Let (1,/Z):D->0 be a /?-pair. To simplify notation, write, e.g., ((f,p),p)* for

ExtKi/¡((/,/4/¡).
(a) Let (g,p) :A^B he a ß-pair. Let/6HomK(B,C). Then (fg,fp) :A-+ C is

a jß-pair, and

((g,p),p)* ° Extva,c) = (<jg,fp),p)*.

Similarly, if fe Homv(A,B), (g,p):B-> C,

Extr(f,C) o ((g,p),p)* = ((gf,pf),p)*.

(b) If in

0 —> A  -> A'-► A"-0

(f,li){            (f',H'){        (f',H")\
0 —* B  -► B' --> B" -0

the rows are K-exact, the vertical maps are ß-pairs, and the diagram commutes,

then

Ext^(B,C)-> Extnr+1(B",C)

W'M* i(if",H"),ßr
Ext£(¿,C)-> Extï,+ 1(^",C)

commutes, where the rows are the connecting homomorphisms.
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(c)   If (f,p')> (f,p) :A-+B are ß-pairs, then p' - p is F-linear, and

((f,p),p)* - ((f,p'),p)* = Extv(p' - p,C).

We will also need the analogous statements for Tor. (a) is a special case of

the composition law given in [6]. The proof of (b) is analogous to the proof

of the similar statement for F-linear homomorphisms. (c) is immediate.

Proposition 9.3. Let a'eExts(R,R). Let cceTors(R,R) or Exts(R,R), and

peTR. Then 0„(oca') = 0„(a)a' + a0„(a').

We prove the proposition for a' e Ext. The proof for Tor is similar. We assume

without loss of generality that a' e Ext", a e Extm.

Let X be an S-projective resolution of R, and let (l,p) be a i^-pair on X over

(l,u). Let/eHoms(d(X„),R) map onto a' under the iterated connecting homo-

morphism. Write/* = Exts(/,R), so that oca' is the image under the iterated con-

necting homomorphism of/*(a) e Exts(d(Xn),R). Let the restriction of p to d(Xn)

also be denoted by p, so that by (b)

Extms(d(X„),R)   - ExtTW)

i(P,A* i(p,p)* = 0,
Extms(d(X„),R)   - ExOR,R)

is commutative. We conclude from this that 0„(aa') is the image under the iterated

connecting homomorphism of (fi,p)*(f*(ct)).

Again, we obtain from (b) the commutativity of

Homs(d(X„),R)   -» Ext"s(R,R)

i(fi,ti* iö,
Koms(d(Xn),R) -+ ExtS(R,R)

whence we conclude that a0M(a') is the image under the iterated connecting homo-

morphism of ((p,p)*(f ))*((*). Finally, 0,/a)a' is the image of f*((p,p)*(a)).

By (a), f*((p,p)*(«)) = ((f,pf),p)*(a), and (p,p)*(f*(<x)) = ((f,fp), p)*. Hence,

by (c), (p,p)*(f*(a)) - f*((p,p)*(x)) = (pf-fpY(a) = ((p,p)*f)*(o¿). This proves
the proposition. We have the immediate

Corollary.   9p is a derivation of Exts(R,R).

Let p' e TR, considered as an element of Ext|(R,R). Let hp, be the corresponding

element of Homs(/,R). We conclude from (b) and the commutative and exact

diagram

0->/->S->R->0

i      ißß   iß
0-> J -y S -► R -> 0

that
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Homs(/,R)   -» Ext^(R,R)

KM*       \eß
Homs(/,R)   -> Exts(R,R)

is commutative. Hence 0„OO corresponds to (ß^p)*^.) = phß. — h^p.

(php. - n„,j?„)(l ® x - x ® 1) = pp'(x) - A„,(l ® p(x) - p(x) ® 1) = pp'(x) - p'p(x)

= lp,p'~\ (x). Hence on Extx(R,R)

9ß(p') = [p,p'l

Remark also that on Ext°(R,R) = R = Tor0(R,R), 9ß = p.

Combining Proposition 9.3 with the subsequent remarks, we conclude that,

for <xeTor„(R,R)

n

(9.1)      9(oL)*(p.l,—,p.a) = p(ct*(p1,—,pn))- E x*(ßi,— ,[/i,/i|],— ,;«»)•
¡ = i

Hence 0^ is analogous to the Lie derivation on differential forms.

For p e TR, considered as an element of Ext1(R,R), define an endomorphism

c„ of Tor(R,R) by

c„(a) = ctp.

Then cw is a derivation, by Proposition 8.3. It is immediate that, if a e Tor„XR,R),

c„(a)*0ti»— »A,-i) = a*(n,Pu —,1^-i)

so that c„ is analogous to the usual contraction operator on differential forms.

As a special case of Proposition 9.3 we obtain the familiar relationship

0,icii' ~ Cft'Qß — cin,itry

10. Formal differentiation on Tors(R,R). We shall be concerned in this

section with the existence of an endomorphism d of TorS(R,R), of degree 1, which

plays the role of the differentiation of differential forms. One of the properties

which such an endomorphism should possess is the usual one that

(10.1) c,d + dcß = 0„.

If d satisfies (10.1) and if ae Yoxsn(R,R),

d(a)*(p1,.-,pn+1) = (clil(d(a)))*(p2,-;pn+l) = (9^(a)-d(clli(a)))*(p2,...,pn+1).

Using this and (9.1), it is easy to prove by induction on n

Proposition 10.1. If d is an endomorphism ofToxs(R,R) of degree 1, satis-

fying (10.1), and if D denotes the usual differentiation operator for differential

forms (Equation (4.3)), then d(a)* = D(a*) for all aeToxs(R,R).
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In what follows, we shall define such a d on Tors(R,R), by defining it on a

particular complex whose homology is Tors(R,R). It will be an extension of

the canonical derivation of R into the formal differentials, will have square zero

and will be a derivation of Tors(R,R). Because we do not have a functorial de-

finition, the verification that d possesses the requisite properties involves a good

deal of explicit computation, and the extent to which these properties determine

d remains undetermined.

We shall proceed under the assumption that R is R-projective. This could

be avoided by replacing Tor s and Exts by the relative functors Tor(S,K) and

Ext(SK) throughout §§7-9, since the resolution of R that we will use in the sequel

is an (S,R)-projective resolution which is S-projective whenever R is R-projective.

This replacement would require only notational changes, and the remark that

the definitions and results of [6] apply equally well to the relative functors.

Let Xn be the tensor product over R of n + 2 copies of R. Let X„ have the

S-module structure such that

(x ® y) -(x0 ® ••• ® x„+1) = xx0 ® Xy ® ■■■ ® x„ ® xn+1y.

For nal, define a boundary operator A:Xn-*X„_l such that

n
A(X0®  •••®X„+1)=    £   (-i)lX0®  ■■■ ® X,Xi+y  ®  ■■•  ® X„+y.

1 = 0

Define the augmentation from X0 = S to R to be e, the canonical epimorphism.

Then X is an S-complex over R. It has a homotopy sending x0 ® ••• ® xn+1 onto

1 ® x0 ® ••• ® x,1+1. Since R is R-projective, each Xn can be written as the tensor

product of S with a R-projective module. Hence X is an S'-projective resolution

of R. This is the standard resolution of [1, p. 174].

There is a map over the identity from X®SX io X such that

(x0 ® ••• ® x„+1) ® (j>0 ® ••• ® ym+1)

(10.2)
-►X, ±x0y0®zy®-®z„+m®xn+yym+y

where the sum is taken over all permutations z1;---,z„+m of xu ■••x„,y1, ■••,y„

such that Xj precedes Xj whenever i<j and similarly for the y's, and where

the sign of each term is taken as that of the corresponding permutation. This

map makes X into an associative and skew-symmetric algebra, on which the

boundary is a derivation [1, pp. 218-219].

For p e TR, let cp be the endomorphism of degree — 1 of X such that

cp(x0 ® •■• ® xn+1) = x0p(xy) ®x2® ••• © xn+1.

Then cß anti-commutes with the boundary. Further, if /i,, e Homs(i",R) is the

element corresponding to p, i.e., if hß is the restriction to I of the homomorphism
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from S to R sending x ® y onto xp(y), then scß = —h^A on Xt. Hence, by Pro-

position 7.1, the endomorphism 1®^ of R®SX induces c„ on Tors(R,R).

Again, for peTR, let p be the endomorphism of degree 0 of X such that

n+l

(10.3) ß(x0® — ®xn+1)= £ x0® ■■■®p(xi)® — ®xn+l.
¡ = 0

Then (l,p) is a /^-pair over (l,p).

Let y„ be the tensor product over K of n + 1 copies of R, with the R-module

structure such that

x-(x0® •■■®xn) = xx0®xx ® •■•®x„.

We define auxiliary endomorphisms a, p, fpi and Ak of degree 1, 0, 0, and

— 1, respectively, such that, on Y„,

a(x0®-..®x„)     = l®x0®-..®x„,

p(x0®.-.®x„)     = (-l)"x„®^o® •••®^n-i  ,

/„.¡Oo® •••®xn) = *o® •••®M^,)® — ®*«.

At(x0® "-®xn)   = (-f)kx0®..-®xkxk+1®.-®xn (k<n),

A„(x0®...®x„)   = (-l)"x0x„®x1® ••• ®xn_!,

where p e TR. Remark that pn+1 = 1.

The homomorphism from R®SX„ to Y„ such that

x®(x0® ••• ®x„+1)-»xx0xn+1 ®xt ® ••• ®x„

is an R-module isomorphism. The boundary map induced on Yn is given by

A= La,,
j = o

The homology of Y under this boundary is Tors(R,R). The product induced

on y by (10.2) is such that

(x0 ® ••• ® x„) ® (y0 ® ••• ® ym) -> Il±x0y0 ® zl ® ■■■ ® zn+m

where the z's and the sign are determined as before, y thus becomes a skew-

symmetric JR-algebra, with a product that induces m on Tors(R,R).

If we also denote by 9P the endomorphism of Y obtained from (10.3) and

inducing 9ß on Tors(R,R), it is easy to verify that on Yn

K =   i h.y
j = o

Again, if we also denote by c^ the endomorphism of Y corresponding to

1 ® ëp it is clear that
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cp(x0 ® ••• ® X„) = X0p(Xy) ® x2 ® ••• ® x„.

It is easily verified that, already on Y,0P and cM are derivations, and

fyiV - cn-6ß = cin,^y

Now define an endomorphism J of Y of degree 1 such that on Yn

m

â = Z ctp'.
j = o

On Y„,

&kP = PK-i     (k>0), Akoi      =   -aAt_i      (0 < k ^ n),

(10.4) A0p = An, A0a     = 1,

A-i + i« =  -P-

Hence

(10.5) Ap = pA + (1 - p)A„,

(10.6) Aa + aA =  1 - p + aA„.

From (10.4) and (10.5) it follows that

(10.7) Apfc =   Z (1 - p)pk~ X-; + P*A (0 ̂  k i% n).
j = 0

Using (10.6) and (10.7), a long but straightforward computation yields

Ad + JA = 0.

Hence ¿induces a map on Tors(R,R). We will show first that the latter satisfies

(10.1). To this end, we define

n     H—Í

/„= Z   Z ap%,i.
i=l    j=0

We remark that on Y„, if i ^ 1,

Aj/p.i (¿<j),

(10.8) /„^A; =1 - Atf^ +/„,i+1)       (i - j),

■ Ajf„,i+i (»>./')■

In what follows, much of the computation required to pass from one step to

the next is long, but all is straightforward. Using (10.8), we find that on Y„

(10.9) '  Z /„A = A Z /„,, -   Z   Ajf„-k - A0/M
¡=1 ¡ =1 j=n—k

and, using (10.7), that
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n—1 n —k n     n — i—1

Ail p%, = IPkAl /„, + 11 ry - p-X-/.,«.
£ = 1   fc = 0 * = 0 ¡ = 1 i = l      j = 0

Combining this with (10.9) and using the fact that A0fpX = cp, we obtain

n     n~i n—1   n—l—i

ASI p*/„, =  11   p%,A
(10.10) i = 1 fc=0 i = 1    k = 0

+ 11 p-X/,, + I v\.
i=l   k=i k=0

Now, using (10.6),

(10.11) A/, =  I (1 - p,¡-i+1)/,M + «ÍA - A)   I    2 p/,(i
i=l i=l  j=0

and from (10.4)

(10.12) A„  Î   "l pJ/M =  £   £ *"%/,.,.
i=lj=0 i=l*=i

Finally, using that c^a =/p>0 and/^op7 = p%r„-j+i for 1 ^ j g n + l.weobtain

(10.13) c„d" =   I p"-i+1/M.
i = 0

Combining (10.10) through (10.13) yields

cpd + A/„ = 9p -/„A - dC/J.

Hence the map induced by d satisfies (10.1).

Next we will show that d induces a derivation on Tors(R, R). To this end we

define a bilinear function on X by defining h:Xnx Xm-+Xn+m+2. h is defined

so that

A((x0® ••• ®x„), (y0® ••• ®ym)) = 1+ 1 ® Zl ® ■•• ®zn+m+2

where the sum ranges over all permutations z1,-.-,zn+m+2 of

XO'-Vo»*!» '"»;,t:n>>'l»"">>'m

satisfying

The order of the x's is a cyclic permutation of x0, • • •, x„, and

similarly for the j>'s; and x0 precedes y0,

and where the sign of each term of the sum is the sign of the corresponding

permutation.

For brevity, write a = x0 ® ••• ®x„, b = y0® ••• ®ym. Then, if

láj/c^n + m + l, Akh(a,b) is a sum of terms of the form

(10.15) ± (-1)* 1 ® Zl ® - ® zkzk+1 ® - ® ztt+m+2.
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If zk = x, and zk+1=yj, then, unless i=;' = 0, Zy,---,zk_y,zk+i, zk,zk+2,

—,zB+m+2 also satisfies (10.14), and Ak of this term cancels (10.15). The same

argument applies if zk = y, and zk+1 = xr

The terms of (10.15) for which zk = x, and zk+1 = x1+1 (or zk+1 = x0 if i = «)

are precisely the terms of h(A(a),b). The similar terms for y's comprise

( — l)"h(a,A(b)). Those for which zk = x0 and zk+1 = y0 are the terms of —d(ab).

Hence

n + m+l

(10.16) Z    Akh(a,b) - n(A(a),6) - (-l)"n(a,A(b)) = -d(a,b).
k = i

If ± 1 ® Zy ® ■■■ ® z„+m+2 is a term of h(a,b), and if zn+m+2 t¿ y0> taen

± l®zB+m+2®z1® •■•®zn+m+i is also a term of h(a,b), and

A„+m+2(± 1 ® zy ® ••• ® zn+m+2) + A0(± 1 ® z„+m+2 ® Zl ® ••• ® zn+m+1) = 0.

Similarly, if zx # x0, then ± 1 ® z2 ® ••• ® zn+m+2 ® zt is also a term of h(a,b),

and

A0(± 1 ® zi ® ••• ® z„+m+2) + An+m+2(± 1 ® z2 ® ••• ® z„+m+2 ® zt) = 0.

Hence

(A0 + A„+m+2)h(a,b) = Z± x0® z2® — ®zn+m+2 - T±y0®zy®---®z„+m+y

where the sums run over all terms such that x0,z2, •••,zB+m+2 (respectively

Zi,'",zB+m+i,y0) are permutations satisfying (10.14), and where the sign is the

sign of the permutation x0,y0,Xy, -,xn,y1,-,ym-*x0,z2,—,zn+m+2 (respec-

tively -+y0,zy,---,zn+m + 1). Hence

(10.17) (A0 + An+m+2)h(a,b) m (-l)"ad(b) + d(a)b.

(10.16) and (10.17) yield

d(a)b + (-l)"ad(b) - d(ab) = Ah(a,b) - h(A(a),b) - (-l)nh(a,A(b)).

Hence d induces a derivation on Tors(R,R).

It is easy to verify that, if x e R, the image of the formal differential d(x) in

Torf(R,R), under the isomorphism defined in §9, is represented by d(x) = 1 ® x e Yv

Hence, on Torg(R,R) = R, d induces the homomorphism corresponding to for-

mal differentiation.

Define
d = (1 - p)d.

Then, using (10.6) and the fact that, on Y„,An+1a = -p, we obtain

d — d = Aixd — <xdA.

Hence d and ¿induce the same endomorphism of Tor(R,R). Since Z!*=oV(l ~P)=0

on y„+1, d2 = 0. We have shown
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Theorem 10.2. There is an endomorphism of degree 1 and square zero on

the complex Y such that the endomorphism thereby induced on Tors(R,R)

is a derivation which extends the formal differentiation from R to Torf(R,R),

and which satisfies equation (10.1) above.

There is on E(DR) a uniquely defined derivation d of degree 1 and square zero,

which extends the formal differentiation from R to DR. Indeed, by the usual

properties of an exterior algebra, we have only to remark that such a d can be

defined uniquely on DR; the definition being such that d(xd(y)) = d(x)d(y). There

is also, for each peTR, a uniquely defined derivation 9lt of degree 0 such that,

on R, 9ß = p and, on DR, 9p(xd(y)) = p(x)d(y) + xd(p(y)), and a uniquely de-

fined derivation c„ of degree — 1 such that, on DR, cfl(xd(y)) = xp(y).

The isomorphism from DR onto Torf(R,R) extends canonically to an algebra

homomorphism A : E(DR) -► Tors(R,R). We have remarked above that Ad = dh

on R. Since d has square zero and is a derivation on Tors(R,R) we must also

have hd = dh on DR. Hence, since d is a derivation on Tor(R,R), we have the

commutativity relation on all of E(DR). Similarly, h9p = 9ph and Ac„ = cßh,

since the endomorphisms are all derivations and agree on degrees 0 and 1.
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