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1. Introduction. Let A be the closed spherical ball in E" centered at the origin 0,

and with radius one, B the closed ball centered at O with radius one-half, and C

the closed ball centered at O with radius two. The Generalized Schoenflies Theorem

states that, if h is a homeomorphism of Cl (C — B) into S", then h(BdA) is tame

in S" (the closure of either component of S" — h(BdA) is a closed n-cell) [5].

One is naturally led to the following question : if h is a homeomorphism of C\(A—B)

into S", is the closure of the component of S" — h(BdA) which contains n(BdB)

a closed n-cell? This question is answered affirmatively by Theorem 1 and should

be listed as a corollary to the Generalized Schoenflies Theorem.

Let D be the closed ball in E", centered at (0,0,-",0, — 1) with radius two.

Two other types of embeddings of Bd.4 in S", n > 3, are considered in §2,

(1) the embedding homeomorphism h can be extended to a homeomorphism of

Cl(£> — B) into S" such that the extension is semi-linear on each finite polyhedron

in the open annulus Int (A — B), and (2) h can be extended to a homeomorphism

of C1(B — A) into S" such that the extension is semi-linear in a deleted neigh-

borhood of (0, 0, ■ ■■,(), 1) (see Definition 1). Theorem 4 strongly suggests that,

for an embedding of type (1), h(BdA) is tame in S". An embedding of this type

corresponds to the three dimensional case in which h(BdA) is locally polyhedral

except at one point.

In §3, three methods of constructing 3-spheres in S4 from 2-spheres in S3 are

considered: (1) suspension of a 2-sphere in S3, (2) rotation of a 2-cell in S3 about

the plane of its boundary, and (3) capping a cylinder over a 2-sphere in S3. The

construction methods in cases (1) and (2) were introduced by Artin [2] and

have been used by him and by Andrews and Curtis [1] to construct 2-spheres in

S4 from 1-spheres in S3. Their techniques may be applied directly to establish

isomorphism theorems relating the fundamental groups of the complements of

the constructed 3-spheres and the fundamental groups of the corresponding

complements of the given 2-spheres. Thus, methods (1) and (2) may be used to

construct wild (nontame) 3-spheres in S4. Method (2) is also used to construct
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a 3-sphere in S4, one complementary domain of which is simply connected but

is not an open 4-cell. The third method is used to construct a 3-sphere in

S4 such that one complementary domain has a closure which is a closed 4-cell,

and the other complementary domain is an open 4-cell but its closure is not a

closed 4-cell.

2. Some embeddings of S"_1inS". The reader is referred to [5] for the

definitions of inverse set and cellular set.

Theorem 1. Let h be a homeomorphism ofC\(A - B) into S" and let G be the

component of S" — h(BdA) which contains h(BdB).   Then C1G is a closed n-cell

Proof. Let G' be the component of S" - h(BdB) which does not contain

h(BdA). We first observe that C1G' is a cellular subset of G. For, if B¡ is the closed

ballin£", centered at O with radius 1/2 + l/(i+2), i = l,2,---,and Gt is the

component of Sn— /t(BdB¡) which contains G', then, by the Generalized Schoen-

flies Theorem, C1G¡ is a closed n-cell. Furthermore ClGi+1 c G. and

p|7=1ClG, = ClG'.

Let g be a continuous mapping of C1L4 — B) onto A such that Bdß is the only

inverse set. Define a mapping/ of C1G onto A by the equations

f(x) = gh~\x), if xeClG-G',

f(x) = g(BdB),   if xeG'.

The mapping / carries C1G continuously onto A such that the only inverse set is

the cellular subset C1G' of G. Thus, by Theorem 2 of [5], C1G is a closed n-cell.

Theorem 2. Let h be a homeomorphism ofCl(D — B) into S" and G be let the

component of S" — h(BdA) which intersects h(BdD). Then G is an open n-cell.

Proof. Let H be the component of S" - h(BdA) which contains h(BdB). By

Theorem 1, CIH is a closed n-cell and, hence, there is a homeomorphism/ of A

onto Cl// such that/ and n agree on BdA. Define a homeomorphism <J> of D into

S" by the equations

<j)(x) = h(x), if xeD — A,

<p(x)=f(x), if xeA.

Let 0[(O,O, --^O, 1)] = p and let g be a continuous mapping of D onto D such

that, (1) g is fixed on BdD, (2) g is a homeomorphism of D - A onto D - (0,0,- • -,0,1),

and (3) g(A) = (0,0,-",0,1). Now define a continuous mapping \¡i of

S" onto S" by the equations

\¡/(x) = x, if xe S"-<t>(D),

i¡/(x) = <l>g<l>-1(x), if xe 0(D).
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The mapping \¡j carries S" onto S", leaves p fixed, and has CIH as the only inverse

set. Hence, G is carried homeomorphically onto S" — p, and is an open n-cell.

Let By be the closed ball in E" which is centered at O and has radius three-

fourths, and let L' be the closed segment of the x„-axis from (0,0, •••,0,3/4) to

(0,0, -.0,1).

Theorem 3. Let h be a homeomorphism ofC\(D — B) into S" and denote h(L')

by Land «(0,0, "-,0,1) by p. Let G be the component of S"—h(BdA) which

intersects n(BdD) and let H be the component of S" — h(BdB¡) which contains

h(BdA). Then C\H is a closed n-cell and (C1G) — p is topologically equivalent

to CIH - L.

Proof. That CIH is a closed n-cell follows immediately from Theorem 1.

Let K be the component of S" — h(BdD) which does not intersect h(BdA)

and let g be a continuous mapping of C1(D — By) onto C1(D — A) such that (1) g

is fixed on BdD, (2) g(BdBy) = BdA, and (3) L is the only inverse set under g.

The mapping / of CIH onto C1G defined by

f(x) = x, if Ex e K,ï

f(x) = hgh~\x), if x eClH - K,

is a continuous mapping of CIH onto C1G such that the only inverse set is Land

f(L) = p. Hence, / is a homeomorphism of CIH - L onto C1G — p.

If in Theorem 3 there exists a continuous mapping k of CIH onto CIH such

that L is the only inverse set, then we can state that C1G is a closed n-cell. In

fact, the product mapping kf1 is a homeomorphism of C1G onto CIH.

Let us now suppose that n > 3 and that h is semi-linear on each finite polyhedron

of Int (A — B) (we assume a curved decomposition of E" in which A, B, By, and

L are polyhedra). Then h(BdBy) is a polyhedron and L is locally polyhedral

except at p. Let s > 0 be such that S(s,p) c H and use Lemma 2 of [6] to obtain a

homeomorphism <p of S" onto S" such that c¡> is fixed outside S(e,p) and <p(L) is

polyhedral. Let q be the endpoint of L which lies on BdH and let g be a polyhedral

n-cell in CIH such that q e BdQ, 4>(L) — q cz lnt Q, and Q has a subdivision

isomorphic to a subdivision of a simplex (see [7, Lemma 5.3]). Let ^ be a semi-

linear homeomorphism of Q onto a simplex R. The arc ^i(p(L) is then polyhedral

in R and, together with the linear segment \j/<p(q)\l/(p(p), from \¡J(¡>(q) to i¡/(p(p),

bounds a polyhedral 2-cell which, except for \¡/(h(q), lies in the interior of R.

Lemma 3 of [9] is then applied to obtain a homeomorphism n of R onto R such

that n is fixed on BdB and carries \¡/<p(L) onto \¡j<fr(q)\l/<¡>(p). It is then easy to find a

continuous mapping 0 of R onto R such that 6 is fixed on BdB, 9(i¡/(j)(q)il/(j)(p))

= \jj(t>(q), and i]/(p(q)ij/(p(p) h the only inverse set. The mapping k, defined by

k(x) = <p(x), ifx^tß),

k(x) = ib-10#<Kx),    if x e 4> -\Q),
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is a continuous mapping of Cl// onto OH such that L is the only inverse set.

Thus, we have the following theorem.

Theorem 4. Let n > 3 and let h be a homeomorphism of Cl(D — B) into S".

If h is semi-linear on each finite polyhedron o/Int (A — B), then h{BdA) is tame

in S".

The semi-linear condition in Theorem 4 is used only to shrink Lto a boundary

point of Cl//. It seems that one should be able to remove this condition and retain

the conclusion, since the local embedding at each point t of L, different from p,

is as "nice" as the local embedding of an interval at one of its points. In fact, for

each / e L, different from p one can find a homeomorphism ht of S" onto itself such

that the subarc Lt of L from q to t is carried onto a linear segment.

Definition 1. Let h be a homeomorphism of C1(D — A) into S". If there exists

a neighborhood N of (0,0,-■•,0,1) in E" such that h is semi-linear on each

finite polyhedron of Int (D — A) nJV, then we say that h is semi-linear on a

deleted neighborhood of (0,0, ••■,0,1).

Theorem 5. Let n > 3 and h a homeomorphism of Cl (D - A) into S" such that

h is semi-linear on a deleted neighborhood of (0,0, ■•■, 0,1). If G is the component

of S" — h(BdA) which intersects h(BdD), then C1G is a closed n-cell.

Proof. The technique of proof used here is that used by Mazur in [8].

Let £>! be a cell, obtained from D by a slight contraction on E" toward

(0,0, "-,0,1), such that (BdDj) - (0,0,---,0,l) is contained in D -A. Let Gr

and G2, respectively, be the components of S"-n(Bd/)1) and S"-n(BdD)

which are contained in G. We now observe that ClGi is homeomorphic to C1G.

For, if g is a homeomorphism of E" onto itself which is fixed on BdD and carries

BdDy onto Bd^4, then the mapping <j) defined by

4>(x) = x, if x 6 G2,

(¡)(x) = hgh~\x),   if x e Cl(Gi - G2),

carries ClGj homeomorphically onto C1G. This suggests the following observation :

if one attaches a copy of ClGj to C1(DX —A) along BdD1 with n-1, the set thus

obtained is equivalent to ClGi (it is simply C1G). This will be used to show that

ClGj is a closed n-cell, and hence that C1G is a closed n-cell.

Let N he a neighborhood of (0,0, -",0,1) such that n is semi-linear on

Jnt(D-A)r\N. Let S be an n-simplex in CK/^ -A)r\N, such that (0,0, ---.0,1)

is a vertex of S and let K = S" — h(S). By Theorem 4, C\K is a closed n-cell.

Let H = S" - C1G, then C1K can be realized by taking P = 01(0! - A) - Int S

and attaching CIH to P along Bd.4 with A-1, and attaching CR?! to P along

BdDx with n_1. The set P is a closed n-cell (the closure of the exterior of S)

with the interiors of two n-cells, sharing a common boundary point with BdS,



1963] SEPARATION OF THE «-SPHERE BY AN (h-I)-SPHERE 189

removed. The cell obtained from P by attaching C1G! and CIH to the interior

boundary spheres of P with n_1 will be denoted by P.

Let F be the part of the solid unit ball in E" centered at (0,0, ■••, 0,1,0), de-

termined by x„ ^ 0. Let {&}£0 be a sequence of points in the intersection of

the plane Xy = x2 = ••• = x„_2 = 0 and BdP such that, if q¡ = (0,0,••-,

a(n-i)i> ani)> then a(n_1)0 = 2, an0 = 0, the a{n-i)¡ converge monotonically to zero,

and ani > 0 for i > 0. We then section F into a countable number of n-cells by

projecting the (n — 2)-plane x„ = x„_! = 0 onto each of the q¡. The section

determined by <?,•_, and q¡ is denoted by C¡. We then delete from C¡ the interior of

a cell C[, similar in shape to C¡ and, except for the boundary point (0,0,-",0,0),

contained in the interior of C;. Any two adjacent sections then form a copy of P,

and are labeled P¡, P't, as in Figure 1. Notice that P¡ and P/ have w2i = BdC'2i in

common, and P¡ and P¡+1 have w2i+í = BdC2i+1 in common.

Figure 1

Let (h¡ be a homeomorphism of P¡ onto P- which leaves w2i fixed and carries

w2i_! onto w2i+l. Let i/f¡ be a homeomorphism of P[ onto Pi+1 which leaves

w2i+y fixed and carries w2i onto w2i+2. We identify Pt with P, with wx identified

with BdDy and w2 identified with BdA. The sets ClGj and CIH are then sewn to P

along Wy and w2, respectively, with n_1. The resulting n-cell is denoted by P\.

The sets CIGy and CIH are then sewn into alternate holes bounded by w2¡+1 and

w2i+2 by the attaching homeomorphisms

<£;•" «Mi«-1 : BdG1->w2i+1,

xj/i-il/^yh'1 :  BdH->w2i+2.
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The sets thus obtained from the P¡ and P\ are denoted by P¡ and P[ and we set

Since 4>y is the identity on vv2, we can extend 4>i to a homeomorphism of Pt onto

P', and conclude that P[ is also a closed n-cell. In a similar manner we extend i/í¡

to a homeomorphism of P¡ onto P¡+1 and extend <¡>¡ to a homeomorphism of

Pi onto P,'. It then follows that each P¡ and each P[ is a closed n-cell.

We now observe that Ft is a closed n-cell. We map the boundary of C2;_ x \j C2i

onto the boundary of Pt with the identity homeomorphism. Since C2i_! uC2j

and P¡ axe n-cells, this homeomorphism between their boundaries can be extended

to a homeomorphism between the cells. These extensions for i = 1,2,•••,yield a

homeomorphism of F onto Ft.

We next observe that Ft is a copy of Cl(r\ - A) with ClGt sewn along one

of the boundary spheres. This can be established by showing that F„ with Gt

removed from P1; is homeomorphic to F, with Int Ci removed. Let X be the

identity mapping on Cl - Int C[ and on Bd(C2; UC2i+1), t = 1,2, ••-. Since

C2i U C2i+, and P/are closed n-cells and X restricts to a homeomorphism between

their boundaries, X can be extended over their interiors. These extensions over

each of the C2i \jC2i+1 yield the desired homeomorphism.

We have seen that F1 can first be viewed as a closed n-cell, and secondly as C1GX

sewn into a boundary sphere of a copy of Cl(D1 - A). We previously observed

that a set of the second type is equivalent to CIG^ Hence C1G1; or equivalently

C1G, is a closed n-cell, and Theorem 5 is proved.

If one were able to remove the semi-linear condition in Theorem 4, then the

semi-linear condition in Theorem 5 could also be removed(2). In this general

form Theorem 5 would imply that a wild (n - l)-sphere is S", n > 3, must be

"knotted" at more than one point, and that such simple examples of wild spheres

as the Fox-Artin examples [3] for n = 3 do not exist in the higher dimensional

spaces.

3. Some 3-spheres in S*.

Definition 2. In £4 we take coordinates x1,x2,x3,x4 and let E3 be described

by x4 = 0. Let a = (0,0,0,1) and b = (0,0,0, - 1). For a set A in E3 the suspension

of A in £4 is the join of A and a u b, and is denoted by Susp A.

The proof of Theorem 1 of [1] may be used directly to prove the following

theorem.

Theorem 6. Let S be a 2-sphere in E3 and K = Susp S. Let Ax and A2 be the

bounded and unbounded components of E3 - S respectively, and Bu B2 the

corresponding components of £4 - K. Then the injection homomorphism

ij : n^Afj-^n^Bj), j = 1,2, is an onto isomorphism.

(2) Added in proof. After this paper was sent to press the author was able to remove the

semi-linear conditions in Theorem s4 and 5. These results, together with certain generalizations,

will appear in print at a later date.
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Let £3 = {(x1,x2,x3,0)££4|x3 ^ 0} and let P be the plane x3 = x4 = 0.

For x = (x1,x2,x3,0) and 0 ^ t < 2n we set R,(x) = (xt.X2.X3 cos t, x3 sin t), and

for a subset M of £3 we set R(M) = {R,(x) \ x e M, 0 1% t < 2n}. For a subset N

of£4wesetB~1(iV) = {ye£3|B,(>')eN for some 0 ^ t < 2n).

If M is a 2-cell in £+ such that M C\P = BdM = d, and D is the bounded

component of P - d, then the proof of Theorem 3 of [1] may be used to establish

the following theorem.

Theorem 7. Let Ay and A2 be the bounded and unbounded components,

respectively, of El -(MUD) and let By, B2 be the corresponding components

ofE*- R(M). Then ny(A¡) « ny(B¡),i = 1,2.

In [3] there are examples of 2-spheres in S3 such that one complementary

domain has a nontrivial fundamental group. Elementary modifications of these

examples will give 2-spheres in S3 such that the fundamental group of either

complementary domain is nontrivial. These examples, together with Theorem 6 or

Theorem 7, give the existence of 3-spheres in S4 such that either one or both

complementary domains have nontrivial fundamental groups. In passing, we

observe one difference between the spheres Susp S and R(M). Associated with

each exceptional point peS there will be an arc, Susp p, of exceptional points

on Susp S, and for each exceptional point peM there will be a simple closed

curve, R(p), of exceptional points on R(M).

We now use the rotation of a disk about P to construct a 3-sphere in S4, one

complementary domain of which is simply connected but is not an open 4-cell.

Let   us   first embed   the  2-sphere S, discussed as Example  3.2 in   [3], in

Figure 2
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Figure 3

£+ as indicated in Figure 2. The sphere S is to intersect P in a 2-cell D and C1(S - D)

is denoted by M. If Lis the arc described as Example 1.3 in [3], the proof in [3]

that £3 — L is simply connected may be used directly to show that A2 (the exterior

of S in £+) is simply connected. Hence, by Theorem 7, B2 (the exterior of R(M)

in £4(S4)) is simply connected.

The cross section M \jR„(M) of R(M) is shown in Figure 3.

Let A2 denote the exterior of M U Rn(M) in E3. It is shown in [3, Example

1.3] that C0 cannot be contracted to a point in A'2 - [W\jRn(Wy\. This fact is

now used to show that R(W) is contained in no closed 4-cell subset of B2 whose

complement in B2 is simply connected. Hence, B2 is not an open 4-cell.

Suppose that such a 4-cell J did exist. Choose the base point for computing

7t1(ß2 - J) in P and so close to d that there is a path c0 in (B2 - J) r\P which

cannot be contracted to a point in A2 - \_W \jRK(W)~\. Let £ be a unit disk in £2

with boundary e, and let A be a continuous mapping of e onto c0. Since nx(B2 — J)

is trivial, there exists an extension H of h which carries £ into B2 — J. We

then follow H by R _1 and obtain a singular 2-cell, R~1H(E), in A2 - R-1(J)

•which is hounded by c0. Since A2 —R~1(J)czA2 — W, we see that c0 can be

contracted to a point in ^42 - If and hence in the larger set A'2 — \W\jRn(Wy].

This contradiction establishes the desired conclusion.

We now describe a third method for constructing (n — l)-spheres in

S" and refer to this method as capping a cylinder.

In £" we again take coordinates xux2,---,xn and let £"_1 be described by

xB = 0.
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Lemma 1. Let S be an(n — 2)-sphere in £"_1 with the bounded and un-

bounded components of £"_1 — S denoted by Ay and A2, respectively. If CL42

(compactified at infinity) is a closed (n — l)-cell, then {Sx[0, lJJuiCL^ x [1]}

is a closed (n — l)-cell.

Proof. Let h be a homeomorphism of C1^42 onto a standard unit ball B in

£"_1. Let Sy = BdB and let S2 be the sphere concentric with S¡ and with radius

one-half. Then h~1(S2) is an (n — 2)-sphere in £"_1 and if C is the component of

E""1 — h~1(S2) which contains Au then, by Theorem 1, C1C is a closed (n - 1)-

cell. We now observe that C1C consists of a closed annulus with C\Ay sewn along

one boundary component and is, therefore, a copy of {S x [0, l^ufCL^ x [1]}.

Theorem 8. Let S, Ay, and A2 be as in Lemma 1. If CIA2 (compactified at

infinity) is a closed (n-l)-cell, then {Sx[-l,l]}\j{ClAy x [-l^ufCL^ x [1]}

is an (n — l)-sphere.

Proof. By Lemma 1, each of {Sx[ - 1,0]} u{CUt x [ - 1]} and

{S x [0, l^ufCl^! x [1]} is a closed n-cell. These cells meet along their common

boundary sphere S, and hence their union is an (n — l)-sphere.

We now consider a 2-sphere S, locally polyhedral except at a single point, in

£3(S3) such that the bounded complementary domain Ay is an open 3-cell, ClAy

is not a closed 3-cell, the unbounded complementary domain (compactified at

infinity) is an open 3-cell, and CL42 is a closed 3-cell. The assertion is that the

3-sphere

r={Sx[-l,l]}u{CL41x[l]}u{CL41x[-l]}

is embedded in S4 such that, if By and B2, respectively, are the components of

S4 — Twhich contain At and ^42, then By is an open 4-cell, ClBy is not a closed

4-cell, and C1B2 is a closed 4-cell.

Since By is the product of the open 3-cell Ay and the open interval ( — 1,1),

By is an open 4-cell. If ClBy =C\Ai x [- 1,1] were a closed 4-cell, a theorem due

to Bing [4] would imply that C\A1 is a closed 3-cell. Thus contradicting our

assumption on the embedding of S in S3.

We now show that C1B2 is a closed 4-cell by constructing a homeomorphism

/ : Tx [0,1/2] -> C1B2 such that/0(j;) =f(y, 0) = y for each y e Tand then applying

Theorem 1. Since CL42 is a closed 3-cell, there exists a homeomorphism

n : S x [0,1/2] -* CL42 such that h0(x) = h(x, 0) = x for each xeS. For yeT,

let x be the point of CL4.J which lies under y (y=(x,f) for some ie[ - 1,1]).

We define / by the following equations :

(l)/,O0 = (x,l + r),   ify = (x,l);
(2)/r(y) = (x,-l-r),     ify = (x,-l);

(3) fr(y) = (K(x),t),     if xeS and - 1 + r < t < 1 - r;
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(4) fr(y) = (A(i -,)(*), 2i - (1 - r)), if x e S and 1 - r ^ í ^ 1 ;

(5) /,G0 = (A(1-,)(x), 2« - (r - 1)), if x e S and - 1 ̂  í ^ - 1 + r.

The continuity off follows rather quickly from the definition off in terms of

the continuous mapping h and a set of linear equations. The one-to-one property

off depends principally on the fact that each arc/r(x x [0,1]) must lie over the

arc Lx = {hs(x)\se [0,1/2]} and thatLXl and L,^ intersect if and only if x1=x2.
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