DIFFERENTIAL FORMS ON GENERAL COMMUTATIVE ALGEBRAS

BY GEORGE S. RINEHART(1)

Introduction. Let K be a commutative ring with unit, and let R be a commutative unitary K-algebra. We shall be concerned with variously defined cohomology theories based on algebras of differential forms, where R plays the role of a ring of functions.

Let T_R be the Lie algebra of the K-derivations of R, and let $E(T_R)$ be the exterior algebra over R of T_R . We can form $\operatorname{Hom}_R(E(T_R), R)$ and define on it the usual formal differentiation. If R is the ring of functions on a C^{∞} -manifold then the elements of T_R are the differentiable tangent vector fields, and the complex $\operatorname{Hom}_R(E(T_R), R)$ is naturally isomorphic to the usual de Rham complex of differential forms. In $[5, \S\S 6-9]$ the complex $\operatorname{Hom}_R(E(T_R), R)$ is studied. It is shown that if K is a field contained in R, and if either R is an integral domain finitely ring-generated over K and T_R is R-projective, or R is a field, then the homology of this complex may be identified with $\operatorname{Ext}_V(R,R)$, for a suitably defined ring V. $\S\S 1-6$ of the present work are primarily a straightforward generalization of the results of this portion of [5] to the case in which K and R are arbitrary (commutative) rings.

In making this generalization we are led naturally to replace T_R by an arbitrary Lie algebra with an R-module structure which is represented as derivations of R and which satisfies certain additional properties satisfied by T_R . We give these properties in §2. L is essentially a quasi-Lie algebra as defined in [3]. The precise definition given corresponds to that of a d-Lie ring given in [8], where also the cohomology based on $\text{Hom}_R(E(L), A)$ is defined.

In §2 we define an associative algebra V of universal differential operators generated by R and L. In case L operates trivially on R, V is the usual universal enveloping algebra of the R-Lie algebra L. In §3 we prove a Poincaré-Birkhoff-Witt theorem for V. In §4 we show that if L is R-projective then for any V-module A we may identify the cohomology based on $\operatorname{Hom}_R(E(L),A)$ with $\operatorname{Ext}_V(R,A)$, which we denote by $H_R(L,A)$. In particular, the de Rham cohomology of a C^∞ -manifold is thus identified with an $\operatorname{Ext}_V(R,R)$.

Received by the editors July 20, 1962.

⁽¹⁾ The research for this paper was carried out while the author was a National Science Foundation Fellow. The author is now at Cornell University.

§5 deals with certain functorial properties of $H_R(L,A)$, and §6 with the operations which generalize the usual Lie derivation and contraction operations on the algebra of differential forms.

Let $S = R \otimes_K R$. There are standard products under which $\operatorname{Tor}^S(R,R)$ and $\operatorname{Ext}_S(R,R)$ become skew-commutative R-algebras. Let D_R be the R-module of the formal differentials of R (see §9). Let $E(D_R)$ be the exterior R-algebra built over D_R . There is an isomorphism from D_R onto $\operatorname{Tor}^S(R,R)$, which, extends canonically to an algebra homomorphism from $E(D_R)$ into $\operatorname{Tor}^S(R,R)$. There is also a natural homomorphism from $\operatorname{Tor}^S(R,R)$ into $\operatorname{Hom}_R(\operatorname{Ext}_S(R,R),R)$. $\operatorname{Ext}^1_S(R,R)$ is isomorphic with T_R , so that $\operatorname{Ext}_S(R,R)$ contains a canonical homomorphic image of $E(T_R)$ (assuming that 2 has an inverse in R). Thus there is a homomorphism from $\operatorname{Tor}^S(R,R)$ into $\operatorname{Hom}_R(E(T_R),R)$.

It is shown in [5] that, if K is a perfect field and R is a regular affine K-algebra, all the homomorphisms of the preceding paragraph are isomorphisms. Hence in this case $Tor^S(R,R)$ is an algebra of differential forms. In §§7–10 we are concerned with operations on $Tor^S(R,R)$ analogous to the usual operations on differential forms, in the general case in which K is an arbitrary commutative ring with unit and R is a commutative unitary K-projective K-algebra. In §7 we define, in a general setting, a pairing between Ext and Tor which, in the present case, defines a right $Ext_S(R,R)$ -module structure on $Tor^S(R,R)$. By means of this module structure, elements of $Ext_S^n(R,R)$ act as endomorphisms of degree -n, and those endomorphisms corresponding to elements of degree 1 are anti-derivations analogous to the contraction operators on differential forms. In §9 we define the operations on $Tor^S(R,R)$ analogous to the usual Lie derivations of differential forms, and show that the usual relations involving contraction and Lie derivations obtain. In §10 we define a formal differentiation map for $Tor^S(R,R)$ generalizing the differentiation of formal differentials.

This work was done as a doctoral thesis under the direction of Professor Gerhard Hochschild, for whose encouragement and generous advice and instruction the author is deeply grateful.

- 1. Preliminaries. Henceforth, we shall always assume that all rings have an identity, and that all modules and ring homomorphisms are unitary.
- LEMMA 1.1. Let R be any ring. Let X_i , for each i in some index set, be a right R-module, and let A be a projective left R-module. Let " \prod " denote the (strong) direct product. Then the natural homomorphism: $(\prod_i X_i) \otimes_R A \to \prod_i (X_i \otimes_R A)$, is a monomorphism.
- **Proof.** Choose a free R-module $F = \sum_j R_j$, where each R_j is a copy of R, such that A is a direct summand of F. $(\prod_i X_i) \otimes_R F = \sum_j (\prod_i X_i) \otimes_R R_j = \sum_j \prod_i X_{ij}$, where each X_{ij} is a copy of X_i . The latter may be viewed as a subset of $\prod_i \sum_j X_{ij} = \prod_i \sum_j (X_i \otimes_R R_j) = \prod_i (X_i \otimes_R F)$. The lemma follows, since $(\prod X_i) \otimes_R A$ is a direct summand of $(\prod X_i) \otimes_R F$.

If R is a commutative ring and $P \subset R$ is a prime ideal $\neq R$, denote by R_P the corresponding local ring; that is, R_P is the set of equivalence classes of pairs r/s where r and s are elements of R, $s \notin P$, and where r_1/s_1 is equivalent to r_2/s_2 in case there is a $v \notin P$ such that $v(r_1s_2 - r_2s_1) = 0$, with addition and multiplication defined in the obvious way. There is a canonical homomorphism $\beta_P: R \to R_P$ which sends r onto the class of r/1. The kernel of β_P is $H_P = \{r \in R: \exists v \notin P \ni rv = 0\}$. Let \mathcal{M} be the set of all maximal ideals of R. We can define a homomorphism β mapping R into $\prod_{P \in \mathcal{M}} R_P$ such that the R_P -component of $\beta(r)$ is $\beta_P(r)$.

LEMMA 1.2. β is a monomorphism.

Proof. Let $0 \neq r \in R$. Set $I_r = \{s \in R : rs = 0\}$. Then I_r is a proper ideal of R. Choose $P \in \mathcal{M}$ such that $P \supset I_r$. Then $r \notin H_P$. We conclude from this that $\bigcap_{P \in \mathcal{M}} H_P = (0)$. This proves Lemma 1.2.

2. (K, R)-Lie algebras and their enveloping algebras. Let K be a commutative ring, and let R be a commutative K-algebra. In the sequel, all R-modules will be regarded as K-modules in the natural fashion $(k \cdot m = (k \cdot 1) \cdot m)$. Let L be a Lie ring that is also an R-module. Suppose that we are given a Lie ring and R-module homomorphism from L to the K-derivations of R. If $\mu \in L$, we will denote the image of μ under this homomorphism by $r \to \mu(r)$. Suppose finally that, for all α , $\mu \in L$, and $r \in R$,

(2.1)
$$\left[\alpha, r\mu\right] = r\left[\alpha, \mu\right] + \alpha(r)\mu.$$

We will call such an L a (K,R)-Lie algebra.

We can make the direct R-module sum R + L into a K-Lie algebra by defining

$$\lceil r + \alpha, s + \mu \rceil = (\alpha(s) - \mu(r)) + \lceil \alpha, \mu \rceil.$$

Form the tensor algebra over K of R+L, and factor by the usual ideal to obtain U, the universal enveloping algebra of the K-Lie algebra R+L. Let U^+ be the subalgebra generated by the canonical image of R+L in U. For $r\in R$ and z an element of the R-module R+L, let $r\cdot z$ be the result of operating on z with r, and denote by z' the canonical image of z in U^+ . Let P be the two-sided ideal of U^+ generated by all elements of the form $(r\cdot z)'-r'z'$, with $r\in R$ and $z\in Z$. Define

$$V(R,L)=U^+/P.$$

A module for K-Lie algebra R + L is called an R-regular L-module in case for all $r \in R$, $z \in R + L$, and $m \in M$,

$$r \cdot (z \cdot m) = (r \cdot z) \cdot m$$
.

The canonical map: $R + L \rightarrow V(R, L)$ endows any V(R, L)-module with the structure of an R-regular L-module. Thus we have a one-to-one correspondence

between V(R,L)-modules and R-regular L-modules. In particular, R has a natural structure as an R-regular L-module, and the representation of R thus obtained is faithful. Hence the map: $R \to V(R,L)$ is a monomorphism. Henceforth we will identify R with its image in V(R,L).

Note that if we take K = R, and let each element of L act as the zero derivation of K, then L is a (K,R)-Lie algebra, and V(K,L) is the usual universal enveloping algebra of the K-Lie algebra L.

If A and B are V(R,L)-modules, we can define an R-regular L-module structure on $\operatorname{Hom}_R(A,B)$ such that, for $r \in R$, $\mu \in L$, $a \in A$, and $f \in \operatorname{Hom}_R(A,B)$, $(r \cdot h)(a) = r \cdot h(a) = h(r \cdot a)$, and $(\mu \cdot h)(a) = \mu \cdot h(a) - h(\mu \cdot a)$. We can also define an R-regular L-module structure on $A \otimes_R B$ such that, for $r \in R$, $\mu \in L$, $a \in A$, and $b \in B$, $r \cdot (a \otimes b) = (r \cdot a) \otimes b = a \otimes (r \cdot b)$, and $\mu \cdot (a \otimes b) = (\mu \cdot a) \otimes b + a \otimes (\mu \cdot b)$. We have

LEMMA 2.1. Let B be a left V(R, L)-module. The V(R, L)-modules $\operatorname{Hom}_R(V(R, L), B)$ and $B \otimes_R V(R, L)$ as defined above are isomorphic respectively to $\operatorname{Hom}_R(V(R, L), B)$ and $V(R, L) \otimes_R B$ with the usual left V(R, L)-module structures.

The proof can be read verbatim as the proofs of Lemmas 6.1 and 6.2 of [5], substituting L for T_R and V(R,L) for V_R .

3. A Poincaré-Birkhoff-Witt theorem for V(R,L). Denote by \bar{L} the image of L in V(R,L), and by $\bar{\mu}$ the image in \bar{L} of $\mu \in L$. Let $V_p(R,L)$ be the left R-submodule of V(R,L) generated by products of at most p elements of \bar{L} . We have thus a filtration of V(R,L). Denote by G(V(R,L)) the associated graded R-module; i.e., the direct sum of the R-modules $V_p(R,L)/V_{p-1}(R,L)$, where $V_{-1}(R,L)=(0)$. Remark that if $z \in V_p(R,L)$ and $r \in R$, $rz-zr \in V_{p-1}(R,L)$. Hence the left and right R-module structures on G(V(R,L)) are the same, and we may regard G(V(R,L)) as an R-algebra. Denote by S(L) the symmetric R-algebra on L.

THEOREM 3.1. If L is R-projective, then the canonical R-epimorphism, $S(L) \rightarrow G(V(R,L))$, is an R-algebra isomorphism.

Proof. First we prove the result under the assumption that L is R-free. In doing so, we adapt the notation and proof of [1, Lemma 3.5, p. 271]. Let $\{\mu_i\}$ be an ordered R-basis of L. Let u_i denote μ_i considered as an element of S(L). If I is a sequence $i_1 \leq \cdots \leq i_n$, let $u_I = u_{i_1} \cdots u_{i_n}$. If I is the empty sequence, let $u_I = 1$. Write $j \leq I$ in case either $j \leq i_1$ or I is empty. We will define the structure of an R-regular L-module on S(L) such that, whenever $j \leq I$, $\mu_j \cdot u_I = u_j u_I$. The resulting V(R,L)-module structure for S(L) will have the property that, for any ordered sequence $\{i_1, \dots, i_n\} = I$, $(\bar{\mu}_{i_1} \cdots \bar{\mu}_{i_n}) \cdot 1 = u_I$. Noting that the u_I 's form an R-basis for S(L), we see that this suffices to prove Theorem 3.1.

Let $S^p(L)$ denote the homogeneous component of degree p of S(L). Let $Q_p = \sum_{q=0}^p S^q(L)$. We proceed inductively to define a K-bilinear map from $L \times S(L)$ to S(L), denoted by $(\mu, u) \to \mu \cdot u$, by defining its restriction: $L \times Q_p \to Q_{p+1}$ for each p, subject to the following conditions:

(3.1)
$$\mu_j \cdot u_I = u_j u_I \text{ whenever } j \leq I, \ u_I \in Q_p;$$

(3.2)
$$\mu \cdot (\alpha \cdot u) = \alpha \cdot (\mu \cdot u) + [\mu, \alpha] \cdot u \text{ if } \mu, \alpha \in L, \ u \in Q_{n-1};$$

$$(3.3) \mu_i \cdot u_I - u_i u_I \in Q_a \text{ if } u_I \in Q_a, q \leq p;$$

$$(3.4) (r\mu) \cdot (su) = r(s(\mu \cdot u) + \mu(s)u) \text{ if } r, s \in R, \ \mu \in L, \ u \in Q_p.$$

For p = 0, define $\mu \cdot r = r\mu + \mu(r)$, satisfying (3.1) through (3.4).

Now suppose we have already defined an action: $L \times Q_{p-1} \to Q_p$ satisfying the conditions corresponding to (3.1) through (3.4). In order to extend this, we first define the action by the telements μ_i mapping $S^p(L)$ into Q_{p+1} . We may assume inductively that we have defined this action for all μ_j such that j < i. Consider an element $u_I \in S^p(L)$. If $i \le I$, define $\mu_i \cdot u_I = u_i u_I$. If not, then I = (j,J), with j < i, and we define $\mu_i u_I = \mu_j \cdot (\mu_i \cdot u_J) + [\mu_i, \mu_j] \cdot u_J$. Now we define the action by μ_i on all of $S^p(L)$ by defining $\mu_i(ru_I) = r(\mu_i \cdot u_I) + \mu_i(r)u_I$ if $r \in R$, and extending by K-linearity. Thus we have defined the action by the elements μ_i . To define the action on $S^p(L)$ by an arbitrary element of L, define $(r\mu_i) \cdot u = r(\mu_i \cdot u)$ if $r \in R$, $u \in S^p(L)$, and extend by K-linearity. Conditions (3.1), (3.3), and (3.4) are clearly satisfied. The verification that

$$\mu_j \cdot (\mu_k \cdot u_I) = \mu_k \cdot (\mu_j \cdot u_I) + [\mu_j, \mu_k] \cdot u_I \quad \text{if } u_I \in S^{p-1}(L)$$

does not involve consideration of the R-module structure and so is identical with the corresponding part of the proof that we are adapting [1, p. 273]. Using this and (3.4), together with the property of L assumed earlier, (Equation (2.1)) the verification of (3.2) is a straightforward computation. Thus we have an action by elements of L on S(L). We use this to define an action of R + L on S(L) in the obvious way. Using (3.2) and (3.4) one sees easily that this endows S(L) with the structure of an R-regular L-module. This proves Theorem 2.1 when L is R-free.

Now assume only that L is R-projective. Let P be any prime ideal of R. Consider the K-algebra R_P . If μ is any K-derivation of R, the formula $\mu(r/s) = (s\mu(r) - r\mu(s))/s^2$ extends μ to a K-derivation of R_P . Thus L is represented on R_P . Let $L_P = R_P \otimes_R L$ with the natural R_P -module structure. We can define a commutation on L_P such that, for $x, y \in R_P$, $\alpha, \mu \in L$,

$$[x \otimes \alpha, y \otimes \mu] = xy \otimes [\alpha, \mu] - y\mu(x) \otimes \alpha + x\alpha(y) \otimes \mu.$$

(This commutator is clearly additive in all four terms. Hence it is only necessary to verify that, e.g., $[rx \otimes \alpha, y \otimes \mu] = [x \otimes r\alpha, y \otimes \mu]$ for $r \in R$. Using (2.1), this

is a straightforward computation.) The commutation is clearly anti-commutative, and one checks without difficulty that it satisfies the Jacobi identity. Thus L_p becomes a Lie algebra. The elements of L_p act as derivations of R_p in the natural fashion, and it is immediate that this gives a representation of the K-Lie algebra L_p , and that L_p thus becomes a (K,R_p) -Lie algebra. Let $V(P) = V(R_p,L_p)$.

Since L is R-projective, so is S(L), and hence the monomorphism β of Lemma 1.2 induces a monomorphism: $S(L) = R \otimes_R S(L) \to (\prod R_P) \otimes_R S(L)$, where the product is taken over all maximal ideals of R. By Lemma 1.1, the latter is naturally injected into $\prod (R_P \otimes S(L)) = \prod S(L_P)$. The natural R-module and Lie algebra homomorphism: $R + L \to R_P + L_P$ defines an R-algebra homomorphism: $V(R,L) \to V(P)$. These in turn yield a map: $V(R,L) \to \prod V(P)$. This map is compatible with the filtration of V(R,L) and the V(P)'s, so that we obtain a map: $G(V(R,L)) \to \prod G(V(P))$. Since L is R-projective, L_P is R_P -projective. Hence, since R_P is a local ring, L_P is R_P -free [7]. By the first part of the proof of this lemma, the map $S(L_P) \to G(V(P))$ is therefore an isomorphism. Hence we have the commutative and exact diagram

$$0$$

$$\downarrow$$

$$S(L) \to G(V(R,L)) \to 0$$

$$\downarrow \qquad \qquad \downarrow$$

$$0 \to \prod S(L_P) \to \prod G(V(P)) \to 0$$

from which we deduce that the top row is a monomorphism. This completes the proof of Theorem 3.1.

Note that in the particular case in which R = K and L operates trivially, this theorem is the statement that the usual Poincaré-Birkhoff-Witt theorem holds whenever L is K-projective.

4. Ext_V(R,A) as a cohomology of differential forms. Let E(L) denote the graded exterior R-algebra over L. Consider the graded group $V(R,L) \otimes_R E(L)$ where V(R,L) is an R-module by right multiplication by elements of R, and where the graded components are $V(R,L) \otimes_R E^n(L)$. We wish to show the existence of an endomorphism d of degree -1 on this group such that, for $v \in V(R,L)$ and $\mu_i \in L$,

$$d(v \otimes \mu_1 \cdots \mu_n) = \sum_{i=1}^n (-1)^{i-1} v \overline{\mu}_i \otimes \mu_1 \cdots \widehat{\mu}_i \cdots \mu_n$$

$$+ \sum_{j < k} (-1)^{+k} v \otimes [\mu_j, \mu_k] \mu_1 \cdots \widehat{\mu}_j \cdots \widehat{\mu}_k \cdots \mu_n$$

where " $\hat{}$ " indicates that the corresponding term is omitted. In order to do so, we define a map d from the cartesian product of V(R,L) with n copies of L to

 $V(R,L) \otimes_R E^{n-1}(L)$ such that $\bar{d}(v,\mu_1,\dots,\mu_n)$ is the right-hand side of (4.1). Then \bar{d} is clearly additive in each component. In V(R,L)

$$(4.2) r\bar{\mu} = \bar{\mu}r - \mu(r) \text{ for } r \in R, \ \mu \in L.$$

Using this and (2.1), it is a somewhat long but straightforward computation that, for $r \in R$,

$$\bar{d}(v, r\mu_1, \mu_2, \cdots, \mu_n) = \bar{d}(v, \mu_1, \cdots, r\mu_i, \cdots, \mu_n)$$

for every *i*. Also, one checks without difficulty that $\bar{d}(v, \mu_1, \dots, \mu_n) = 0$ whenever $\mu_i = \mu_j$ with some $i \neq j$. Hence \bar{d} induces a map: $V(R,L) \times E^n(L) \to V(R,L) \otimes_R E^{n-1}(L)$. Finally, again using (2.1) and (4.2), one verifies that, for $r \in R$,

$$\bar{d}(vr,\mu_1,\cdots,\mu_n)=\bar{d}(v,r\mu_1,\mu_2,\cdots,\mu_n).$$

Hence d induces the desired map d.

Define $d: V(R, L) \otimes_R E^0(L) = V(R, L) \to R$ by $d(v) = v \cdot 1$. Let X denote the resulting augmented graded group. One checks directly that $d^2 = 0$ on X. If we give X the usual V(R, L)-module structure $(v_1 \cdot (v_2 \otimes \mu_1 \cdots \mu_n) = v_1 v_2 \otimes \mu_1 \cdots \mu_n)$ then d is visibly V(R, L)-linear.

Now assume that L is R-projective. Then so is E(L), and hence each $V(R,L) \otimes_R E^n(L)$ is V(R,L)-projective. Therefore (X,d) is a V(R,L)-projective complex over R. We wish to show that this is actually a projective resolution; i.e., that X is acyclic. In fact, we do more: We show that X has an X-homotopy and so also defines a V(R,L)-projective resolution of X, in the sense of X-

Define $X_p = R + \sum_q V_{p-q}(R,L) \otimes E^q(L)$ for $p \ge 0$, and $X_p = (0)$ otherwise. Note that since each $E^q(L)$ is R-projective, X_p may be identified with its canonical image in X. Each X_p is visibly stable under d, and we have thus defined a filtration of X by R-subcomplexes. The associated graded complex can be identified with $G(V(R,L)) \otimes_R E(L)$ (augmented over R). Denote this by

$$G(X) = \sum_{p} G^{p}(X) = \sum_{p} X_{p}/X_{p-1}.$$

By Theorem 3.1, the latter is R-isomorphic with $S(L) \otimes_R E(L)$ (augmented over R). The boundary map induced by d on the latter is given by

$$d(u \otimes \mu_1 \cdots \mu_n) = \sum_{i=1}^n (-1)^{i-1} u \mu_i \otimes \mu_1 \cdots \hat{\mu}_i \cdots \mu_n.$$

Let L be a direct summand of a free R-module F. Then $S(L) \otimes_R E(L)$ becomes a direct R-complex summand of the usual Koszul complex $S(F) \otimes_R E(F)$. This has an R-homotopy [4, p. 259], which induces an R-homotopy on $S(L) \otimes_R E(L)$. Hence we have an R-homotopy h on G(X). Further, the homotopy of the Koszul complex is such that each $G^P(X)$ is stable under h.

Since, by Theorem 3.1, $V_p(R,L)/V_{p-1}(R,L)$ is R-isomorphic with $S^p(L)$, X_p/X_{p-1} is R-projective. Hence the sequence $0 \to X_{p-1} \to X_p \to X_p/X_{p-1} \to 0$ splits. Hence,

by induction on p, there is an R-isomorphism $\alpha\colon X\to G(X)$ such that $\alpha(X_p)=\sum_{q=0}G^q(X)$, and $(\alpha d-d\alpha)(X_p)\subset\sum_{q=0}^{p-}G^q(X).(^2)$ Setting $g_0=\alpha^{-1}h\alpha$ and $g=2g_{k-1}-g_{k-1}dg_{k-1}-dg_{k-1}$, we verify inductively that $(g_kd+dg_k-1)(X_p)\subset X_{p-2^k}$, and $(g_k-g_{k-1})(X_p)\subset X_{p-2^{k-1}}$. Hence we can define an R-endomorphism g of X to coincide with g_k on $X_{2^{k}-1}$. Then gd+dg=1; i.e., g is the desired homotopy.

Note that the existence of the isomorphism α shows incidentally that X is R-projective.

We have proved

LEMMA 4.1. If L is an R-projective (K,R)-Lie algebra, then the complex $V(R,L) \otimes_R E(L) = X$, as defined above, is a V(R,L)-projective resolution of R which has an R-homotopy. X is R-projective.

If L is a (K,R)-Lie algebra, and A is an R-regular L-module, we will write

$$H_R(L,A) = \operatorname{Ext}_{V(R,L)}(R,A).$$

Note that, if L is represented trivially on K, $H_K(L,A)$ is the usual Lie algebra cohomology of L.

If L is R-projective then, by Lemma 4.1, $H_R(L,A)$ is the homology of the complex $\operatorname{Hom}_{V(R,L)}(V(R,L) \otimes_R E(L),A) = \operatorname{Hom}_R(E(L),A)$. If we write the elements of the latter as R-multilinear maps with arguments in L and values in A, which are strongly alternating in the sense that they vanish whenever two arguments are equal, the boundary map is given by

(4.3)
$$(Df)(\mu_1, \dots, \mu_n) = \sum_{i=1}^n (-1)^{i-1} \mu_i (f(\mu_1, \dots, \hat{\mu}_i, \dots, \mu_n))$$

$$+ \sum_{j < k} (-1)^{j+k} f([\mu_j, \mu_k], \mu_1, \dots, \hat{\mu}_j, \dots, \hat{\mu}_k, \dots, \mu_n).$$

Hence we have

THEOREM 4.2. If L is an R-projective (K,R)-Lie algebra, then $H_R(L,A)$ is the cohomology K-space based on the strongly alternating R-multilinear maps from L to A under the usual formal differentiation map.

In particular, let M be a real C^{∞} manifold, and let R be the ring of the differentiable real-valued functions on M. Let K be the reals, and let T be the C^{∞} vector fields on M. Then T is a (K,R)-Lie algebra in the natural fashion. Moreover, T is R-projective. Indeed, M can be C^{∞} -imbedded in Euclidean space of sufficiently high dimension. Then a subset of the tangent bundle over the latter forms a trivial bundle over M, and this bundle is the direct sum of the tangent bundle and the normal bundle over M. Hence T, the cross sections of

⁽²⁾ For the details of this last section of the proof, see the last part of the proof of Theorem 7.1 in [5].

the tangent bundle over M, is a direct summand of the cross sections of a trivial bundle, and the latter form a free R-module. Hence Theorem 4.2 holds, and we conclude that the de Rham cohomology of M is $\text{Ext}_{V(R,T)}(R,R)$.

5. Functorial properties of $H_R(L,A)$. $H_R(L,A)$ is a covariant functor of A, and as such associates with V(R,L)-exact sequences $0 \to B \to A \to C \to 0$ connecting homomorphisms $H_R(L,C) \to H_R^{n+1}(L,B)$ as usual. Moreover, $H_R(L,A)$ is a contravariant functor of pairs (R, L) in the following sense: Let R and R' be K-algebras, and let L and L' be (K,R)- and (K,R')-Lie algebras, respectively. Suppose we have a K-algebra homomorphism from R to R' (denoted $r \rightarrow r'$) and a Lie algebra homomorphism from L to L' (denoted $\mu \rightarrow \mu'$). Suppose further that $(r\mu)' = r'\mu'$ and $(\mu(r))' = \mu'(r')$ for all $r \in \mathbb{R}$, $\mu \in \mathbb{L}$. Then we obtain a K-Lie algebra homomorphism from R + L to R' + L', and thus a ring homomorphism from V(R,L) to V(R',L'), in the natural fashion. Write V(R,L) = V, V(R',L') = V'. Let X be a V-projective resolution of R. The homomorphism $V \rightarrow V'$ yields a V-module structure for every V'-module. $V' \otimes_{\nu} X$ is a V'-projective complex over $V' \otimes_{V} R$, and the homomorphism $R \to R'$ yields a natural epimorphism from the latter onto R'. Thus $V' \otimes_{V} X$ is a V'-projective complex over R'. Let X' be a V'-projective resolution of R'. Then, as usual, there is a map from $V' \otimes_{V} X$ to X' over the identity; and there is thus induced, for each V'-module A, a unique map from $\operatorname{Ext}_{V'}(R',A)$ to the homology of $\operatorname{Hom}_{V'}(V'\otimes_{V}X,A)$. But the latter is canonically isomorphic to $\operatorname{Hom}_{V}(X,A)$. Hence we have a well-defined map from $H_{R'}(L',A)$ to $H_{R}(L,A)$.

Now suppose that the natural map: $R' \otimes_R L \to L'$ is surjective, so that V' is generated by elements of the form $s\mu'_1 \cdots \mu'_n$ with $s \in R'$, $\mu_1, \cdots, \mu_n \in L$. Then the above map: $V' \otimes_V R \to R'$ has an inverse given by $s \to s \otimes 1$. Hence $V' \otimes_V R$ and R' are isomorphic, so that $V' \otimes_V X$ is a projective resolution of R' precisely when it is acyclic; i.e., when $\operatorname{Tor}_n^V(V',R) = (0)$ for all $n \ge 1$. If this is the case, then the map $H_{R'}(L',A) \to H_R(L,A)$ is an isomorphism.

In particular, suppose that L is R-projective. We can make $R' \otimes_R L$ into a (K,R')-Lie algebra in the natural fashion (cf. Equation 3.5). By Lemma 4.1, $\operatorname{Tor}^V(V(R',R'\otimes_R L),R)$ is the homology of the complex $V(R',R'\otimes_R L)\otimes_V V\otimes_R E(L) = V(R',R'\otimes_R L)\otimes_R E(L)$. But $R'\otimes_R L$ is R'-projective, and hence by Lemma 4.1 the latter has zero homology in positive degrees. Hence

$$H_{R'}(R' \otimes_R L, A) \cong H_R(L, A).$$

(Note by Theorem 4.2 this isomorphism is just that induced by the canonical identifications $\operatorname{Hom}_{R'}(E(R'\otimes_R L),A)=\operatorname{Hom}_{R'}(R'\otimes_R E(L),A)=\operatorname{Hom}_{R}(E(L),A)$.) Hence in the projective case we may always assume R=R'.

Product. Let L be R-projective. Write V = V(R,L). Then V is R-projective by Theorem 4.2. Hence if X is a V-projective resolution of R, it is also R-projective.

Therefore, by Lemma 2.1, $X \otimes_R X$ is still V-projective. $X \otimes_R X$ is a complex over $R \otimes_R R = R$, and its homology is $\operatorname{Tor}^R(R,R)$, which is zero in degree ≥ 1 . Hence $X \otimes_R X$ is again a V-projective resolution of R. Therefore the natural map $\operatorname{Hom}_V(X,A) \otimes_K \operatorname{Hom}_V(X,B) \to \operatorname{Hom}_V(X \otimes_R X,A \otimes_R B)$ induces a product map $H_R(L,A) \otimes_K H_R(L,B) \to H_R(L,A \otimes_R B)$. One proves as usual that this product is associative, and, in case A = B = R, anti-commutative.

The product is induced by the usual "shuffle product" for alternating maps on the complex of Theorem 4.2. See [5, §9] for details.

6. Operations on $H_R(L,A)$. Let V be any ring, and let A and B be left V-modules. Let β be a derivation of V. A pair of homomorphisms $f, \mu : A \to B$ will be called a β -pair in case f is V-linear, and $\mu(va) = v\mu(a) + \beta(v)f(a)$ for every $a \in A, v \in V$. A similar definition holds for right modules. The following is shown in [6]: Let X and Y be V-projective resolutions of A and B, respectively. Then there is a β-pair $(\bar{f},\bar{\mu}): X \to Y$, where \bar{f} and $\bar{\mu}$ are of degree zero, commute with the boundary, and lie over f and μ , respectively, in the usual sense. The pair $(\bar{f}, \bar{\mu})$ is unique up to homotopy. If C is a left V-module, and $(h, \alpha): C \to C$ is a β -pair, we define a map $\operatorname{Hom}_{V}(Y,C) \to \operatorname{Hom}_{V}(X,C)$ carrying $g \in \operatorname{Hom}_{V}(Y,C)$ onto $\alpha g f - h g \overline{\mu}$. This induces a uniquely defined map $\operatorname{Ext}_{V,\beta}((f,\mu), (h,\alpha)) : \operatorname{Ext}_{V}(B,C) \to \operatorname{Ext}_{V}(A,C)$. Similarly, if D is a right V-module and $(h, \alpha): D \to D$ is a β -pair, we define a map $D \otimes_{V} X \to D \otimes_{V} Y$ such that, if $d \in D$ and $x \in X$, $d \otimes x$ is carried onto $\alpha(d) \otimes \tilde{f}(x) + h(d) \otimes \bar{\mu}(x).$ This induces a uniquely defined map $\operatorname{Tor}^{V,\beta}((h,\alpha),(f,\mu)): \operatorname{Tor}^{V}(D,A) \to \operatorname{Tor}^{V}(D,B).$

We will frequently have cause to consider pairs $(1,\alpha)$ in which the linear map is the identity. To simplify notation, we denote such pairs by α , and write, e.g., $\operatorname{Ext}_{V,\beta}((f,\mu),\alpha)$ for $\operatorname{Ext}_{V,\beta}((f,\mu),(1,\alpha))$.

Let T be a (K,R)-Lie algebra, and let L be an ideal of T which is also an R-submodule. Let $\mu \in T$. Then μ defines a K-derivation of R+L by operation on R and commutation on L, and this in turn extends to a K-derivation of the ring V(R,L). Denote this derivation by β_{μ} , and continue to write V for V(R,L). If B is any R-regular T-module, let μ_B be the K-linear endomorphism of B corresponding to μ . Then $(1,\mu_B)$ is a β_{μ} -pair. Hence we obtain an endomorphism $\operatorname{Ext}_{V,\beta_{\mu}}(\mu_B,\mu_A)$ of $\operatorname{Ext}_V(B,A)$ for any V-modules A and B. Denote this endomorphism by θ_{μ} .

Let $\alpha \in T$. Note that the commutator $[\beta_{\mu}, \beta_{\alpha}]$ is the map $\beta_{[\mu,\alpha]}$. Hence, if $(1, \bar{\mu}_B)$ is a β_{μ} -pair over $(1, \mu_B)$ and $(1, \bar{\alpha}_B)$ is a β_{α} -pair over $(1, \alpha_B)$, $(1, [\bar{\mu}_B, \bar{\alpha}_B])$ is a $\beta_{[\mu,\alpha]}$ -pair over $(1, [\mu_B, \alpha_B]) = (1, [\mu, \alpha]_B)$. Hence we conclude

$$[\theta_{\mu},\theta_{\alpha}] = \theta_{[\mu,\alpha]}.$$

If $\mu \in L$ and X is a V-projective resolution of B, then we can choose $\bar{\mu}_B = \mu_X$, and by V-linearity the resulting map on $\operatorname{Hom}_V(X,A)$ will be zero. Hence

Proposition 6.1. If $\mu \in L$, $\theta_{\mu} = 0$.

Therefore $\mu \to \theta_{\mu}$ induces a representation of the K-Lie algebra T/L on $\operatorname{Ext}_{\nu}(B,A)$.

Now we restrict our attention to the case in which B = R and L is R-projective. Then we have

PROPOSITION 6.2. For every $\mu \in T$, θ_{μ} is a derivation of $H_R(L, A)$ with respect to the product defined in the previous section.

Proof. Let X be a V-projective resolution of R. Let $(1,\bar{\mu}_R)$ be a β_μ -pair on X over $(1,\mu_R)$. Then there is a K-linear map μ_R^* of $X\otimes_R X$ such that $\mu_R^*(x\otimes y)=\bar{\mu}_R(x)\otimes y+x\otimes\bar{\mu}_R(y)$. It is easily verified that $(1,\mu_R^*)$ is a β_μ -pair over $(1,\mu_R)$. Denote by $\bar{\theta}_\mu$ the maps on $\operatorname{Hom}_V(X,A)$ and $\operatorname{Hom}_V(X,B)$ corresponding to $\bar{\mu}_R$, and the map on $\operatorname{Hom}_V(X\otimes_R X,A\otimes_R B)$ corresponding to μ_R^* . Then, for $f\in\operatorname{Hom}_V(X,A)$ and $g\in\operatorname{Hom}_V(X,B)$, we have $\bar{\theta}_\mu(fg)=\bar{\theta}_\mu(f\otimes g)=\mu_{A\otimes B}(f\otimes g)-(f\otimes g)\mu_R^*=(\mu_A f)\otimes g+f\otimes(\mu_B g)-(f\otimes g)(\bar{\mu}_R\otimes 1+1\otimes\bar{\mu}_R)=(\mu_A f)\otimes g-(f\bar{\mu}_R)\otimes g+f\otimes(\mu_B g)-f\otimes(g\bar{\mu}_R)!=\bar{\theta}_\mu(f)\otimes g+f\otimes\bar{\theta}_\mu(g)$. This proves the proposition.

Now let X be the resolution of Lemma 4.1. Then it is readily seen that we may choose $\bar{\mu}_R$ such that

$$\bar{\mu}_{R}(v \otimes \mu_{1} \cdots \mu_{n}) = \beta_{\mu}(v) \otimes \mu_{1} \cdots \mu_{n} + \sum_{i=1}^{n} v \otimes \mu_{1} \cdots [\mu, \mu_{i}] \cdots \mu_{n}.$$

The resulting map on $\operatorname{Hom}_R(E(L),A)$ is given by $(\overline{\theta}_{\mu}f)(\mu_1,\dots,\mu_n) = \mu(f(\mu_1,\dots,\mu_n)) - \sum_{i=1}^n f(\mu_1,\dots,[\mu,\mu_i],\dots,\mu_n)$, from which we see

Proposition 6.3. If L is R-projective, then θ_{μ} is induced by the usual Lie derivation of degree zero, corresponding to μ , of the complex of differential forms.

Suppose $\mu \in L$. Then by the proof of Proposition 6.1, θ_{μ} is homotopic to zero; i.e., there exists an endomorphism c_{μ} of degree -1 on $\operatorname{Hom}_{R}(E(L),A)$ such that

$$(6.1) c_{\mu}d + dc_{\mu} = \theta_{\mu}.$$

We may choose c_{μ} to be the usual contraction corresponding to μ ,

$$(c_{\mu}f)(\mu_1,\cdots,\mu_n)=f(\mu,\mu_1,\cdots,\mu_n);$$

- 6.1 holds and becomes the familiar relation among these three maps on the algebra of differential forms.
- 7. A pairing for Ext and Tor. Let S be a ring. Throughout this section we will write Ext for Ext_S and Tor for Tor^S . Consider an S-exact sequence

$$(7.1) 0 \to E \to X_{n-1} \to \cdots \to X_0 \to A \to 0$$

of left S-modules. Denote the homomorphisms in the above sequence by d, and write $E = d(X_n)$. Then, for $0 \le k < n$ and $m \ge 0$, the exact sequence

$$0 \rightarrow d(X_{k+1}) \rightarrow X_k \rightarrow d(X_k) \rightarrow 0$$

yields a connecting homomorphism

(7.2)
$$\operatorname{Ext}^{m}(d(X_{k+1}), C) \to \operatorname{Ext}^{m+1}(d(X_{k}), C),$$

where C is an arbitrary S-module. Iterating these, we obtain a homomorphism:

(7.3)
$$\operatorname{Ext}^{m}(E,C) \to \operatorname{Ext}^{m+n}(A,C).$$

Similarly we obtain homomorphisms

(7.4)
$$\operatorname{Ext}^{m}(C,A) \to \operatorname{Ext}^{m+n}(C,E),$$

$$\operatorname{Tor}_{m+n}(D,A) \to \operatorname{Tor}_{m}(D,E)$$

where D is any right S-module. These are called the *iterated connecting homomorphisms* corresponding to (7.1).

Now suppose that (7.1) has been obtained from a projective resolution, X, of A, by setting $E = d(X_n)$. Equation (7.2) can be imbedded in an exact sequence

$$\operatorname{Ext}^{m}(X_{k},C) \to \operatorname{Ext}^{m}(d(X_{k+1}),C) \to \operatorname{Ext}^{m+1}(d(X_{k}),C) \to 0$$

and $\operatorname{Ext}^m(X_k,C)=(0)$ unless m=0. Hence (7.3) can be imbedded in an exact sequence

$$\operatorname{Ext}^{m}(X_{n-1},C) \to \operatorname{Ext}^{m}(d(X_{n}),C) \to \operatorname{Ext}^{m+n}(A,C) \to 0.$$

Similarly, (7.4) can be imbedded in an exact sequence

$$0 \to \operatorname{Tor}_{m+n}(D,A) \to \operatorname{Tor}_m(D,d(X_n)) \to \operatorname{Tor}_m(D,X_{n-1}).$$

Let $n \ge 1$, $m \ge 0$. For $h \in \operatorname{Hom}_S(d(X_n), B)$, where B is a left S-module, consider the compositions

where h^* is the map induced by h.

If h is the restriction to $d(X_n)$ of an element of $\operatorname{Hom}_S(X_{n-1},B)$, then the maps (7.5) are zero. Indeed, in this case h is a composition $d(X_n) \to X_{n-1} \to B$, so that the sequences (7.5) factor:

$$\operatorname{Ext}^{m}(B,C) \to \operatorname{Ext}^{m}(X_{n-1},C) \to \operatorname{Ext}^{m}(d(X_{n}),C) \to \operatorname{Ext}^{m+n}(A,C),$$

$$\operatorname{Tor}_{m+n}(D,A) \to \operatorname{Tor}_m(D,d(X_n)) \to \operatorname{Tor}_m(D,X_{n-1}) \to \operatorname{Tor}_m(D,B).$$

In these latter, the last three terms of the first and the first three terms of the second form exact sequences. Hence both compositions are zero.

Then, via the exact sequence

$$\operatorname{Hom}_{S}(X_{n-1},B) \to \operatorname{Hom}_{S}(d(X_{n}),B) \to \operatorname{Ext}^{n}(A,B) \to 0,$$

the mappings which send h to the sequences (7.5) define actions by elements of $\operatorname{Ext}^n(A,B)$ mapping $\operatorname{Ext}^m(B,C)$ into $\operatorname{Ext}^{m+n}(A,C)$ and $\operatorname{Tor}_m(D,A)$ into $\operatorname{Tor}_{m-n}(D,B)$, where we consider $\operatorname{Tor}_k = 0$ for k < 0. If $\beta \in \operatorname{Ext}^n(A,B)$, $\mu \in \operatorname{Ext}^m(B,C)$, and $\alpha \in \operatorname{Tor}_m(D,A)$, denote these actions by $\mu \to \beta \mu$ and $\alpha \to \alpha \beta$. We extend these definitions to the case n=0 in the natural fashion, so that, if $h \in \operatorname{Hom}_S(A,B)$, the homomorphisms $\mu \to h\mu$ and $\alpha \to \alpha h$ are the usual maps (denoted above by h^*) corresponding to h.

These definitions are independent of the choice of the resolution X. Indeed, let Y be another projective resolution of A. Let $\beta \in \operatorname{Ext}^n(A,B)$, and let h be an element of $\operatorname{Hom}(d(X_n),B)$ whose image under the iterated connecting homomorphism is β . Let $g:Y\to X$ be a map over the identity. We obtain commutative diagrams

where g^* is induced by g, and the right-hand vertical maps are the identity. We imbed the first of these in the commutative diagram

(7.6)
$$\begin{array}{ccc} \operatorname{Ext}^{m}(B,C) & \stackrel{h^{*}}{\to} & \operatorname{Ext}^{m}(d(X_{n}),C) \to \operatorname{Ext}^{m+n}(A,C) \\ \downarrow & & \downarrow & \downarrow \\ \operatorname{Ext}^{m}(B,C) & \stackrel{g^{*}(h))^{*}}{\longrightarrow} & \operatorname{Ext}^{m}(d(Y_{n}),C) \to \operatorname{Ext}^{m+n}(A,C) \end{array}$$

and from the second we conclude that $g^*(h)$ also maps onto β , so that the rows of (7.6) are the action by β defined by using X and Y, respectively. Hence the independence of the choice of resolution. A similar proof obtains for the action on Tor.

Let $f \in \text{Hom}_S(C',C)$, where C' is also a left S-module. Then the diagram

$$\operatorname{Ext}^{m}(B,C') \to \operatorname{Ext}^{m+n}(A,C')$$

$$\downarrow f^{*} \qquad f^{*} \downarrow$$

$$\operatorname{Ext}^{m}(B,C) \to \operatorname{Ext}^{m+n}(A,C)$$

is easily seen to be commutative, where the horizontal maps correspond to an element $\beta \in \operatorname{Ext}^n(A,B)$. As a special case, we obtain a commutative diagram

$$\operatorname{Hom}_{S}(B,B) \to \operatorname{Ext}^{n}(A,B)$$

 $\downarrow f^{*} \qquad \downarrow f^{*}$
 $\operatorname{Hom}_{S}(B,C) \to \operatorname{Ext}^{n}(A,C)$

where $f \in \text{Hom}_S(B,C)$. Remarking that the image of the identity homomorphism

in $\operatorname{Hom}_S(B,B)$ under the horizontal map is β , and that its image under f^* is f, we conclude that $\beta f = f^*(\beta)$. Note that by definition a similar statement holds for left operations by elements of degree 0; i.e., if $g \in \operatorname{Hom}_S(A,B)$ and $\mu \in \operatorname{Ext}^m(B,C)$, $g\mu = g^*(\mu)$.

PROPOSITION 7.1. Let X be an S-projective resolution of the left S-module A. Let $\beta \in \text{Ext }(A,B)$ be represented by $f \in \text{Hom}(X_n,B)$. Let Y be a projective resolution of B, and let

be commutative. Then if $\mu \in \operatorname{Ext}^m(B,C)$ is represented by $g \in \operatorname{Hom}_S(Y_m,C)$, $\beta \mu$ is represented in $\operatorname{Hom}_S(X_{m+n},C)$ by $(-1)^{mn}gf_{m+n}$; and if $n \leq m$, and $\alpha \in \operatorname{Tor}_m(D,A)$ is represented by $a \in D \otimes_S X_m$, $\alpha \beta$ is represented in $D \otimes_S Y_{m-n}$ by $(-1)^{(m+1)n}(1 \otimes f_m)(a)$.

Proof. Consider $\cdots \to X_{k+1} \to X_k \to \cdots \to X_n$, suitably renumbered, as a projective resolution of $d(X_n)$. The identity map defines a map of complexes,

and thus a map: $\operatorname{Ext}^m(d(X_n),B) \to \operatorname{Ext}^{m+n}(A,B)$. This map differs from the iterated connecting homomorphism by a multiplicative factor of $(-1)^t$, where t=mn+n(n+1)/2 [1, Proposition 7.1, p. 92]. Let $f'\in \operatorname{Hom}_S(d(X_n),B)$ be the element represented by f; i.e., let f=f'd, where d is the boundary map on X. Then we conclude from the above that f' is mapped by the iterated connecting homomorphism onto $(-1)^t\beta$, where t=n(n+1)/2. Since f=f'd, the maps f_k of (7.7) define a map over f' from a projective resolution of $d(X_n)$ to a projective resolution of B. Hence $f'^*(\mu) \in \operatorname{Ext}^m(d(X_n),C)$ is represented by $gf_{m+n} \in \operatorname{Hom}_S(X_{m+n},C)$. Therefore the image of $f'^*(\mu)$ in $\operatorname{Ext}^{m+n}(A,C)$ under the iterated connecting homomorphism is represented by $(-1)^{t+1}gf_{m+n}$, where $t_1=mn+n(n+1)/2$. Hence we conclude that $\beta\mu$ is represented by $(-1)^{t+t_1}gf_{m+n}=(-1)^{mn}gf_{m+n}$, which proves the first part of the proposition.

The map: $\operatorname{Tor}_m(D,A) \to \operatorname{Tor}_{m-n}(D,d(X_n))$ induced by (7.8) differs from the iterated connecting homomorphism by $(-1)^s$, where s = mn + n(n-1)/2. Using this, the second part of the proposition is proved in analogous fashion to the first.

PROPOSITION 7.2. Let $\beta \in \operatorname{Ext}(A,B)$, $\mu \in \operatorname{Ext}(B,C)$, $\alpha \in \operatorname{Ext}(C,E)$, and $\alpha' \in \operatorname{Tor}(D,A)$. Then $(\beta \mu)\alpha = \beta(\mu \alpha)$, and $(\alpha'\beta)\mu = \alpha'(\beta\mu)$.

The proof is straightforward, using Proposition 7.1.

It follows from Proposition 7.2 that under the operations defined in this section $\operatorname{Ext}(A,A)$ becomes a graded ring, and $\operatorname{Tor}(D,A)$ becomes a graded right $\operatorname{Ext}(A,A)$ -module.

8. Relations with other products. For $n \ge 1$, consider an S-exact sequence

$$(8.1) 0 \to B \to E_{n-1} \to \cdots \to E_0 \to A \to 0.$$

We may associate with such an *n*-fold extension of *B* over *A* its *characteristic* element; i.e., the image in $\operatorname{Ext}_S^n(A,B)$, under the iterated connecting homomorphism corresponding to (8.1), of the identity homomorphism in $\operatorname{Hom}_S(B,B)$. Let *X* be a projective resolution of *A*. Then we can find maps over the identity of *A* such that

$$0 \to d(X_n) \to X_{n-1} \to \cdots \to X_0 \to A \to 0$$

$$\downarrow h \downarrow \qquad \qquad \downarrow \qquad \downarrow$$

$$0 \to B \longrightarrow E_{n-1} \to \cdots \to E_0 \to A \to 0$$

commutes, whence we obtain a commutative diagram

$$\operatorname{Hom}_{S}(B,B) \longrightarrow \operatorname{Ext}_{S}^{n}(A,B)$$
 $h^{*}\downarrow \qquad \qquad \downarrow$
 $\operatorname{Hom}_{S}(d(X_{n}),B) \rightarrow \operatorname{Ext}_{S}^{n}(A,B)$

where the horizontal maps are iterated connecting homomorphisms and the right-hand vertical map is the identity. Remarking that the image under h^* of the identity homomorphism is h, we conclude from the latter that h may be used to define the action on $\operatorname{Ext}_S(B,C)$ and $\operatorname{Tor}^S(D,A)$ of the characteristic element of (8.1). Then from the commutative diagrams

we conclude that these actions coincide with the iterated connecting homomorphisms corresponding to (8.1).

Consider the diagram

$$\operatorname{Hom}_{S}(A,A) \to \operatorname{Ext}_{S}^{p}(C,A)$$

$$\downarrow \qquad \qquad \downarrow$$

$$\operatorname{Ext}_{S}^{n}(A,B) \to \operatorname{Ext}_{S}^{n+p}(C,B)$$

where the vertical maps are iterated connecting homomorphisms corresponding to (8.1), and the horizontal maps are operation by some element $\beta \in \operatorname{Ext}_S^p(C,A)$. It follows at once, from the same property for similar diagrams in which all maps are iterated connecting homomorphisms, that this diagram commutes or anti-commutes according as np is even or odd. Remarking that the image in

Ext_S(C,A) of the identity homomorphism is β , we conclude that right operation by the image of the identity homomorphism in Ext_Sⁿ(A,B) differs from the iterated connecting homomorphism corresponding to (8.1) by a multiplicative factor of $(-1)^{np}$. But it is easily shown, by induction on n, that the image in Ext_Sⁿ(A,B) of the identity homomorphism in Hom_S(A,A) differs from the characteristic element of (8.1) by a multiplicative factor of $(-1)^{r}$, where t = n(n+1)/2. (See [1, p. 308, Exercise 1] for the case n = 1.)

We have proved

PROPOSITION 8.1. The maps from $\operatorname{Ext}_S(B,C)$ to $\operatorname{Ext}_S(A,C)$ and from $\operatorname{Tor}^S(D,A)$ to $\operatorname{Tor}^S(D,B)$ corresponding to the characteristic element of (8.1) coincide with the iterated connecting homomorphism corresponding to (8.1). The map from $\operatorname{Ext}_S(C,A)$ to $\operatorname{Ext}_S^{n+p}(C,B)$ corresponding to the characteristic element of (8.1) differs from the iterated connecting homomorphism corresponding to (8.1) by a multiplicative factor of $(-1)^s$, where s=np+n(n+1)/2.

It is shown in [9] that associating with each n-fold extension (8.1) its characteristic element yields a one-to-one correspondence between natural equivalence classes of such n-fold extensions and $\operatorname{Ext}_S^n(A,B)$. In the light of this fact, the first sentence of Proposition 8.1 is seen to characterize the action by elements of $\operatorname{Ext}_S^n(A,B)$, if $n \ge 1$.

Given an m-fold extension $0 \to C \to D_{m-1} \to \cdots \to D_0 \to B \to 0$, we may use (8.1) to form an m+n-fold extension $0 \to C \to D_{m-1} \to \cdots \to D_0 \to E_{n-1} \to \cdots \to E_0$ $\to A \to 0$. An operation by elements of $\operatorname{Ext}^n(A,B)$ mapping $\operatorname{Ext}^m(B,C)$ into $\operatorname{Ext}^{m+n}(A,C)$ is thus defined in [9]. It clearly coincides with the iterated connecting homomorphism corresponding to (8.1). Hence, by Proposition 8.1, the product for Ext defined in [9] is the same as that defined in the previous section.(3)

Now let K be a commutative ring, and let R be a K-algebra. Let R^* be the anti-isomorphic ring to R, and let $S = R \otimes_K R^*$. Then every two-sided R-module becomes a left S-module, and vice-versa, in the usual fashion. $((r_1 \otimes r_2^*) \cdot m = r_1 \cdot m \cdot r_2)$ If A and B are S-modules, $A \otimes_R B$ becomes an S-module in the natural fashion. $((r_1 \otimes r_2^*)(a \otimes b) = r_1 a \otimes b r_2)$

Assume that R is K-projective. Then S is projective both as a left and a right R-module. Let X be an S-projective resolution of R. Since S is R-projective, so is X. Hence the homology of the complex $X \otimes_R X$ is $\operatorname{Tor}^R(R,R)$, which is zero in positive degrees. Since R is K-projective, $X \otimes_R X$ is S-projective. Hence $X \otimes_R X$ is again an S-projective resolution of $R \otimes_R R = R$. Hence, if A and B are S-modules, the canonical map from $\operatorname{Hom}_S(X,A) \otimes_R \operatorname{Hom}_S(X,B)$ to $\operatorname{Hom}_S(X \otimes_R X, A \otimes_R B)$ induces a product: $\operatorname{Ext}_S^n(R,A) \otimes_R \operatorname{Ext}_S^n(R,B) \to \operatorname{Hom}_S(X \otimes_R X, A \otimes_R B)$ induces a product: $\operatorname{Ext}_S^n(R,A) \otimes_R \operatorname{Ext}_S^n(R,B) \to \operatorname{Hom}_S(X \otimes_R X, A \otimes_R B)$

⁽³⁾ The correspondence between Extⁿ and n-fold extensions given here differs from that used in [9] by a factor of $(-1)^t$, where t = n(n+1)/2. Hence the product of [9] actually differs from those given here by $(-1)^{nm}$.

 $\operatorname{Ext}_S^{m+n}(R,A\otimes_R B)$. This is the product \vee , as given in [1, Exercise 2, p. 229], and used in [5]. Observe that, if R is commutative, \vee can be taken to be defined on $\operatorname{Ext}_S(R,A)\otimes_R\operatorname{Ext}_S(R,B)$.

There is a natural map $(h \to 1 \otimes h)$ of $\operatorname{Hom}_S(X,B)$ into $\operatorname{Hom}_S(A \otimes_R X, A \otimes_R B)$. The homology of $A \otimes_R X$ is $\operatorname{Tor}^R(A,R)$, which is zero in positive degrees. Hence $A \otimes_R X$ is an acyclic complex over $A \otimes_R R = A$, so that there is a uniquely defined map from the homology of $\operatorname{Hom}_S(A \otimes_R X, A \otimes_R B)$ to $\operatorname{Ext}_S(A, A \otimes_R B)$. Combining these two maps, we obtain one from $\operatorname{Ext}_S(R,B)$ into $\operatorname{Ext}_S(A, A \otimes_R B)$. Combining this in turn with the product defined in the previous section, we obtain a product:

$$(8.2) \quad \operatorname{Ext}_{S}(R,A) \times \operatorname{Ext}_{S}(R,B) \to \operatorname{Ext}_{S}(R,A) \times \operatorname{Ext}_{S}(A,A \otimes_{R}B) \to \operatorname{Ext}_{S}(R,A \otimes_{R}B).$$

PROPOSITION 8.2. Let S, R, A, B be as above. The product \vee coincides with the iteration (8.2)(4).

Proof. Referring to the preceding paragraph, let $Y = X \otimes_R X$. Define a map $\phi: Y \to X$ such that, if $x \in X_p$ and $y \in X_q$, $\phi(x \otimes y)$ is zero unless q = 0; and if q = 0, $\phi(x \otimes y) = x \varepsilon(y)$, where $\varepsilon: X_0 \to R$ is the augmentation map. Then ϕ is a map over the identity. Let $\beta \in \operatorname{Ext}_S^n(R, A)$ be represented by $f \in \operatorname{Hom}_S(X_n, A)$. Then β is also represented by $f \phi \in \operatorname{Hom}_S(Y_n, A)$.

Let Z be an S-projective resolution of A. Then there is a map $\rho: Z \to A \otimes_R X$ over the identity. If $\mu \in \operatorname{Ext}_S^m(R,B)$, denote by $\bar{\mu}$ the image of μ in $\operatorname{Ext}_S^m(A,A \otimes_R B)$ under the homomorphism used in (8.2). If μ is represented by $g \in \operatorname{Hom}_S(X_m,B)$, $\bar{\mu}$ is represented by $(1 \otimes g)\rho_m \in \operatorname{Hom}_S(Z_m,A \otimes_R B)$. Then if f_n,f_{n+1},\cdots are homomorphisms such that

is commutative, $\beta \bar{\mu}$ is represented by $(-1)^{mn}(1 \otimes g)\rho_m f_{m+n}$ (Proposition 7.1). Suppose f'_n , f'_{n+1} , ... are homomorphisms such that

$$(8.3) Y_{m+n} \to \cdots \to Y_{n+1} \to Y_n \\ \downarrow f'_{m+n} \qquad f'_{n+1} \downarrow \qquad f'_n \downarrow \\ A \otimes_R X_m \to \cdots \to A \otimes_R X_1 \to A \otimes_R X_0 \to A$$

is commutative. Then as usual the maps defined by the homomorphisms $\rho_{k-n}f_k$ and f'_k are homotopic; i.e., there are homomorphisms $h_k: Y_k \to A \otimes_R X_{k-n+1}$ such that, if $k \ge n$ and d denotes the differentiation on Y and X, $\rho_{k-n}f_k - f'_k = (1 \otimes d_{k-n+1})h_k + h_{k-1}d_k$ (where we take $h_{n-1} = 0$). Then $(1 \otimes g)\rho_m f_{m+n} - (1 \otimes g)f'_{m+n}$

⁽⁴⁾ The product \wedge of [1, Exercise 2, p. 229] can be expressed as an iteration: $\operatorname{Tor}^S(\operatorname{Hom}_R(A,B),R) \times \operatorname{Ext}_S(R,A) \to \operatorname{Tor}^S(\operatorname{Hom}_R(A,B),A) \to \operatorname{Tor}^S(B,R)$. Similar results can be obtained for the products \vee and \wedge of [1, pp. 205–206].

 $=(1\otimes g)((1\otimes d_{m+1})h_{m+n}+h_{m+n-1}d_{m+n})=(1\otimes gd_{m+1})h_{m+n}+(1\otimes g)h_{m+n-1}d_{m+n}.$ But g is a cocycle, so that $gd_{m+1}=0$. Hence $(1\otimes g)\rho_mf_{m+n}-(1\otimes g)f'_{m+n}=(1\otimes g)h_{m+n-1}d_{m+n},$ which is a coboundary. Hence $(-1)^{mn}(1\otimes g)f'_{m+n}$ also represents $\beta\bar{\mu}$.

In particular, we can define f'_{p+q} on $X_p \otimes_R X_q$ to be 0 unless p=n, and to be $(-1)^{nq} f \otimes 1$ in this case. Then (8.3) will be commutative. But then $(1 \otimes g) f'_{m+n}$ is $(-1)^{mn} f \otimes g$ on $X_n \otimes_R X_m$ and is 0 on $X_p \otimes_R X_q$ unless p=n, q=m. Hence $(-1)^{mn} (1 \otimes g) f'_{m+n}$ also represents $\beta \vee \mu$. This proves the proposition.

Note that, in the case A = B = R, Proposition 8.2 is the statement that the product \vee on $\operatorname{Ext}_S(R,R)$ coincides with the product defined in the previous section.

Now let R and S be commutative rings, and let $\varepsilon: S \to R$ be a ring surjection. Then ε defines on R the structure of a left S-module in the usual fashion. $(s \cdot r = \varepsilon(s)r)$. Let X be an S-projective resolution of R. Then $X \otimes_S X$ is still a projective complex over $R \otimes_S R = R$, so that there is a map over the identity from $X \otimes_S X$ to X which is unique up to homotopy; and a map is thus uniquely defined from the homology of $R \otimes_S X \otimes_S X$ to $\operatorname{Tor}^S(R,R)$. Then the natural map: $(R \otimes_S X) \otimes_S (R \otimes_S X) \to (R \otimes_S R) \otimes_S X \otimes_S X = R \otimes_S X \otimes_S X$ defines a product: $\operatorname{Tor}^S_n(R,R) \otimes_S \operatorname{Tor}^S_m(R,R) \to \operatorname{Tor}^S_{n+m}(R,R)$. This is the product \cap of [1, p. 211]. If $h: X \otimes_S X \to X$ is a map over the identity, and $\phi: (R \otimes_S X) \otimes_S (R \otimes_S X) \to R \otimes_S X \otimes_S X$ is the map above, \cap is induced on $R \otimes_S X$ by $(1 \otimes h)\phi$. Note that $\operatorname{Tor}^S_n(R,R) = R$ and that on it \cap and ring multiplication coincide.

A graded algebra is skew-symmetric in case, whenever a has degree n and b has degree m, $ab = (-1)^{nm}ba$. Tor^S(R,R) is skew-symmetric under \cap ; and, if R is commutative, so is $\operatorname{Ext}_S(R,R)$ under \vee . In addition, element of Tor_1 have square zero. An endomorphism D of degree k of a graded algebra is a derivation in case, whenever a has degree n, $D(ab) = D(a)b + (-1)^{nk}aD(b)$.

PROPOSITION 8.3. Let $\beta \in \operatorname{Ext}^1_S(R,R)$ with R and S as above. Then right module multiplication by β is a derivation of $\operatorname{Tor}^S(R,R)$.

Proof. Choose a projective resolution X of R, with $X_0 = S$ and with augmentation ε . Let $Y = X \otimes_S X$. Then we can find a map $h: Y \to X$ over the identity which is the natural isomorphism on $X_0 \otimes_S X$ and $X \otimes_S X_0$. Let $g \in \operatorname{Hom}_S(X_1,R)$ represent β . Let $f: X \to X$ be a map with degree -1 such that $\varepsilon f_1 = g$. Then if $\alpha \in \operatorname{Tor}_m^S(R,R)$ is represented by $a \in R \otimes_S X_m$, $\alpha\beta$ is represented by $(-1)^{m+1}(1 \otimes f_m)(a)$ (Proposition 7.1). Define $f': Y \to Y$ such that, if $x \in X_n$, $y \in X_m, f'(x \otimes y) = (-1)^m f(x) \otimes y + x \otimes f(y)$. Then fh and hf' are two maps from Y to X with degree -1. But by the naturality of h and the S-linearity of f they agree on f then by the usual argument they are homotopic. Hence f has a homotopic to f which suffices to prove this proposition.

Suppose that 2 has an inverse in R. Then $\operatorname{Tor}^{S}(R,R)$ and $\operatorname{Ext}_{S}(R,R)$ contain the images of the exterior R-algebras over $\operatorname{Tor}_{1}^{S}(R,R)$ and $\operatorname{Ext}_{S}^{1}(R,R)$, respectively,

under canonical algebra homomorphisms. From Proposition 8.3 we deduce that, on these images, the pairing between $Tor^{S}(R,R)$ and $Ext_{S}(R,R)$ agrees with the usual pairing between the exterior algebra over a module and the exterior algebra over its dual.

9. Contraction and Lie derivation on Tor. Let K be a commutative ring, and let R be a commutative K-projective K-algebra. Let $S = R \otimes_K R$. Referring to the two previous sections, we see that $\operatorname{Ext}_S(R,R)$ and $\operatorname{Tor}^S(R,R)$ are graded skew-commutative rings (and hence algebras over $\operatorname{Ext}_S^0(R,R) = R = \operatorname{Tor}_0^S(R,R)$), and that the latter is a graded right module for the former. Let I be the kernel of the canonical epimorphism $\varepsilon: S \to R$. Then $\operatorname{Ext}_S^1(R,R)$ is naturally isomorphic, via a connecting homomorphism, to $\operatorname{Hom}_S(I,R)$. If $h \in \operatorname{Hom}_S(I,R)$, the K-endomorphism μ of R defined by $\mu(x) = h(1 \otimes x - x \otimes 1)$ is a derivation. Conversely, if μ is a K-derivation of R, the homomorphism $h: S \to R$ defined by $h(x \otimes y) = x\mu(y)$ is S-linear when restricted to I. We have thus an R-module isomorphism between $\operatorname{Ext}_S^1(R,R)$ and the K-derivations of R. We continue to denote the latter by T_R . When convenient, we shall regard elements of T_R as elements of $\operatorname{Ext}_S^1(R,R)$ under this isomorphism, and vice-versa.

For $x \in R$, write $d(x) = 1 \otimes x \in S$. Then the latter, with its usual left R-module structure, is spanned by elements of the form yd(x), with $x, y \in R$. Let D_R be S modulo the R-module generated by elements of the form d(xy) - xd(y) - yd(x). Then D_R is the R-module of formal differentials of R. T_R is isomorphic to $Hom_R(D_R, R)$ via the pairing $(\mu, xd(y)) \to x\mu(y)$; and D_R is isomorphic to I/I^2 via the map that sends xd(y) onto the coset of $x \otimes y - xy \otimes 1$ [2]. $Tor_S^1(R,R)$ is naturally isomorphic, by means of a connecting homomorphism, with $R \otimes_S I = I/I^2$, so that the above pairing gives an isomorphism between $Ext_S^1(R,R)$ and $Hom_R(Tor_1^S(R,R),R)$ via the pairing $(\beta,\alpha) \to \alpha\beta$. More generally we define a homomorphism from $Ext_S^n(R,R)$ to $Hom_R(Tor_n^S(R,R),R)$ in a similar fashion. This homomorphism is the same as that used in [5].

We use the dual of this last homomorphism in the following way. For $\mu_1, \dots, \mu_n \in T_R$, considered as elements of $\operatorname{Ext}_S^1(R,R)$, and for $\alpha \in \operatorname{Tor}_n^S(R,R)$, define $\alpha^*(\mu_1, \dots, \mu_n) = \alpha \mu_1 \dots \mu_n \in R$. α^* is R-multilinear and, since $\operatorname{Ext}_S(R,R)$ is skew-symmetric, is (weakly) alternating in the sense that permuting the arguments changes the value of α^* by the sign of the permutation. There is a skew-symmetric "shuffle product" of alternating multilinear maps which is the usual wedge product for forms over a manifold and which is defined as follows: Let h and k be maps of degree m and n, respectively, and define

$$(h \wedge k)(\mu_1, \dots, \mu_{m+n}) = \sum |\sigma| h(\mu_{\sigma(1)}, \dots, \mu_{\sigma(m)}) k(\mu_{\sigma(m+1)}, \dots, \mu_{\sigma(m+n)})$$

where the sum is taken over all permutations σ of $1, 2, \dots, m+n$ such that $\sigma(1) < \dots < \sigma(m)$, and $\sigma(m+1) < \dots < \sigma(m+n)$, and where $|\sigma|$ is the sign of σ . Let $\alpha \in \operatorname{Tor}_m(R,R)$ and $\beta \in \operatorname{Tor}_n(R,R)$. Then, by Proposition 8.3,

$$(\alpha\beta)\mu_1\cdots\mu_{m+n}=((\alpha\mu_1)\beta+(-1)^m\alpha(\beta\mu_1))\mu_2\cdots\mu_{m+n}.$$

Using this, it is easy to prove by induction that $(\alpha\beta)^* = \alpha^* \wedge \beta^*$ for all $\alpha, \beta \in \operatorname{Tor}^S(R,R)$. Hence we have

THEOREM 9.1. Let R be a commutative K-projective K-algebra, and let $S = R \otimes_K R$. Then the map $\alpha \to \alpha^*$ defined above is an R-algebra homomorphism from $\operatorname{Tor}^S(R,R)$ into the R-algebra of the alternating differential forms on T_R .

Let $\mu \in T_R$. Let β_{μ} be the endomorphism of S such that $\beta_{\mu}(x \otimes y) = \mu(x) \otimes y + x \otimes \mu(y)$. Then β_{μ} is a derivation of S, and $(1, \mu)$ is a β_{μ} -pair on R (cf. §6). Denote the endomorphisms $\operatorname{Tor}^{S,\beta_{\mu}}(\mu,\mu)$ of $\operatorname{Tor}^{S}(R,R)$ and $\operatorname{Ext}_{S,\beta_{\mu}}(\mu,\mu)$ of $\operatorname{Ext}_{S}(R,R)$ by θ_{μ} .

As in §6, we easily show

$$\theta_{\mu}\theta_{\alpha} - \theta_{\alpha}\theta_{\mu} = \theta_{\mu,\alpha}$$

PROPOSITION 9.2. θ_u is a derivation of $Tor^{S}(R,R)$.

Proof. Let X be an S-projective resolution of R, and let $(1,\bar{\mu})$ be a β_{μ} -pair on X over $(1,\mu)$. Let $Y = X \otimes_S X$, and define $\bar{\mu}' : Y \to Y$ such that $\bar{\mu}'(x \otimes y) = \bar{\mu}(x) \otimes y + x \otimes \bar{\mu}(y)$. Let $h: Y \to X$ be a map over the identity. Then $(1,\bar{\mu}h)$ and $(1,h\bar{\mu}')$ are both β_{μ} -pairs over $(1,\mu)$ from Y to X and hence are homotopic. This suffices to prove the proposition.

In the sequel, we will need the following properties of the maps discussed in §6. Let $(1,\bar{\mu}): D \to D$ be a β -pair. To simplify notation, write, e.g., $((f,\mu),\bar{\mu})^*$ for $\operatorname{Ext}_{V,\beta}((f,\mu),\bar{\mu})$.

(a) Let $(g,\mu): A \to B$ be a β -pair. Let $f \in \operatorname{Hom}_{V}(B,C)$. Then $(fg,f\mu): A \to C$ is a β -pair, and

$$((g,\mu),\bar{\mu})^* \circ \operatorname{Ext}_{V}(f,C) = ((fg,f\mu),\bar{\mu})^*.$$

Similarly, if $f \in \text{Hom}_{V}(A,B)$, $(g,\mu): B \to C$,

$$\operatorname{Ext}_{\nu}(f,C) \circ ((g,\mu),\bar{\mu})^* = ((gf,\mu f),\bar{\mu})^*.$$

(b) If in

$$0 \longrightarrow A \longrightarrow A' \longrightarrow A'' \longrightarrow 0$$

$$(f,\mu)\downarrow \qquad (f',\mu')\downarrow \qquad (f'',\mu'')\downarrow$$

$$0 \longrightarrow B \longrightarrow B' \longrightarrow B'' \longrightarrow 0$$

the rows are V-exact, the vertical maps are β -pairs, and the diagram commutes, then

$$\begin{array}{ccccc} \operatorname{Ext}^n_V(B,C) & \longrightarrow & \operatorname{Ext}^{n+1}_V(B'',C) \\ & \downarrow ((f,\mu),\bar{\mu})^* & & \downarrow ((f'',\mu''),\bar{\mu})^* \\ \operatorname{Ext}^n_V(A,C) & \longrightarrow & \operatorname{Ext}^{n+1}_V(A'',C) \end{array}$$

commutes, where the rows are the connecting homomorphisms.

(c) If (f,μ') , $(f,\mu): A \to B$ are β -pairs, then $\mu' - \mu$ is V-linear, and

$$((f,\mu),\bar{\mu})^* - ((f,\mu'),\bar{\mu})^* = \operatorname{Ext}_{\nu}(\mu' - \mu,C).$$

We will also need the analogous statements for Tor. (a) is a special case of the composition law given in [6]. The proof of (b) is analogous to the proof of the similar statement for V-linear homomorphisms. (c) is immediate.

PROPOSITION 9.3. Let $\alpha' \in \operatorname{Ext}_S(R,R)$. Let $\alpha \in \operatorname{Tor}^S(R,R)$ or $\operatorname{Ext}_S(R,R)$, and $\mu \in T_R$. Then $\theta_{\mu}(\alpha \alpha') = \theta_{\mu}(\alpha) \alpha' + \alpha \theta_{\mu}(\alpha')$.

We prove the proposition for $\alpha' \in Ext$. The proof for Tor is similar. We assume without loss of generality that $\alpha' \in Ext^n$, $\alpha \in Ext^m$.

Let X be an S-projective resolution of R, and let $(1,\bar{\mu})$ be a β_{μ} -pair on X over $(1,\mu)$. Let $f \in \operatorname{Hom}_S(d(X_n),R)$ map onto α' under the iterated connecting homomorphism. Write $f^* = \operatorname{Ext}_S(f,R)$, so that $\alpha\alpha'$ is the image under the iterated connecting homomorphism of $f^*(\alpha) \in \operatorname{Ext}_S(d(X_n),R)$. Let the restriction of $\bar{\mu}$ to $d(X_n)$ also be denoted by $\bar{\mu}$, so that by (b)

$$\begin{array}{ccc} \operatorname{Ext}_S^m(d(X_n),R) & \to & \operatorname{Ext}_S^{m+n}(R,R) \\ & \downarrow (\bar{\mu},\mu)^* & & \downarrow (\mu,\mu)^* = \theta_\mu \\ \operatorname{Ext}_S^m(d(X_n),R) & \to & \operatorname{Ext}_S^{m+n}(R,R) \end{array}$$

is commutative. We conclude from this that $\theta_{\mu}(\alpha \alpha')$ is the image under the iterated connecting homomorphism of $(\bar{\mu}, \mu)^*(f^*(\alpha))$.

Again, we obtain from (b) the commutativity of

$$\begin{array}{ccc} \operatorname{Hom}_{S}(d(X_{n}),R) & \to & \operatorname{Ext}_{S}^{n}(R,R) \\ & & \downarrow (\bar{\mu},\mu)^{*} & & \downarrow \theta_{\mu} \\ \operatorname{Hom}_{S}(d(X_{n}),R) & \to & \operatorname{Ext}_{S}^{n}(R,R) \end{array}$$

whence we conclude that $\alpha\theta_{\mu}(\alpha')$ is the image under the iterated connecting homomorphism of $((\bar{\mu},\mu)^*(f))^*(\alpha)$. Finally, $\theta_{\mu}(\alpha)\alpha'$ is the image of $f^*((\mu,\mu)^*(\alpha))$.

By (a), $f^*((\mu,\mu)^*(\alpha)) = ((f,\mu f),\mu)^*(\alpha)$, and $(\bar{\mu},\mu)^*(f^*(\alpha)) = ((f,f\bar{\mu}),\mu)^*$. Hence, by (c), $(\bar{\mu},\mu)^*(f^*(\alpha)) - f^*((\mu,\mu)^*(\alpha)) = (\mu f - f\bar{\mu})^*(\alpha) = ((\bar{\mu},\mu)^*f)^*(\alpha)$. This proves the proposition. We have the immediate

COROLLARY. θ_{μ} is a derivation of $\operatorname{Ext}_{S}(R,R)$.

Let $\mu' \in T_R$, considered as an element of $\operatorname{Ext}_S^1(R,R)$. Let $h_{\mu'}$ be the corresponding element of $\operatorname{Hom}_S(I,R)$. We conclude from (b) and the commutative and exact diagram

$$0 \to I \to S \to R \to 0$$

$$\downarrow \qquad \downarrow \beta_{\mu} \qquad \downarrow \mu$$

$$0 \to I \to S \to R \to 0$$

that

$$\begin{array}{ccc} \operatorname{Hom}_{S}(I,R) & \to & \operatorname{Ext}_{S}^{1}(R,R) \\ & \downarrow (\beta_{\mu},\mu)^{*} & \downarrow \theta_{\mu} \\ \operatorname{Hom}_{S}(I,R) & \to & \operatorname{Ext}_{S}^{1}(R,R) \end{array}$$

is commutative. Hence $\theta_{\mu}(\mu')$ corresponds to $(\beta_{\mu},\mu)^*(h_{\mu'}) = \mu h_{\mu'} - h_{\mu'}\beta_{\mu}$. $(\mu h_{\mu'} - h_{\mu'}\beta_{\mu})(1 \otimes x - x \otimes 1) = \mu \mu'(x) - h_{\mu'}(1 \otimes \mu(x) - \mu(x) \otimes 1) = \mu \mu'(x) - \mu'\mu(x) = [\mu,\mu'](x)$. Hence on $\operatorname{Ext}^1(R,R)$

$$\theta_{\mu}(\mu') = [\mu, \mu'].$$

Remark also that on $\operatorname{Ext}^0(R,R) = R = \operatorname{Tor}_0(R,R), \theta_{\mu} = \mu$.

Combining Proposition 9.3 with the subsequent remarks, we conclude that, for $\alpha \in \text{Tor}_n(R,R)$

$$(9.1) \qquad \theta_{\mu}(\alpha)^*(\mu_1, \cdots, \mu_n) = \mu(\alpha^*(\mu_1, \cdots, \mu_n)) - \sum_{i=1}^n \alpha^*(\mu_1, \cdots, [\mu, \mu_i], \cdots, \mu_n).$$

Hence θ_u is analogous to the Lie derivation on differential forms.

For $\mu \in T_R$, considered as an element of $\operatorname{Ext}^1(R,R)$, define an endomorphism c_{μ} of $\operatorname{Tor}(R,R)$ by

$$c_n(\alpha) = \alpha \mu$$
.

Then c_{μ} is a derivation, by Proposition 8.3. It is immediate that, if $\alpha \in \operatorname{Tor}_{n}^{S}(R,R)$,

$$c_{\mu}(\alpha)^*(\mu_1,\dots,\mu_{n-1}) = \alpha^*(\mu,\mu_1,\dots,\mu_{n-1})$$

so that c_{μ} is analogous to the usual contraction operator on differential forms. As a special case of Proposition 9.3 we obtain the familiar relationship

$$\theta_{\mu}c_{\mu'}-c_{\mu'}\theta_{\mu}=c_{[\mu,\mu']}.$$

10. Formal differentiation on $\operatorname{Tor}^{S}(R,R)$. We shall be concerned in this section with the existence of an endomorphism d of $\operatorname{Tor}^{S}(R,R)$, of degree 1, which plays the role of the differentiation of differential forms. One of the properties which such an endomorphism should possess is the usual one that

$$(10.1) c_{\mu}d + dc_{\mu} = \theta_{\mu}.$$

If d satisfies (10.1) and if $\alpha \in \text{Tor}_n^S(R,R)$,

$$d(\alpha)^*(\mu_1,\cdots,\mu_{n+1})=(c_{\mu_1}(d(\alpha)))^*(\mu_2,\cdots,\mu_{n+1})=(\theta_{\mu_1}(\alpha)-d\,(c_{\mu_1}(\alpha)))^*(\mu_2,\cdots,\mu_{n+1}).$$

Using this and (9.1), it is easy to prove by induction on n

PROPOSITION 10.1. If d is an endomorphism of $\operatorname{Tor}^{S}(R,R)$ of degree 1, satisfying (10.1), and if D denotes the usual differentiation operator for differential forms (Equation (4.3)), then $d(\alpha)^* = D(\alpha^*)$ for all $\alpha \in \operatorname{Tor}^{S}(R,R)$.

In what follows, we shall define such a d on $\operatorname{Tor}^{S}(R,R)$, by defining it on a particular complex whose homology is $\operatorname{Tor}^{S}(R,R)$. It will be an extension of the canonical derivation of R into the formal differentials, will have square zero and will be a derivation of $\operatorname{Tor}^{S}(R,R)$. Because we do not have a functorial definition, the verification that d possesses the requisite properties involves a good deal of explicit computation, and the extent to which these properties determine d remains undetermined.

We shall proceed under the assumption that R is K-projective. This could be avoided by replacing Tor S and Ext_S by the relative functors $\operatorname{Tor}^{(S,K)}$ and $\operatorname{Ext}_{(S,K)}$ throughout §§7–9, since the resolution of R that we will use in the sequel is an (S,K)-projective resolution which is S-projective whenever R is K-projective. This replacement would require only notational changes, and the remark that the definitions and results of [6] apply equally well to the relative functors.

Let X_n be the tensor product over K of n+2 copies of R. Let X_n have the S-module structure such that

$$(x \otimes y) \cdot (x_0 \otimes \cdots \otimes x_{n+1}) = xx_0 \otimes x_1 \otimes \cdots \otimes x_n \otimes x_{n+1}y.$$

For $n \ge 1$, define a boundary operator $\Delta: X_n \to X_{n-1}$ such that

$$\Delta(x_0 \otimes \cdots \otimes x_{n+1}) = \sum_{i=0}^n (-1)^i x_0 \otimes \cdots \otimes x_i x_{i+1} \otimes \cdots \otimes x_{n+1}.$$

Define the augmentation from $X_0 = S$ to R to be ε , the canonical epimorphism. Then X is an S-complex over R. It has a homotopy sending $x_0 \otimes \cdots \otimes x_{n+1}$ onto $1 \otimes x_0 \otimes \cdots \otimes x_{n+1}$. Since R is K-projective, each X_n can be written as the tensor product of S with a K-projective module. Hence X is an S-projective resolution of R. This is the standard resolution of [1, p. 174].

There is a map over the identity from $X \otimes_S X$ to X such that

(10.2)
$$(x_0 \otimes \cdots \otimes x_{n+1}) \otimes (y_0 \otimes \cdots \otimes y_{m+1})$$

$$\rightarrow \sum \pm x_0 y_0 \otimes z_1 \otimes \cdots \otimes z_{n+m} \otimes x_{n+1} y_{m+1}$$

where the sum is taken over all permutations z_1, \dots, z_{n+m} of $x_1, \dots x_n, y_1, \dots, y_m$ such that x_i precedes x_j whenever i < j and similarly for the y's, and where the sign of each term is taken as that of the corresponding permutation. This map makes X into an associative and skew-symmetric algebra, on which the boundary is a derivation [1, pp. 218-219].

For $\mu \in T_R$, let \bar{c}_{μ} be the endomorphism of degree -1 of X such that

$$\bar{c}_{\mu}(x_0 \otimes \cdots \otimes x_{n+1}) = x_0 \mu(x_1) \otimes x_2 \otimes \cdots \oplus x_{n+1}.$$

Then \bar{c}_{μ} anti-commutes with the boundary. Further, if $h_{\mu} \in \text{Hom}_{S}(I,R)$ is the element corresponding to μ , i.e., if h_{μ} is the restriction to I of the homomorphism

from S to R sending $x \otimes y$ onto $x\mu(y)$, then $\varepsilon \bar{c}_{\mu} = -h_{\mu}\Delta$ on X_1 . Hence, by Proposition 7.1, the endomorphism $1 \otimes \bar{c}_{\mu}$ of $R \otimes_S X$ induces c_{μ} on $\operatorname{Tor}^S(R,R)$. Again, for $\mu \in T_R$, let $\bar{\mu}$ be the endomorphism of degree 0 of X such that

(10.3)
$$\bar{\mu}(x_0 \otimes \cdots \otimes x_{n+1}) = \sum_{i=0}^{n+1} x_0 \otimes \cdots \otimes \mu(x_i) \otimes \cdots \otimes x_{n+1}.$$

Then $(1,\bar{\mu})$ is a β_{μ} -pair over $(1,\mu)$.

Let Y_n be the tensor product over K of n+1 copies of R, with the R-module structure such that

$$x \cdot (x_0 \otimes \cdots \otimes x_n) = xx_0 \otimes x_1 \otimes \cdots \otimes x_n$$

We define auxiliary endomorphisms α , p, $f_{\mu,i}$ and Δ_k of degree 1, 0, 0, and -1, respectively, such that, on Y_n ,

$$\alpha(x_0 \otimes \cdots \otimes x_n) = 1 \otimes x_0 \otimes \cdots \otimes x_n,$$

$$p(x_0 \otimes \cdots \otimes x_n) = (-1)^n x_n \otimes x_0 \otimes \cdots \otimes x_{n-1},$$

$$f_{\mu,i}(x_0 \otimes \cdots \otimes x_n) = x_0 \otimes \cdots \otimes \mu(x_i) \otimes \cdots \otimes x_n,$$

$$\Delta_k(x_0 \otimes \cdots \otimes x_n) = (-1)^k x_0 \otimes \cdots \otimes x_k x_{k+1} \otimes \cdots \otimes x_n \qquad (k < n),$$

$$\Delta_n(x_0 \otimes \cdots \otimes x_n) = (-1)^n x_0 x_n \otimes x_1 \otimes \cdots \otimes x_{n-1},$$

where $\mu \in T_R$. Remark that $p^{n+1} = 1$.

The homomorphism from $R \otimes_S X_n$ to Y_n such that

$$x \otimes (x_0 \otimes \cdots \otimes x_{n+1}) \to xx_0 x_{n+1} \otimes x_1 \otimes \cdots \otimes x_n$$

is an R-module isomorphism. The boundary map induced on Y_n is given by

$$\Delta = \sum_{j=0}^{n} \Delta_{j}.$$

The homology of Y under this boundary is $Tor^{S}(R,R)$. The product induced on Y by (10.2) is such that

$$(x_0 \otimes \cdots \otimes x_n) \otimes (y_0 \otimes \cdots \otimes y_m) \rightarrow \sum \pm x_0 y_0 \otimes z_1 \otimes \cdots \otimes z_{n+m}$$

where the z's and the sign are determined as before. Y thus becomes a skew-symmetric R-algebra, with a product that induces \bigcirc on $\operatorname{Tor}^{S}(R,R)$.

If we also denote by θ_{μ} the endomorphism of Y obtained from (10.3) and inducing θ_{μ} on $\operatorname{Tor}^{S}(R,R)$, it is easy to verify that on Y_{n}

$$\theta_{\mu} = \sum_{j=0}^{n} f_{\mu,j}.$$

Again, if we also denote by c_{μ} the endomorphism of Y corresponding to $1 \otimes \bar{c}_{\mu}$, it is clear that

$$c_{\mu}(x_0 \otimes \cdots \otimes x_n) = x_0 \mu(x_1) \otimes x_2 \otimes \cdots \otimes x_n$$

It is easily verified that, already on Y, θ_{μ} and c_{μ} are derivations, and

$$\theta_{\mu}c_{\mu'}-c_{\mu'}\theta_{\mu}=c_{\lceil\mu,\mu'\rceil}.$$

Now define an endomorphism \bar{d} of Y of degree 1 such that on Y_n

$$\bar{d} = \sum_{j=0}^{n} \alpha p^{j}.$$

On Y_n ,

$$\Delta_k p = p\Delta_{k-1} \quad (k > 0), \qquad \Delta_k \alpha = -\alpha \Delta_{k-1} \quad (0 < k \le n),$$

$$(10.4) \Delta_0 p = \Delta_n, \Delta_0 \alpha = 1,$$

$$\Delta_{n+1}\alpha = -p.$$

Hence

$$\Delta p = p\Delta + (1-p)\Delta_n,$$

$$\Delta \alpha + \alpha \Delta = 1 - p + \alpha \Delta_n.$$

From (10.4) and (10.5) it follows that

(10.7)
$$\Delta p^{k} = \sum_{j=0}^{k-1} (1-p)p^{k-1}\Delta_{n-j} + p^{k}\Delta \qquad (0 \le k \le n).$$

Using (10.6) and (10.7), a long but straightforward computation yields

$$\Delta d + d\Delta = 0.$$

Hence d induces a map on $Tor^{S}(R,R)$. We will show first that the latter satisfies (10.1). To this end, we define

$$f_{\mu} = \sum_{i=1}^{n} \sum_{j=0}^{n-i} \alpha p^{j} f_{\mu,i}.$$

We remark that on Y_n , if $i \ge 1$,

(10.8)
$$f_{\mu,i}\Delta_{j} = \mathbb{I} \begin{cases} \Delta_{j}f_{\mu,i} & (i < j), \\ \Delta_{i}(f_{\mu,i} + f_{\mu,i+1}) & (i = j), \\ \Delta_{j}f_{\mu,i+1} & (i > j). \end{cases}$$

In what follows, much of the computation required to pass from one step to the next is long, but all is straightforward. Using (10.8), we find that on Y_n

(10.9)
$$\sum_{i=1}^{n-k-1} f_{\mu,i} \Delta = \Delta \sum_{i=1}^{n-k} f_{\mu,i} - \sum_{i=n-k}^{n} \Delta_{i} f_{\mu,n-k} - \Delta_{0} f_{\mu,1}$$

and, using (10.7), that

$$\Delta \sum_{i=1}^{n} \sum_{k=0}^{n-i} p^{k} f_{\mu,i} = \sum_{k=0}^{n-1} p^{k} \Delta \sum_{i=1}^{n-k} f_{\mu,i} + \sum_{i=1}^{n} \sum_{j=0}^{n-i-1} (p^{j} - p^{n-i}) \Delta_{n-j} f_{\mu,i}.$$

Combining this with (10.9) and using the fact that $\Delta_0 f_{\mu,1} = c_{\mu}$, we obtain

(10.10)
$$\Delta \sum_{i=1}^{n} \sum_{k=0}^{n-i} p^{k} f_{\mu,i} = \sum_{i=1}^{n-1} \sum_{k=0}^{n-1-i} p^{k} f_{\mu,i} \Delta + \sum_{i=1}^{n} \sum_{k=i}^{n} p^{n-k} \Delta_{k} f_{\mu,i} + \sum_{k=0}^{n-1} p^{k} c_{\mu}.$$

Now, using (10.6),

(10.11)
$$\Delta f_{\mu} = \sum_{i=1}^{n} (1 - p^{n-i+1}) f_{\mu,i} + \alpha (\Delta_n - \Delta) \sum_{i=1}^{n} \sum_{j=0}^{n-i} p f_{\mu,i}$$

and from (10.4)

(10.12)
$$\Delta_n \sum_{i=1}^n \sum_{j=0}^{n-i} p^j f_{\mu,i} = \sum_{i=1}^n \sum_{k=i}^n p^{n-k} \Delta_k f_{\mu,i}.$$

Finally, using that $c_{\mu}\alpha = f_{\mu,0}$ and $f_{\mu,0}p^j = p^j f_{\mu,n-j+1}$ for $1 \le j \le n+1$, we obtain

(10.13)
$$c_{\mu}\bar{d} = \sum_{i=0}^{n} p^{n-i+1} f_{\mu,i}.$$

Combining (10.10) through (10.13) yields

$$c_{\mu}\bar{d} + \Delta f_{\mu} = \theta_{\mu} - f_{\mu}\Delta - \bar{d}c_{\mu}.$$

Hence the map induced by d satisfies (10.1).

Next we will show that \bar{d} induces a derivation on $\operatorname{Tor}^{S}(R,R)$. To this end we define a bilinear function on X by defining $h: X_{n} \times X_{m} \to X_{n+m+2}$. h is defined so that

$$h((x_0 \otimes \cdots \otimes x_n), (y_0 \otimes \cdots \otimes y_m)) = \sum \pm 1 \otimes z_1 \otimes \cdots \otimes z_{n+m+2}$$

where the sum ranges over all permutations z_1, \dots, z_{n+m+2} of

$$x_0, y_0, x_1, \dots, x_n, y_1, \dots, y_m$$

satisfying

(10.14) The order of the x's is a cyclic permutation of x_0, \dots, x_n , and similarly for the y's; and x_0 precedes y_0 ,

and where the sign of each term of the sum is the sign of the corresponding permutation.

For brevity, write $a = x_0 \otimes \cdots \otimes x_n$, $b = y_0 \otimes \cdots \otimes y_m$. Then, if $1 \le k \le n + m + 1$, $\Delta_k h(a,b)$ is a sum of terms of the form

$$(10.15) \pm (-1)^k 1 \otimes z_1 \otimes \cdots \otimes z_k z_{k+1} \otimes \cdots \otimes z_{n+m+2}.$$

If $z_k = x_i$ and $z_{k+1} = y_j$, then, unless i = j = 0, $z_1, \dots, z_{k-1}, z_{k+1}, z_k, z_{k+2}, \dots, z_{n+m+2}$ also satisfies (10.14), and Δ_k of this term cancels (10.15). The same argument applies if $z_k = y_i$ and $z_{k+1} = x_j$.

The terms of (10.15) for which $z_k = x_i$ and $z_{k+1} = x_{i+1}$ (or $z_{k+1} = x_0$ if i = n) are precisely the terms of $h(\Delta(a),b)$. The similar terms for y's comprise $(-1)^n h(a,\Delta(b))$. Those for which $z_k = x_0$ and $z_{k+1} = y_0$ are the terms of -d(ab). Hence

(10.16)
$$\sum_{k=1}^{n+m+1} \Delta_k h(a,b) - h(\Delta(a),b) - (-1)^n h(a,\Delta(b)) = -\bar{d}(a,b).$$

If $\pm 1 \otimes z_1 \otimes \cdots \otimes z_{n+m+2}$ is a term of h(a,b), and if $z_{n+m+2} \neq y_0$, then $\pm 1 \otimes z_{n+m+2} \otimes z_1 \otimes \cdots \otimes z_{n+m+1}$ is also a term of h(a,b), and

$$\Delta_{n+m+2}(\pm 1 \otimes z_1 \otimes \cdots \otimes z_{n+m+2}) + \Delta_0(\pm 1 \otimes z_{n+m+2} \otimes z_1 \otimes \cdots \otimes z_{n+m+1}) = 0.$$

Similarly, if $z_1 \neq x_0$, then $\pm 1 \otimes z_2 \otimes \cdots \otimes z_{n+m+2} \otimes z_1$ is also a term of h(a,b), and

$$\Delta_0(\pm 1 \otimes z_1 \otimes \cdots \otimes z_{n+m+2}) + \Delta_{n+m+2}(\pm 1 \otimes z_2 \otimes \cdots \otimes z_{n+m+2} \otimes z_1) = 0.$$

Hence

$$(\Delta_0 + \Delta_{n+m+2})h(a,b) = \sum \pm x_0 \otimes z_2 \otimes \cdots \otimes z_{n+m+2} - \sum \pm y_0 \otimes z_1 \otimes \cdots \otimes z_{n+m+1}$$

where the sums run over all terms such that $x_0, z_2, \dots, z_{n+m+2}$ (respectively $z_1, \dots, z_{n+m+1}, y_0$) are permutations satisfying (10.14), and where the sign is the sign of the permutation $x_0, y_0, x_1, \dots, x_n, y_1, \dots, y_m \to x_0, z_2, \dots, z_{n+m+2}$ (respectively $\to y_0, z_1, \dots, z_{n+m+1}$). Hence

$$(10.17) \qquad (\Delta_0 + \Delta_{n+m+2})h(a,b) = (-1)^n a \, \bar{d}(b) + \bar{d}(a)b.$$

(10.16) and (10.17) yield

$$\bar{d}(a)b + (-1)^n a \bar{d}(b) - \bar{d}(ab) = \Delta h(a,b) - h(\Delta(a),b) - (-1)^n h(a,\Delta(b)).$$

Hence d induces a derivation on $Tor^{S}(R,R)$.

It is easy to verify that, if $x \in R$, the image of the formal differential d(x) in $\operatorname{Tor}_1^S(R,R)$, under the isomorphism defined in §9, is represented by $d(x) = 1 \otimes x \in Y_1$. Hence, on $\operatorname{Tor}_0^S(R,R) = R$, d induces the homomorphism corresponding to formal differentiation.

Define

$$d = (1 - p)d.$$

Then, using (10.6) and the fact that, on $Y_n, \Delta_{n+1}\alpha = -p$, we obtain

$$d - d = \Delta \alpha d - \alpha d \Delta.$$

Hence d and \bar{d} induce the same endomorphism of Tor(R,R). Since $\sum_{i=0}^{n+1} p^i (1-p) = 0$ on Y_{n+1} , $d^2 = 0$. We have shown

THEOREM 10.2. There is an endomorphism of degree 1 and square zero on the complex Y such that the endomorphism thereby induced on $\operatorname{Tor}^{S}(R,R)$ is a derivation which extends the formal differentiation from R to $\operatorname{Tor}^{S}_{1}(R,R)$, and which satisfies equation (10.1) above.

There is on $E(D_R)$ a uniquely defined derivation d of degree 1 and square zero, which extends the formal differentiation from R to D_R . Indeed, by the usual properties of an exterior algebra, we have only to remark that such a d can be defined uniquely on D_R ; the definition being such that d(xd(y)) = d(x)d(y). There is also, for each $\mu \in T_R$, a uniquely defined derivation θ_μ of degree 0 such that, on R, $\theta_\mu = \mu$ and, on D_R , $\theta_\mu(xd(y)) = \mu(x)d(y) + xd(\mu(y))$, and a uniquely defined derivation c_μ of degree -1 such that, on D_R , $c_\mu(xd(y)) = x\mu(y)$.

The isomorphism from D_R onto $\operatorname{Tor}^S(R,R)$ extends canonically to an algebra homomorphism $h: E(D_R) \to \operatorname{Tor}^S(R,R)$. We have remarked above that hd = dh on R. Since d has square zero and is a derivation on $\operatorname{Tor}^S(R,R)$ we must also have hd = dh on D_R . Hence, since d is a derivation on $\operatorname{Tor}(R,R)$, we have the commutativity relation on all of $E(D_R)$. Similarly, $h\theta_\mu = \theta_\mu h$ and $hc_\mu = c_\mu h$, since the endomorphisms are all derivations and agree on degrees 0 and 1.

BIBLIOGRAPHY

- 1. H. Cartan and S. Eilenberg, *Homological algebra*, Princeton Univ. Press, Princeton, N. J., 1956.
 - 2. P. Cartier, Dérivations dans les corps, École Norm. Sup., Paris, 1956, Exp. 13.
 - 3. J. Herz, Pseudo-algèbres de Lie, C. R. Acad. Sci. Paris 236 (1953), 1935-1937.
 - 4. G. Hochschild, Relative homological algebra, Trans. Amer. Math. Soc. 82 (1956), 246-269.
- 5. G. Hochschild, B. Kostant and A. Rosenberg, Differential forms on regular affine algebras, Trans. Amer. Math. Soc. 102 (1962), 383-408.
- 6. G. Hochschild and A. Rosenberg, *Operations on Tor and Ext*, Proc. Amer. Math. Soc. 13 (1962), 88-92.
 - 7. I. Kaplansky, Projective modules, Ann. of Math. (2) 68 (1958), 372-377.
- 8. R. Palais, *The cohomology of Lie rings*, pp. 130-137, Proc. Sympos. Pure Math., Vol. III, Amer. Math. Soc., Providence, R. I., 1961.
- 9. N. Yoneda, On the homology theory of modules, J. Fac. Sci. Univ. Tokyo Sect. I 8 (1954), 193-227.

COLUMBIA UNIVERSITY,
NEW YORK, NEW YORK