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This paper is the last of a series of papers investigating the homological structure

of //-spaces (see [7; 8; 9; 11]). Here we investigate the consequences of the exis-

tence of torsion elements of higher order, that is, elements whose order is divisible

by higher powers of p. Again, we investigate the Bockstein spectral sequence

Br and prove certain "implication" theorems in it. The techniques of proof

are more general than in [7] and [8], and we prove theorems in a more algebraic,

abstract context. Thus in §1, we introduce the concept of an //-complex, which

one may think of as an abstraction of the chain complex of an //-space. "Im-

plication" theorems for the Bockstein spectral sequences of such //-complexes

are proved in §§2 and 3. The main results of §3 are Theorems 3.3, 3.11 and 3.12.

These theorems are then applied to //-spaces in §4 and yield the following

facts about (homologically) finite dimensional //-spaces:

(1) If some Bockstein ßr = 0 in Br, then Br = Bœ; i.e., ßj = 0 for all j > r.

(2) If H*(X;ZP) is primitively generated, then all p-torsion is of order

exactly p, i.e., there are no elements of order pr, r > 1, in H*(X;Z), (B2 = Bx).

These are proved in §4 (Corollary 4.6 and Theorem 4.9).

§§5, 6 and 7 are devoted to proving the results announced in [10] about

fibering of spheres and //-spaces which are rational homology spheres. The

implication theorems of §4 and the results of [9] are applied to get the results:

Theorem 5.1 (2). // p:S"-+B is a fibre map, with base B and fibre F con-

nected polyhedra, B =± point, then F = S1, S3, or S7.

Theorem 5.2. // X is a connected finite dimensional polyhedral H-space

which is a rational homology sphere, then X is homotopy equivalent to one of

S\S3,S\P3 or P7.

Theorem 5.1 continues the work of Borel [4] and Spanier and Whitehead [19]

on this problem. If one asks in Theorem 5.1 for information on the homotopy

type of B, one may show easily in case F ^ S1 that B £ CP" for some n, and if

F S S7, then B s S8. For S1 being R(Z,1) makes B a R(Z,2) in the dimensions
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(2) By polyhedron we mean CIV complex of finite type. By fibre map we mean fibre map in

the sense of Serre, i.e., the covering homotopy theorem holds for maps of compact polyhedra.

"X = Y" means "A'is homotopy equivalent to Y."
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of its nonzero homology, which determines its homotopy type. In case F £ S ,

then H*(B) = Z[yay(y'8). Then it follows that 1 = 2 by an argument due to

Adem [3] using Steenrod operations mod 3, so that B is a homology 8-sphere,

simply connected, and hence a homotopy 8-sphere.

In case F s S3, however, examples are known (see for instance Eells and

Kuiper [13]) which show that the homotopy type is not determined by knowing

■kx(B) = 0 and H*(B) = Z[y4]/(ji). The question of the homotopy type of B in

this case is open.

One may define the rank of a finite dimensional //-space as the number of

ring generators of its rational cohomology. Thus Theorem 5.2 classifies, up to

homotopy type, //-spaces of rank 1. It would be interesting to classify //-spaces

of higher rank, up to homotopy type.

In §8, we give a summary of the main "implication" theorems of this paper

and [7; 8; 11].

We refer to [7] for a thorough discussion of the Bockstein spectral sequence.

I am indebted to E. Spanier for suggesting the problem of fibering spheres

to me.

1. //-complexes and the Bockstein spectral sequence. We will consider chain

complexes C, i.e., differential graded modules, and we will always assume that

C is torsion free over a principal ideal domain R, C¡ = 0 for i < 0. If/ and g

axe chain maps, "/~ g" means/ is chain homotopic to g.

Definition. An //-complex is a chain complex C with chain maps \¡i : C -> C ® C,

<¡>:C®C-*C, n :R-* C, 2 :C-* R, such that

(1) en = 1:R->R,

(2) if is a unit for (j), e a co-unit of \j/, up to homotopy, i.e.,

$o(l ® n) ~ <¡>o (r) ® 1) ~ identity map of C, where R ® C is identified with C,

(e ® l)o \¡/ ~ (1 ® e)o \ji ~ identity map of C,

(3) \¡/ is a map of algebras up to homotopy, i.e., if T:C®C-*C®C is

defined by T(a ®b) = (-l)pqb ®a,aeCp,be Cq, then

i¡/®\¡/

C®C®C®C

1®T®1
</'

* ó®é      4
C®C®C   VKJV>C®C

commutes up to homotopy.

Roughly speaking, an //-complex may be described as a "differential Hopf

algebra up to homotopy." The chain and cochain groups of an //-space are

examples of //-complexes over the integers.
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A chain complex (or graded module) C is offinite type if C, is a finitely generated

R-module for each i. Two chain complexes C,C are homotopy equivalent if

there are chain maps/:C->C, g :C -* C, with fog ~ 1, go/~l. C,C are

said to have the same homotopy type, C ~ C.

Lemma 1.1. Let C be a chain complex free over R, with H(C) of finite type.

Then C is the homotopy type of a chain complex of finite type.

This is a standard type of chain complex argument (see [14; 7]).

Lemma 1.2.    If C ~ C, and C is an H-complex, then C is an H-complex.

From Lemmas 1.1 and 1.2, it follows that if we are considering an //-complex

C free over R, whose homology is of finite type, then, up to homotopy, we may

consider C to be of finite type. Thus for properties of homology, related to

//-structure, we may consider //-complexes of finite type.

Lemma 1.3. // C is an H-complex of finite type, then C* = Hom(C, R) is

an H-complex of finite type, and C** = C.

This follows easily from the usual properties of Horn (, R) on finitely generated

free R-modules.

Note that if d s 0 in C, C an //-complex over R, then C is a Hopf algebra

over R (since chain maps are homotopic only when they are equal, if d = 0).

For any chain complex C, torsion free over the integers Z, and any prime p,

we may define the Bockstein spectral sequence mod p as follows :

If C is torsion free over Z then the sequence 0->C-^C4C®Zp->0is exact,

where i(c) = pc, j = reduction mod p. The homology of this exact sequence of

chain complexes forms an exact couple

H(C) —ÎÎ-»H(C)

ô\    /i*
H(C®ZP).

The spectral sequence of this exact couple {Br}, r ^ 1, is called the Bockstein

spectral sequence of Cmodp. A lengthy discussion is given in [7]. We use ßr

to denote the differential in Br.

Lemma 1.4. Let C be an H-complex free over Z, with H(C) of finite type.

Then the Bockstein spectral sequence of C and C* are dual spectral sequences

of Hopf algebras.

One may replace C by an //-complex of finite type, and the rest of the pro-

position follows routinely.

We now introduce some notation and some properties of the Bockstein spectral

sequence, which we will employ later. Let C be a torsion free complex with H(C)

of finite type.
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The rth derived couple is

BT

where ir(x) = px. We may define the map kr:H(C)->Br by kr(x) =jr(pr~1x),

Lemma 1.5. Kernel kr = pH(C) 4- Tr_1; where Tr_t = subgroup of H(C) of

elements x such that pr~ x = 0.

The proof of this lemma is routine, using properties of the Bockstein spectral

sequence developed in [7].

2. Algebras of type (n, 2q). In this section we define some special Hopf algebras

over Zp which we will use in the next section.

We define A(n,2q) as follows: A = A(n,2q)is generated as an algebra by

a0, a j,---, an, where ateA2ipt and ¿ = (g)":oZp[a,]/(af)® Zp[a„] as an algebra.

The diagonal map \p : A -> A ® A is defined by

i/ra¡ = a¡ ® 1 + 1 ® a¡ + T¡

where T¡ is defined inductively as follows:

Define T0 = 0,

T;+1  = -((fli®l + l®a,.)P-af®l-l®af) + (ai®l + l®ai)p"1Ti.

It is easy to check that A(n,2q) = A is an associative, commutative, co-asso-

ciative and co-commutative Hopf algebra. It is easy to see also that ¿m = 0 if

2q does not divide m, A2qk = Zp. To find a generator of A2qk, expand the integer k

to the base p, i.e., k = r0 + r1p+-h rsps. Then yk(a) = a'Ja]1 ■■■ ars' generates

A2qk where as = a% " if s = n.

There is a canonical map of Hopf algebras r™:A(m,2q) -* A(n,2q) for m <n

defined by sending r™(at) = a; for i _ m.

If B = Zp[y] as a Hopf algebra (dim y = 2q), then B* = Hom(B,Zp) = T(y*)

as a Hopf algebra, where T(.y*) is the twisted polynomial ring generated by y*,

i.e., T is generated as a Zp module by yk(y*)eT2qk, multiplication is given by

k+ l\
Ik ■ li =       k   I lk+i

and the diagonal map A:r->T®T is given by Ayk = Si+j = ky¡<8>y¡-

Lemma 2.1.   (¿(n,2q))* = Zp[a$]/(aSP"+') ® T((a^)*) as an algebra.
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Proof. As a coalgebra ¿(n,2^f) s (g)"=oZp[a¡]/(af) ® Zp[ap] with ap„ primitive,

i.e., Aa;=a£®l + l®aBp. In the coalgebra M = (g),"= yZp[aJ/(af), the only

primitive elements are multiples of a0, so that a*generates M* since generators

of M * are dual to primitive elements of M (see [16] (3)). Further, M*= 0 for

i^2oj>"+1 so that M* = Zp[at]/(a*0pn + ' ) and (A(n,2q))* = M*® T((ap)*).

Lemma 2.2. Let C be a Hopf algebra, f : A(n,2q) -> C a map of Hopf al-

gebras. Iff(a0) ¥= 0, then f is a monomorphism in dimensions < 2qpn+1.

Proof. The lowest dimensional element in the kernel of a map of Hopf al-

gebras is primitive. As noted in the proof of Lemma 2.1, the lowest dimensional

primitive element of dimension > 2q is in dimension 2qpn+\ and the lemma

follows.

Lemma 2.3. Let ¿(,)'be the Hopfsubalgebra ofA(n,2q) generated by a0,---,a¡,

i < n. Then A™ = 0 for m> 2qpi+1- 2a.

Proof. ¿(i) = ®Uo Zp[at]/(af) and (Zp[aJ/(aD)m = 0 if m > 2qpk(p -1).

Hence ¿«> = 0 if m > ZU02qpk(p-l) = 2q(p-l) ZUoP* = 2q(pi+1- 1).

Lemma 2.4.   r, = 0 in A(n,2q) ® A(n,2q), for i ^ n.

Proof. (X(i_1)®¿('_1))m = 0 for m>4qpl-4q, by Lemma 2.3. Now

r,e(¿(i"1)®¿(i_1))29pl so that r,2€(¿(í"1)® ¿(i"I))4<!pi and 4qp'> 4qpl - 4q

so that T2 = 0.

3. Implications of higher torsion. In this section we shall prove" implication"

theorems for higher terms (r > 1) of the Bockstein spectral sequence Br

of an //-complex. These lead to various theorems about the homology of//-spaces

in §4.

Definition. Let A be a Hopf algebra over Zp. An element x e Am is said to

have ¿¡[-implications if there exists a sequence x = x0,Xy,---,xq, with x, # 0 in

¿mpi, and for each i < q, either

(1) xl+1 = xf   or

(2) there is an x, e A* such that x¿(x¡) ̂  0 and xf(xi+l) # 0.

If an infinite such sequence exists, we say x has oo-implications.

If A or A* is not associative, define x" by induction, xn+1 = x" -x.

An element x of a Hopf algebra A is primitive if \¡/x = x ® 1 + 1 ® x, where

ip : A -* A ® A is the diagonal map of A. We denote by P(A) the space of prim-

itive elements.

Let C be an //-complex,

iy = l®n:C->C®C,   i2 = n® 1:C->C®C,

the injections of C into the left and right factors of C ® C.

(3) One may also verify directly by computing that (ö*)p(ai+i) # 0, for 0 ^ i < n, so that

a* generates (A(n, 2q))* in dimensions < 2qpn+1.
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Then for any element u e H(C ® G), \¡/%u = ix%u + i2ifu + Q, where Q e kernel

of nlif 4- ti2* :H(C® C)^H(C) + H(C), where 7t1 = l®e, 7t2 = £®l are

projections on the left and right factors of C ® C. This follows from the fact that

nJ0 ik = 8Jk ■ 1, (8Jk = 0 if j * k, = 1 if j = k).

Let y : H(C ® Zp) -> H(C ® Zp2) be induced from the injection Zp -+ Zp2.

Lemma 3.1. Let I = image y £ Z/(C ® Zp2), where C is a differential al-

gebra. Then I is an ideal, and I2 = 0.

Proof. An element xeH(C® Zp2) is in / if and only if there is a chain ceC,

with pc representing x. Then the lemma follows by a direct chain argument.

Lemma 3.2. Let C and C be differential algebras, i:C->C®C,

V :C'->C® C the two injections (i(c) = c ® 1, etc.). If ue H(C ® A),

u' e H(C ® A), A some commutative ring, then

(i(u) + i'(u'))p =  Z   (P) (i(u))j(i'(u')f
j+k=p   \J/

in H(C®C'®A).

Proof. By definition of the algebra structure of C® C, the elements (i(u))J

and (i'(u'))k commute. Then the lemma follows by induction on p as in the as-

sociative case.

We denote by q : H(C ® Zp2) -»• H(C ® Zp) the map induced by reduction

mod p, so that we have the exact sequence

jffi y q ßi
... - Hk(C®Zp) -> Hk(C ®ZP2) -> Hk(C®Zp) ^ -.

Theorem 3.3. Let C be an H-complex, with H(C) of finite type, HQ(C) = Z,

and suppose u e H2m(C ® Zp2) with pu^O and q(u) e P(H(C ® Zp)). Then q(u)

has l-implication in H(C ® Zp).

(Note that there are no requirements of associativity or commutativity.)

Proof(4). ip#u = ux + u2 +Q, where «i = ¿i^u, u2 = i2ifu, Qe(kernel q)

n(kernel(itx*+ n2if)), since q(u) is primitive. Then Qel, so Q = y(Q'),

Q'eH(C®C®Zp).

Now

^(up) = (^(u)Y = (Ui + u2 + Q)p

= («i + u2)p + ZK + u2)p~lQ(ux + u2)'_1 + M,
i

(4) Caution: In many of the calculations below we have ignored the association of products

(as in (3.4), (3.6)). Some of these terms should have parentheses distributed on the factors, but

since the arguments are on the dimension of these products, the ambiguity does not affect the

result. If one tries to strengthen this theorem (analogously to Theorem 3.11), the difficulties of

nonassociativity and noncommutativity magnify.
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where M involves two or more factors Q. It follows from Lemma 3.1 that M = 0

(this does not require associativity). Hence, by Lemma 3.2,

^(Mp) = < + «!+       Z      (,)u\ui
ß4<. ¡+j = p;>../>o     V /

+   H(uy + u2)p-lQ(uy+u2)l-\
i

By a direct chain argument it is easy to show :

Lemma 3.5. Let C be a differential algebra, xeH(C® Zp2), zeH(C®Zp).

Then x • y(z) = y(x • z), y(z) ■ x = y(z ■ x), where x = q(x).

Now q(uy) = w®l, q(u2) = 1 ® ü, where ü = q(u), and let Q'= ZjS¡ ® i£

(Q = y(Q'))> si> h e H(C ® Zp). Since Q e kernel (7t1# + 7t2#), it follows that we may

choose g' so that dims¡ > 0, dimí¡ > 0, for all i (dims¡ + dimí¡ = dimu = 2m).

If üp — q(up) ^ 0, then ü, üp is a 1-implication sequence. So assume wp = 0, so

that u" = y(v), v e H(C ® Zp).

Note that pu = y(ü). Define a, = (l/p)(f), and note that a, i= 0 mod p. Then

from (3.4) and (3.5), we get:

MK»)) = y(»i) + y(v2) + y( Za,wp_i ® à)

+ yaKüy + ü.y-'QXüy + ü.t1).

Hence,

$*(v) = r®l + l®t;+ Z a¡ k p_i® ül

(3.6)
+   Z(ö1 + ö2)p-!o'("i + "2)/"1 + -K»

i

where Re kernel y = image p\. Now the terms involving Q' are sums of terms

of the form (ü"s,üb) ® (ocí¡ud) where a + b + c + d = p-l. Since

0 < dim S; < 2ni, 0 < dim t, < 2m, and dim ü = 2m, no term of this form is in

#2m(p- d(C ® Zp) ® H2m(C®Zp). Let x e /72m(C ® Zp) be such that x(ü) # 0 and

ßtx=0, which is possible since pu ^ 0. Then, from (3.6)

xp(v) = (xp-1®x)(ij,*(v))

= ayXp~1(üp~1)x(ü) + (xp-l®x)(K),

since no other elements can have the right dimension. But

(xp_1®x)(R) = (xp-1®x) (/?!«') = (ß1(x"-1®x))(K') = 0.

But it is easy to show by induction, using the primitivity of ü, that

xp-1(üp~1) = (p-l)\(x(ü))p~1 ¥=0. Hence xp(v) ï 0 and xp ^ 0, which com-

pletes the proof.
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Now we will make stronger assumptions on the //-complex C and, using

machinery of §2, prove a result (Theorem 3.7) which will have many useful

applications. For an abelian group M, denote by Mp the p- primary subgroup of M.

Theorem 3.7. Let C be an H-complex with H(C) of finite type, H0(C) = Z,

and suppose that H(C) is an associative, commutative algebra. Letc0,---,ctteH(C)p,

such that pc¡+, = cf, 0 ^ i < n, with kr(cn) = jr(p'~ 'O ¥= 0. Supposef(a¡) = ks(c¡),

for 0 = i = n, defines a homomorphism of Hopf algebras, f : A(n ,2q) -* Bs, s< r.

Then
(1) pr"2cp#0;

(2) if ks(cp) = 0, then cpn = pc„+1 and /'(fl¡) = K+ x(Cl), 0 jg i á n + 1, de-

/mes a map of Hopf algebras f :A(n + 1,2g)-»Bs+1.

(See §1 for definitions of jr and fcs.)

Proof. Let us define Gj e H(C ® C) in a similar way to T,- e ¿(n,2g) ® ¿(n,2g),

i.e., let G0 = 0,

G,+ 1 = i Z ^j cf*® cî + (cj® 1 + 1 ® cjf-%,

where we are considering H(C) ® H(C) as a subalgebra of //(C ® C) (which we

may do by the Kiinneth formula). Then since /:¿(n,2oJ-> Bsis a Hopf algebra

map and f(Tj) = K(G¡), it follows that \¡/(c„) = c„ ® 1 + 1 ® c„ + G„ + A + pE,

where ps_1¿ = 0, A,EeH(C®C) (see Lemma 1.5).

Then

•KO = (.M' =(cn®l + l®cn + Gn + A + pE)p

= (c„®H-l®c„ + G„ + ¿)p

+   ¿jfy (cn®l + l®cn + Gn + A)"-k(pEf

= (c„® 1 + 1 ® c„ + G„ + A)p + p2Q

= cp®í + í®cp + pGn+1 +   Z (fy(cn® 1 + 1 ®cn)"-kGkn

+ Gp„ + t fy (cn ® 1 + 1 ® cn + Gn)p-lAl + p2Q,

where at the third step we have collected terms with a factor of p2 into p2g.

Lemma 3.8.   G2epH(C®C).

Proof. If we set g(a¡) = j^(c¡) e H(C ® Zp), for 0 ^ i = n, this defines a map of

algebras, g : A(n ,2q)-> H(C ®ZP), and g(T„) =;'*(G„). But T2 = 0, by Lemma

2.4 so that;'*(G2) = 0, and thus G2 e pH(C ® C).
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Lemma 3.9.   Gpep2H(C®C).

Proof. Let D be the subalgebra of H(C) generated by c0, •■■,c„_1, and let

C(x) = xp. Then, since j*(D) =f(A'), where A'= subalgebra of A(n,2q) generated

by a0,—,aH-i, and Ç(A') = 0, it follows that Ç(D) £ p//(C). Also ¿¿ = 0 for

m > 2qp" — 2q by Lemma 2.3, so that Dm ç pH(C) for m > 2qp" — 2q, and hence

(D®D)t<=pH(C®C) if />4gp"-4g. Now Gne(D®D)2qpn. We shall show

that for any element x e (D ® D)2qp„, xp e p2H(C ® C). If x is an element of the

form a ® b e D¡ ® Dp i+j = 2gp", then xp = ap ® bp and a", b" e pH(C), so

x" e p2 H(C ® C). If x, y e (D ® D)2qpn and xp, y" e p2H(C ® C), then

(x + y)p = xp + yp+ lîffyx'-y,

and xp~kyke(D®D)2qp„+i £ PH(C® C). Hence, each term in (x + v)pis a mul-

tiple of p2.  Since elements a®beDi®DJ,  i+j = 2qp", form a basis for

(D ® D)2qpn, the lemma now follows.

It follows from Lemmas 3.8 and 3.9 that

(3.10) HcO = cp ® 1 + 1 ® cp + pGn+1 + À + p2Q',

where ps_1¿ = 0 (Ä = sum of all terms with a factor A). Multiplying by

pr~2, we get

pr-2iP(cp) = tfr(y-20 = p r~2cp„® 1 + 1 ® (p^2cp) + p'-'G^ + p'Q',

(pr~2Ä = 0 since r - 2 = s - 1). Since jr(pr_1cn) # 0, it follows that/.(p^GJ^O,

since jr(p'-lcn) - feP(OJr(pr_1GB) = fcr(G„), and fcr(G„) = fe^O ® M«?-1) +

terms of different degree in the first factor, hence is nonzero. But jr(prQ') = 0,

so that jr(pr_2i/'(cj)) ± 0 and hence pr~2cp + 0, which proves (1).

If j*cl - kiCp 7e 0, then since order c" ^ pr-1 by (1) and s < r, it follows that

ks(c^) # 0. Hence if fcs(c£) = 0, then 7'*(c£) = 0, so that cp=pcn+1, for some ele-

ment cn+ieH2qpn+i(C).

We use (3.10) to compute the diagonal map on cn+1, since pcn+i = cp,

and we get

HcB+i) = c„+1 ® 1 + 1 ® cB+1 + Gn+1 + ¿! 4- pQ',

where ¿te//(C®C) is such that pAx = Ä, so that since ps-1¿ = 0, we have

that ps¿! = 0. Hence ks+1At = 0. If we set/'(a¡) = K+i(ci)> for 0 = i ^ n + 1,

this defines a map of algebras,/' : A(n + 1,2g)-»Bs+ l, and fo^ = \¡/of, since

fcs(Gn+1) = /'(r»+i), K+i(pQ') = fcs+iUi) = 0. Hence/' defines a map of Hopf

algebras, which proves (2), completing the proof of Theorem 3.7.

Remark.   If ks(c%) = 0, it follows that pr~1cn+1 ¿ 0, since pr~2cp # 0 by (1).

From Theorem 3.7, we now derive a result which is in a more convenient

form for applications.
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Theorem 3.11. Let C be an H-complex, with H(C) of finite type andH0(C) = Z,

and suppose that H(C) is commutative and associative. Let xeH2q(C)p, such

that kr(x) ¥=0, and ks(x) e P(BS), s <r. Then ks(x) has (r-s)-implications in Bs.

Proof. If we set x = c0, the hypothesis of Theorem 3.7 is satisfied for n = 0.

Proceeding by induction on (r - s), if kscp0 ¥ 0, then ksCQeP(Bs) and kr^y(c^) # 0,

since pr~2Co ̂  0 by (1) in Theorem 3.7. Hence, by induction, ks(cp) has (r—s-l)-

implications, so that ks(c0) has (r—s)-implications. If /cs(cq) = 0, then by

(2) in Theorem 3.7, eg = pCi, and f(ai) = ks+l(ci), i = 0,1, defines a map

/:¿(l,2g)->Bs+1. Assume (by another induction) that we have defined a map

f:A(j,2q)-*Bs+i, j < r - s, by f(a¡) = ks+J(c,), cf = pci+1, kr(cj) ¥ 0. If

/(flP) = (ks+J(Cj))p # 0, then it is primitive, since aPe P(A(j,2q)), and kr_y(cp) # 0

by (3.7(1)), so that our first induction hypothesis applies and ks+j(c?) has

(r — s —j — l)-implications.

Now we show that ks+j(c0), ■■-, ks+j(cj) is a j-implication sequence for ks+J(c0).

Since (ks+j(ct))p = 0, for 0 ;£ i f¿j, we must show that for each i <j, there is a

yieBs+ ., y^K+fa)) ¥ 0, and vf(/cs+J(ci+1)) ¥= 0. But y¡(ks+J(ct)) ¥ 0 implies that

f*(y.) = a* = a generator of (¿0,2g))2"p'. By Lemma 2.2, (a*)p(a,+1) ¿ 0 (since

a\ ¥= 0), and hence (/*(y¡))p(a¡+1) = yf(/*(ai+1)) = yp(ks+J(ci+1)) # 0. It follows

that ks+j(c0),---,ks+J{Cj) is a j'-implication sequence for fcs+J(c0). Then since

ks+J(cp) has (r-s-7'-l)-implications in Bs+J, ks+j(Cj) has (r-s-j)-implications

in Bs+J; hence ks(c¿) has (r-s-j')-implications in Bs, so that finally ks(c0) has

(r-s)-implications in Bs (cf. [7, Lemma 6.4]).

If ksJrj(Cj) = 0, then Theorem 3.7(2) applies and we get the second induc-

tion hypothesis for j + 1, and the theorem follows.

Remark. The implication sequence x0 = ks(x), xu •••,xr-s, constructed by the

above proof has the slightly stronger property that if xf = 0, i < r — s, then for

any x,eBs, with x¡(x¡) ^ 0, we have xf(xi+1) # 0.

Theorem 3.12. Let C be an H-complex with H(C) of finite type, H0(C) = Z

and H(C) associative and commutative. Suppose ßm = 0 for some m, so

that Bm+1 = Bm, in the Bockstein spectral sequence of Cmodp. // xeH2q(C)p,

with kr(x)^0, ks(x) e P(BS), s^m<r, then ks(x) has co-implications.

Proof. We use the same proof as Theorem 3.11, and note that at each stage

of the proof we have a map/ : ¿(n,2Z) -» B5+-', with/(a„) = /cs+J(c„), kr_,(cn) i= 0,

s +j < r — i, and we apply Theorem 3.7. At the next stage in the proof we either

have a map/':¿(n + 1, 2/)^Bs+'+1 with kr_,(cn+J^O, /(a„+1) = fcs+;+1(cn+1),

or an element y = ks+j(cp) eP(BS+J) and fc,_¡_y(c„) ̂  0. The process stops in the

proof of Theorem 3.11 because finally either r — i = s + j + 1 or r — i — 1 = s +j.

In other words, the indices come together, i.e., we get to the situation where we

have a map/" :A(s, 2t)-+Bu with/"(as) = ku(cs) and kv(cs) # 0, but v = u. But if
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ßm = 0 so that Bm = Bm+1 and s S m <r, then maps into Bm are the same as maps

into Bm + 1. Hence s + j can always be kept _ m, and r — i can be kept _ m + 1,

so the indices are kept apart. Hence the argument does not stop and we get

an co-implication sequence.

Corollary 3.13. Let C be an associative commutative H-complex with d = 0

(i.e., C is a free Hopf algebra over Z). Then an element xeP(C2q®Zp) has

co-implications.

Proof. Apply Theorem 3.12, using the fact that ßl = 0 (C ® Zp = H(C ® Zp)

= B1 = B2 = ••• = B00 in this case).

4. Applications to //-spaces. In this section we apply the results of §3 to //-spaces,

obtaining "implication" theorems we shall apply in §5 and obtain also some

theorems on finite dimensional //-spaces.

Since the chains or cochains of an //-space are //-complexes, we get:

Theorem 4.1. Let X be a connected H-space with H*(X) of finite type. If

xeH2m(X;Zp2), px^O and q(x)eP(H2m(X;Zp))(q = reduction modp), then

q(x) has l-implication in H^.(X;Zp).

This is immediate from Theorem 3.3.

Corollary 4.2. Let X be a connected H-space with H%(X) of finite type.

Let xeP(H2m(X ; Zp)), and suppose ßtx = 0. Then xhas l-implication in H^(X ; Zp).

Remark.   This shows that in [9, Theorem 6.7] / ^ 2.

Proof. If xe image ßu then x has co-implications by [7, Theorem 6.1] (8.1).

If x $ image ßu then by [7, Proposition 1.2] xx} = {q(u)} in B2 (Br= the homology

Bockstein spectral sequence of Xmodp). Then x — q(u) = ß^z. But ßx = qdu

so that x = q(u) + q(d^z). Also p(u + dtz) = pu + 0, since {g(u)} ^ 0 in B2.

Hence u + dyz satisfies the hypothesis of Theorem 4.1, so q(u + c^z) = x has

l-implication in H*(X;ZP). Q.E.D.

Theorem 4.3. Let X be a connected H-space with H^X) of finite type,

{Br} the cohomology Bockstein spectral sequence modp of X. Let xeH2q(X)p

such that kr(x) # 0, and ks(x)eP(Bs), s < r. Then ks(x) has (r — s)-implications

in Bs.

This follows from Theorem 3.11 since H*(X) is associative and commutative.

Corollary 4.4. Let Xbea connected H-space, H*(X) of finite type. Ifx e P(B2q),

ßjX = 0/or s ^j < r, and {x} # 0 in Br, then x has (r — s)-implications in Bs.

This follows from Theorem 4.3 and [7, Theorem 6.12] (8.2), by an argument

similar to that of Corollary 4.2.
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For s = 1, r = 2, (4.4) was proved earlier by J. C. Moore (in unpublished work)

by a different method.

Theorem 4.5. Let X be a connected H-space with H^(X) of finite type,

and suppose ßm = 0 for some m, so that Bm = Bm+1 (the cohomology Bockstein

spectral sequence modp). If xeP(B2q), ßjX = 0/or s ^j < r, s z% m < r, {x} ¿ 0

in Br, then x has co-implications in Bs.

This follows from Theorem 3.12 and [7, Theorem 6.12], (8.2).

Corollary 4.6. Let X be a connected H-space, H*(X) of finite type, and

suppose H,(X;Zp) = 0/or i large, i.e., H^(X;ZP) is finitely generated. If ßm = 0,

then Bm = Bœ, i.e., ßk = Ofor k^m.

Proof. Let j be the smallest integer > m, such that ß} ̂  0, and let x = ß-y

be a lowest dimensional element in image ßj. Then x is primitive since it is a

lowest dimensional element in image ß}. The dimension of x is even, for if it

were odd, then a lowest dimensional element z in image ßi (in the homology

Bockstein spectral sequence) would be a primitive element in an even dimension.

Then z would have co-implications by [7, Theorem 6.1] (8.1) which is impossible,

since H*(X;ZP) is assumed finitely generated. Then, since Bm = Bm+1 = ••• = B¡,

there is an element x' eP(B2nq) with {x'} = xeBj, j > m. By Theorem 4.5, x'

has oo-implications, which contradicts the finite generation of H^(X;ZP). Hence

ßj s 0 for all j ^ m, which proves the corollary.

From Corollary 3.13, we get the following two theorems:

Theorem 4.7. Let X be a connected H-space with H^(X) of finite type. If

xeP(B2™), then x has co-implications in Bœ (cohomology Bockstein spectral

sequence).

Theorem 4.8. Let X be a connected H-space, with H+(X) of finite type,

and suppose H^(X)/torsion is an associative, commutative algebra. If

xeP(B2m), then x has co-implications in B°°.

These theorems follow immediately from Corollary 3.13, since Boa=(H*(X)/tor-

sion)®Zp, Bœ=(/Z*(X)/torsion)®Zp, and //*(Z)/torsion, //„.(AO/torsion, are

free Hopf algebras over Z, which are associative and commutative under the

above hypotheses.

Theorem 4.9. Let X be a connected H-space, with H^(X) of finite type and

Hç(X;Zp) finitely generated. If H*(X;Zp) is primitively generated, then ß2 = 0

in B2, B2 = Bœ and all elements of p-torsion in H^X) have order exactly p.

Proof. According to [16, Theorem 4.9], (see also [9, §7]), H*(X;ZP) being

primitively generated implies that HJJi;Zp) is associative, commutative, and
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up = 0 for any positive dimensional u e H*(X ;ZP). Hence if an element x e H*(X ;Zp)

has l-implication, then xp ̂  0.

Let x = ß2y be a lowest dimensional element in image ß2, so dimx = 2g by

[9, Lemma 6.5]. Let x'eH*(X;Zp) such that {x'} = xeB2. It follows that x'

may be chosen to be indecomposable (see [9, Lemma 6.5]). Then x' may be chosen

primitive in H*(X;ZP), since H*(X;ZP) is primitively generated. From Corollary

4.4, it follows that x' has l-implication so that (x')p # 0. If {(x')p} # 0 in B2,

then, since (x')p e P(H*(X;Z„)), (x')p has l-implication in H*(X;ZP), and

(x')p2# 0. Let h = pk he the smallest power of p such that if (x')"=a, {a} =£ 0

in B2, {ap} = 0 in B2, ap^0inBv = H*(X;Zp).

Hence a"=ß1b, beH*(X;Zp).

Lemma 4.10. Z//?2#0, then there is a primitive element zeH2qh(X;Zp)

such that ßiz = 0, {z} # 0 in B2, and zp = ß1w*0, where weP(H*(X;Zp)).

Proof. The element a satisfies all conditions except that b (ßxb = ap) may

not be primitive. Since ap is primitive, we shall find out the form of elements

ceH*(X;Zp) such that ßxc is primitive. Since H*(X;ZP) is primitively generated,

the differentia] ßi is completely determined by its action on P(H*(X ; Zp)) = P,

ßt:P-+P. Let L=free associative, commutative algebra generated by P over

Zp, which is made a Hopf algebra by making elements of P primitive and a dif-

ferential Hopf algebra by extending ß1 : P -> P to d on all of L. There is a natural

map of differential Hopf algebras n :L->//*(X;Zp), induced by the inclusion

of P-*H*(X;Zp), which is onto since P generates H*(X;ZP).

Since /?1 :P(/Z2m(X;Zp))->P(//2m+1(X;Zp)) is zero [7, Theorem 6.12] (8.2), all

even dimensional generators of L are cycles. It is easy to verify directly that the

module of primitive elements of L has a basis consisting of the ring generators

of L (elements of P) and iterated pth powers of generators. Let xu —,x, be odd

dimensional generators of P such that the elements ßixi,--,ßiXl are linearly

independent, and xu —,x„ £|+1,—,{, are a basis for P in odd dimensions where

ßiii = 0, / 4- 1 = i = g. Then pVt,—^x, are a linearly independent set of even

dimensional elements of P.

Then it follows that L^ (®/= t A(x¡) ® Zp[j>,]) ® M, where àxt-tf, h = p',

0 ^ r < co (/i depends on i), and d(M) = 0 (A denotes exterior algebra). The

isomorphism is given by inclusion on the generators x¡, y¡ and on M, where M

is the subalgebra of Lgenerated by Çt+!,—,{, and other even dimensional ele-

ments of P. It follows that the isomorphism is one of coalgebras and of Hopf

algebras if p ^ 2. It follows that if up is primitive in L, and up = dv,

then there is an element u' = dv'eP such that (u - u')' = dw and w

is primitive. For the linear subspace S spanned by xu-,xb ^ = XjidXi)"-1, —,

i*j = *;W~\ 2*1 = i*i(¿iXi)"~\ -, is such that d(S) 2P n(image d).

Hence, in H*(X;Zp) if a" = p>, then there is u' = ^r' e P, with zp = (a- u')p
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= ßyw, we P. It remains to show that {z} # 0inB2, and zp^ 0. But if a— u' = ßyX,

then aeimageßy, which is false as shown above. Then it follows from Corol-

lary 4.4 that zpj= 0 and the lemma is proved.

Now ßy =jjfdy, and since w is primitive, i.e., if \¡i is the diagonal map in cohomo-

logy, \pw = n*w + n*w, it follows that \¡i(dyw) = n*y(dyw) + Tt*(dyw) = ó\w ® 1 +

1® dyw.Since z=jífc, ce H2%X),j*(cp- dyw) = 0, so that cp=ô1w+pa, aeH*(X).

Since z = jifceP(H*(X;Zp)), \pc = c ® 1 + 1 ® c + py, yeH*(X x X).

Then

\¡icp = cp ® 1 + 1 ® c" + Z iP) c""'' ®cl + p2b

= dyw ® 1 + 1 ® dyW + p\j/a..

Hence

pij/a, = poc ® 1 + 1 ® pec + Z (P) cp_i ® c' + p2ô

so iAa = a®l + l®a+ Z bicp~i ®c' + pô + n, (pn = 0,  b¡= p~l(p)).   Since

{z} # 0 in B2, then pe ^ 0.

Let zeH*(X;Zp), z(z) # 0, {z} ^ 0 in B2. Then

0.»)(*0- (^»(z-"-1®?)

= (jjayz^1®^)

= 0",« ® 1 + 1 ®/'*a + Z »¡z"-' ® z' +j*n)(zp-1® z).

Since pn = 0, n = d¿ so that jtf = ßtC. Since ^¿ = 0, (^öiz'-1®¿)

= (C)(ß (zp~1 ® z)) = 0. Hence for dimensional reasons

0»(zp) = (b1zp-1®z)(zp-1®z-) = i)1(p-l)!(z(z))p#0

(cf. [7, Lemma 6.2]). Then fV 0 in H*(X;ZP) which contradicts the hypothesis

that H*(X;ZP) is primitively generated. Hence ß2 = 0 so that B2 = BM by Cor-

ollary 4.6 and the theorem is proved.

5. Rational homology spheres which are //-spaces. In this section we shall study

the cohomology of //-spaces which are rational homology spheres. We shall

prove a theorem (Theorem 5.3) describing the mod 2 cohomology of such //-spaces.

We apply this theorem in §6 and §7, together with the results of J. F. Adams [1]

to prove the following theorems (these results were announced in [10, Theorem

5.1] in a slightly weaker form):

Theorem 5.1. Let p:S"-*B be a fibre map, with base B and fibre F a

connected polyhedra, B ¿ point. Then F is the homotopy type of a 1, 3 or 1

sphere.

Theorem 5.2.   Let X be a polyhedron which is an H-space and a rational
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cohomology sphere with H¿(X) = 0 for large i. Then X is the homotopy type

ofai, 3 or7 sphere or a 3 or 1 dimensional real projective space.

The result on homology we shall need is the following:

Theorem 5.3. Let X be an H-space, H*(X) of finite type, with H*(X;Q) = A(z),

dimz = n, and HJ(X ; Z2) = 0 for large j. Then /7*(X;Z2)=A(x)® Z2[y]/(y2fc)

as a Hopf algebra, where dimx = 2a - 1, y = Sqxx, n = 2k(2a) - 1, provided

H\X;Z2) = 0. If H\X;Z2)jíO, then H*(X;Z2) = Z2[x]/x2" + ', dimx = 1. Note

that Sq1x — 0 implies H*(X;Z2) = A(x), which we allow as a possibility.

The proof of Theorem 5.3 proceeds by a sequence of lemmas.

The idea of the proof is to show, using the information about the Bockstein

spectral sequence obtained in [9, Theorem 4.8], that the existence of more than one

even dimensional generator implies the existence of 2' torsion with r > 1. Then

the existence of such higher torsion is shown to lead to a contradiction, so that

there is at most one even dimensional generator y, and in that case y = Sqlx.

Let Bk denote the Bockstein spectral sequence in cohomology mod 2 of the

space X. We first describe this spectral sequence.

Lemma 5.4. Bk = A(çk)® (g)mè,è,(it)Z2|>i]/(yÎ'),where 1 + dim<^= dimyq(k),

q(k) is an integer depending on k, q(k) z% q(k + 1) S q(k) + L K = 2"', n, ̂  1,

h, dimy; = dimyi+1.

Proof. The case k = 1 is simply [9, Theorem 4.8], with ^ = x, q(l) = 1. We

now proceed by induction, assuming the lemma true for k. We prove the fol-

lowing two lemmas with this hypothesis.

Lemma  5.5.    For any I,  Blk has at most one nonzero element.

Proof. Since Bk = A(Ck) ® 0maia?(k)Z2[yi]/(y*'), any element in Btis a linear

combination of monomials fty?--y*", q = q(k), e = 0 or 1, 0 g n¡ < 2n>,

dimyJ + 1 = 2Mjdim y¡, 1 + dim^ = dim y,. Then

m

dim(^'--/mm)= e dim & +  Z ^dim^
i=i

= e((dimy,)- 1) + Z(»J7 h 2"*)dimy„.

Clearly no two different choices of s, nq,---,nm give the same dimension, which

proves Lemma 5.5.

Lemma 5.6.   ßky. = 0, q(k) ^ j ^ m.

Proof. By Lemma 5.5, there are no decomposable elements in the dimen-

sions of the generators y,-. Hence it follows from [9, Lemma 4.5] that ßkyj = 0.
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Now we return to the proof of Lemma 5.4. If ßkCk = 0, then ftsOon Bk so

that Bk+1 = Bk, £k+l = £k, q(k + 1) = q(k), and Lemma 5.4 is true in this case

for fc+1. If ßk£k^0, then ßk^k — yv and since ßkyj = 0 for all j,

Bt+i=A(5t+1)® ¿mèièî(»+i)Z2l><]/0'?')> ft« = 2"', where

&+i = {Gdi«"1}, 3 = «W, q(k + 1) = g(fc) + 1.

This completes the proof of Lemma 5.4. Note here the possibility that

j>i = x2 = Sqlx does not affect any step in the argument, except that the proof

of Lemma 5.6 becomes trivial for y1 = x2.

The truth of Lemma 5.4 establishes the truth of Lemmas 5.5 and 5.6 for all k.

From this we get:

For any abelian group A, let A2 denote its 2-primary component.

Lemma 5.7. For 1 <¡ i = m, there are elements wteH*(X;Z)2 such that

¿*(wi) = y i e H*(X;Z2) (j : Z -» Z2 is reduction mod 2).

Proof. It follows from Lemma 5.6 that the {y¡} axe permanent cocycles in

the Bockstein spectral sequence, from which it follows that they are in the image

of;* (see [7, Theorem 3.11]), so in particular in j^(H*(X;Z)2).

Lemma 5.8.   Order w;+1 > order w¡.

Proof. Since j*(wi+1) = yi+1> j*(w¡) = y h and since by Lemma 5.4, yi+1 per-

sists longer in the spectral sequence than y¡ (i.e., if q(k) = i, and yt = 0 in Bk+l,

then q(k + l) = i + l, so that yi+1 ¿ 0 in Bk+l), it follows that order wi+1 >

order w¡.

Lemma 5.9. Let z = wk, where k = 2"i~1, 1 = i = m, and suppose 2z^0.

Then yi+1 =;,(w<+i) # 0, i.e., m > i.

Proof. Let u =j*(z) = yk. Let /t:XxX->X be the multiplication on X.

Denote by A¡ the subalgebra of H*(X;Z2) generated by x,ylf—,)>,_!. Then

¿/ = 0 in dimensions ;' ¡> a, (a¡ = dimy¡).

Now /i*(y¡) - y¡®l-í®yieAi®Ai, for dimensional reasons. It follows

that (p*(y¡) - y. ® l - i (g y.)2 = o, i.e., y? is primitive, since this element is in

^-,q+i = 2aiAli ® A\, and either I or q = a¡.

Now dimz = ka¡. It suffices to show that H2ka'(X;Z2) # 0. For no decompos-

able element may have dimension 2ka¡ = 2"'ai, so if H2kai(X;Z2) ¿ 0, there must

be a new generator

yl+i=j^i+i)eH2ka\X;Z2).

Now, if fc > 1 (n¡ > 0), then yf is primitive, so u = y\ is primitive. Since

« = J*(Z) and 2z ^ 0,then it follows that z satisfies the hypothesis of Theorem

4.3, with r = 2, s = 1, and hence u has l-implication in H*(X;Z2) so that
//2fa"(X;Z2) # 0.
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If k = 1, then z = w¡, and u = y, is indecomposable in H"'(X;Z2). Hence,

there is a homology class y¡, dual to y¡ (i.e., y,(y,) / 0), with y, primitive

in Ha.(X;Z2), and ßyy, = 0 (since 2z = 0). Hence y¡ has 1-implication by Corol-

lary 4.2 (note that a, is even), so that H2a¡(X; Z2)# 0 and thus H2a'(X; Z2)¥= 0,

which completes the proof of Lemma 5.9.

Proof of Theorem   5.3.   By Lemma 5.4 with k = 1 (see [9, Theorem 4.8]),

H*(X;Z2) = A(x)® ®iStSmZj[yM(fi).

By Lemma 5.7, y, =;*(wi), w,eH*(X;Z2), and by Lemma 5.8,order wj+1 >order

w¡. Hence 2w, =t 0, for i > 1. It follows from Lemma 5.4 that if k - 2"'"1, w*

has the same order as w¡, so 2wk ̂  0 for i > 1. Then Lemma 5.9 implies w¡+ y + 0

if w, # 0 for i > 1. But applying this reasoning to w,„, the highest dimensional

w¡, we get a contradiction unless m = 1. Similarly, if yt # 0 and Sq1x = 0,

then 2wx =¿ 0 (i.e., wt is not of order 2), so that w2 # 0 by Lemma 5.9, which

is again a contradiction. Hence either Sq1x = yt and

//*(Z;Z2) = A(x)®Z2[S^Ix]/(S^*x)* or y, = 0 and H*(X;Z2) = A(x),

which completes the proof of Theorem 5.3.

6. Fiberings of spheres. In this section we prove Theorem 5.1.

Let A be a graded algebra over a field R. Then the set {xl5 •■•,xm}, x,eA, is

called a simple system of generators for A if the monomials xtl — x,k,

1 á ¿x < i2 < ••• < ik ̂  m, form an additive basis for ¿ over R, where dimx¡

is assumed odd for all i if characteristic R ^ 2.

We recall a theorem of Borel:

Theorem (Borel). Let p :E -* B be a fibre map, with fibre F. Let K be a field,

suppose H*(F; K)has a simple system of transgressive generators {xy,---,xm},

and suppose H'(E;K) = 0 for t<n. Then H*(B;K)^ K^y,-^»] in dimen-

sions < n, where y, is a transgression image of x, for each i.

This theorem is [5, Theorem 13.1(b)] and [5, Proposition 16.1]. It follows

easily by a standard argument from a comparison theorem, such as [^.Pro-

position 5.3].

Theorem 6.1. Let p:E-*B be a fibre map, with connected fibre F,

H'(B;K) = Hl(F;K) = 0 for large i, K a field. Suppose that H*(F;K) has a simple

system of transgressive generators and that H*(E;K) = A(Q, dimÇ = n. Then

H*(F;K) = A(x), i.e., the simple system of generators has only one element.

Proof. Let Er — cohomology spectral sequence for p over K. Let xt,---,xm

be a simple system of transgressive generators for H*(F;K). (Note that if char-

acteristic of K ^2, then dimx¡ is odd for each i.) Then XyX2---xm is the unique

element of highest dimension in H*(F;K). Let H\B;K) = 0fori>q, H"(B;K) j- 0.
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If u 7e 0 e H\B;K), then the total degree of z = xt ••• xm ® u = total degree w for

any w e E2, so z is a permanent cocycle in Er. Further, the fibre degree of z _

fibre degree of w, for any weE2, and since dr lowers fibre degree for r _ 2, z is

not a coboundary in any F,. Hence {z} ^0eEx and, since £œ S H*(E;K), it

follows that dimz = n.

Assume dimxi_dimx)+ l5for each i. Now x¡ transgresses, so that if fc=dimx,4-l,

then there is an element yteEk2°, with dkxl = {y¡}. By the theorem of Borel,

H*(B;K) = K[yu ••-,>'„,] in dimensions < n. Hence, if d\xnyl = k, y\ ^ 0 for

I < n/k, and since H'(B;K) = 0 for i > q, and n > q, y\ = 0 for / ^ n/fc. Let

s = greatest integer < n/k. Then xx ® yj ^ 0 in £2 and dt(xt ® /t) = yî+ ' = 0.

Hence, since fibre degree x¡ ® y\ = k — 1, x1 ®y\ is a permanent cocycle in £r.

Now t = dim(xj ® y I) = k - 1 + sk < n, if m > 1. In dimensions ^ í < n, the

boundary in the spectral sequence is completely determined by its action on

the x,'s, and the product structure, which is simply

A(x1,---,xm)®Kly1,--,ym]

in these dimensions if characteristic of K ¿t 2, and yields the same result even

when characteristic K = 2, since x1, —,xm is a simple system of generators. Hence

*{xi®.Vi} cannot be a boundary and its class is nonzero in Eœ. Then since

F«, = A(z), Xj ® y[ = z, m = 1 and Theorem 6.1 is proved.

Now let p : S" -> B be a fibre map, B connected. Then p is onto so that B is a

compact polyhedron, and H'(B) = 0 for large i. The fibre F is a closed subset of S"

so that F is a compact polyhedron, and H'(F) = 0 for large i.

If B is not a single point then the fibre F is not all of S". It follows that F is

contractible in 5", so that by a theorem of E. H. Spanier and J. H. C. Whitehead

[19], F is an //-space. (This result is deduced from the covering homotopy

theorem.) Then by Hopfs Theorem [5, Proposition 7.2] (or [16, Theorem 4.6.]) on

//-spaces, if Q = rational numbers and F is connected, then H*(F;Q) =A(x1,—,xm)

where dimx¡ is odd, 1 ^ i ^ ra. By Borel's transgression theorem [5, Theorem

13.1(a)], the x¡ may be chosen transgressive so that {x^—,xm} are a simple

system of transgressive generators for H*(F;Q). Hence by Theorem 6.1, it fol-

lows that m = 1, and we get the result of Borel [4] that F is a rational homology

sphere.

We now apply Theorem 5.3, and we get that H*(F;Z2) = A(x) ® Z2[y~\/(yh),

where y = Sqlx, h = 2" and y = x2 if dimx = 1 (y = Sq1x = 0 being allowed).

Now x is transgressive since it is the lowest dimensional element in the fibre,

and a Steenrod operation on a transgressive element yields a transgressive element.

Hence {x,y,y2,y\---,yhl2} is a simple system of transgressive generators for

H*(F;Z2) (note that z2 = Sg'z, if dimz = /). Therefore, by Theorem 6.1,

H*(F;Z2) = A(x), i.e., Sqxx = 0.

J. F. Adams [1] has shown that if a mod 2 homology n-sphere is an //-space,
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then n = 1, 3, or 7. Then F is a rational homology 1, 3 or 7 sphere (this follows

easily using the Bockstein spectral sequence mod 2, since £\ = E^). By [9, Theo-

rem 4.8], if H*(F;Z) has p-torsion for a prime p, then  n = 2qpx - 1, for

some a ^ 1, a ^ 1. It follows easily that H*(F;Z) has no p-torsion for any odd

prime p, since n = 1, 3 or 7. Hence F is a homology 1, 3 or 7 sphere.

Since F is an //-space, 7it(F) is abelian, so Tty(F) = Hy(F;Z). If n = 3 or 7, it

follows that F is simply connected. Then one can easily deduce that F is homo-

topy equivalent to S3 or S7, since there is a map of S3 or S7 into F which induces

isomorphism on homology groups (using the Hurewicz and Whitehead theorems).

If n = 1, then we have a map/ : S1^* F which induces an isomorphism of homol-

ogy, but since the spaces are not simply connected we cannot immediately apply

Whitehead's theorem.

However, the result follows in this case from the following:

Lemma 6.2. Let X and Y be connected H-spaces(5), f :X -* Y, a map in-

ducing isomorphism of homology. Then the map of universal covering spaces

f : X-* 7 also induces isomorphism of homology f :H*(X) = Ht,(Y), so that

f and f are homotopy equivalences if X and Y are polyhedra.

Proof. Let E = the space of paths in X which start at the identity of X,

i.e., ifaeE,a:I-+X, a(0) = e. Then E is an //-space, with multiplication point-

wise of paths as the product, i.e., (a-ß)(t) = u(t)-ß(t) (product in X). Then the

projection n:E^X, (n(a) = a(l)), is a homomorphism of //-spaces. Now X

is the set of equivalence classes of E, where a ~ ß if a(l) = ß(l) and a is homo-

topic to ßre\ 0 and 1. It follows easily that X is an //-space, the projection

% : X^X is a homomorphism of //-spaces, 7it(X) = Jt-1(e)» and the action of

txeiiy(X) on .Fby "deck-translation" is the same as the action of <xeiiy(X) £ X

acting by the left multiplication of X. Since X is connected, left multiplication

by an element of X is homotopic to the identity map of X, so that Tiy(X) acts

trivially on H*(X).

By replacing the spaces involved by others of the same homotopy type, we

may consider X as a fibre space over K(n,l) with fibre X, where n = 7iy(X), and

similarly with Y (see [18] or [5]). Then / induces a map of fibre spaces

X -f-->   Y

K(n,l)    —!—►   K(n,l).

The systems of local coefficients H*(X) and //*(?) are trivial by the above re-

(5) One may replace this hypothesis by the hypothesis that ny(X), n\(Y) act trivially on

Hj$), H.(F), respectively, and assume also that f :ny(X)^>-ni(Y) is an isomorphism. It is

in fact the first part of the proof of the lemma to prove this condition.
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marks, and since/* :H#(X) = H^(Y) and the map on the base spaces K(n,l) is

the identity, by the Comparison Theorem (see [15, Proposition 5.3] for example),

fl:Hif(X)-*Hif(Y) is an isomorphism, and thus by the theorem of J. H. C.

Whitehead,/' and/ are homotopy equivalences.

This completes the proof of Theorem 5.1.

7. Homotopy type of //-spaces which are rational homology spheres. In this

section we prove Theorem 5.2. We first use the device of the "projective plane

of an //-space X" together with Theorem 5.3 to show that the homology of X

is the same as that of one of the spaces S1, S3, S7, P3 or P7. Then we shall show

that a map can be constructed inducing the homology isomorphism, so that

applying Lemma 6.2, the result follows.

The projective plane P2X of an //-space X is described in [20], and various

cohomology properties of it are obtained in [12].

Let X be a connected polyhedron which is an //-space, with Ht(X ;Z2) = 0

for large ¡, and a rational homology sphere. Then by Theorem 5.3,

H*(X;Z2) = A(x) ® Z2\_y~]/(yh) where y = Sg'x, h = 2". If Sqlx = 0, then as we

saw in §6, X £ Sl, S3 or S7. Let us assume Sg*x = y =¿ 0. Now x is primitive,

since it is in lowest nonzero dimension of H*(X;Z2), therefore Sq1x= y is pri-

mitive, and H*(X;Z2) is primitively generated. It follows from [12, Theorem 1.1],

if dim y = 2n and n > 1, that H*(P2X;Z2) has as a basis over Z2, in dimensions

^ 4n + 2, É, n, £2, £n, Ç, n2, where dim£ = In, i(£) = x, t(Q = y2,n = SqH\

i is a map defined in [12], t ://'(P2X)- Hk~\X). Then HJ(P2X;Z2) = 0,

2n + l</<4n. Since n2 = Sg2"+1 r\ ̂  0 by [12, Theorem 1.1], we have

Sq1 Sq2n Sq1 £ = n2 ± 0 in H*(P2X;Z2).

Now n must be even. For if n is odd, then Sg2" is factorizable in Sg"s for

i < 2n. Since HJ(X;Z2) = 0 for 2n + 1<; < 4n, Sg2"£ = y(Sq^) where y is an

element of degree 2n — 1 in the Steenrod algebra. But since y is of odd degree,

it must be factorizable, which is impossible. Hence n is even. (This argument

could be extended to show that n = 2q.)

Then consider the Adem relation (see [2])

Sg"Sgn+1 =    Z     ("7 'W^-'Sg'.

Since n is even, we get

SqnSqn+1 = Sg2n+1 + Sg^Sg1 +      Z    ^Sg^-'Sg', ateZ2.

2á(Sn/2

If we apply both sides to £, since ¿j e H2n(P2X ;Z2), and HJ(P2X ;Z2) = 0 for

2n + l<;<4n, Sq'l; = 0 for 2 ^ t = n/2, Sg2n+1£ = 0, and Sg"+1£ = 0, if

n > 1. Hence if n > 1 Sq2nSql£, = 0, and thus n2 = Sq^q^Sq^ = 0 which is

a contradiction. Hence, if Sg'x # 0 in i/*(Z;Z2), then n = 1.
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Theorem 7.1. Let X be a connected polyhedron which is an H-space,

H¡(X;Z2) = 0 for large i, and H*(X;Q) = A(z), i.e., X is a rational homology

sphere. Then H*(X;Z2) = A(x), dimx = 1, 3 or 7 or H*(X;Z2) = Z2[x]/(x*),

h = 4 or 8, dimx = 1.

Proof. Let us suppose Sq^^O, so that H*(X;Z2) = Z2[x]/(xÄ), h = 2",

q > 1, dimx = 1, by the above argument. It remains to show that q = 2 or 3.

If we compute H*(X;Z2), where jf = universal covering space of X, using the

results of [6], we get H*(X;Z2) = A(z), dimz = 2q— 1. Since X is an //-space,

it follows from Adams [1] that q = 2 or 3. This proves Theorem 7.1.

In particular, if H,(X) = 0 for large i, it follows that H^X) has no odd torsion,

as in §6, and that X is homotopy equivalent to S3 or S7.

Then Theorem 5.2 will follow from:

Theorem 7.2. Let X be a connected polyhedron which is an H-space with

H,(X) = 0for large i, H*(X;Z2) = Z2\x]/(xH), h = 4 or 8, dimx = l. Then

X is homotopy equivalent to the real projective space P*_1.

Proof. As in the proof of Lemma 6.2, we consider X as a fibre space over

R(Z2,1) with fibre X. There is a natural map g of Ph~1 into R(Z2,1), which

induces an isomorphism of v.y(Ph~1) with Z2. We would like to lift this map to

amapf:Ph~l-*X, such that nof=g (n : X-* K(Z2,1)). The first obstruction

to lifting g is g*(k), where keHh(K(Z2,l);Z) is the first fe-invariant of X. Since

X is an //-space, the /c-invariant is in an ordinary cohomology group (without

local coefficients) and it is easy to see that k = zÄ/2, where z is a generator of

H2(K(Z2,1);Z). Since Hh(Ph~1;Z) = 0, the first obstruction to lifting g is zero.

But the higher obstructions are in still higher cohomology groups so that all

obstructions are zero and there exists a map f :PH~1 -»X, with nof= g.

It is obvious that/* is an isomorphism of Hjf(Ph~1;Z2) with H*(X;Z2), since

it is an isomorphism on cohomology mod 2, both cohomology rings being

Z2[x]/(xÄ) and the generator being sent to the generator. However, for any

given /, /„. may not be an isomorphism on integral homology. We shall show

that / can be changed so that it is an isomorphism on integral cohomology, and

hence on integral homology.

Let us consider the Moore-Postnikov system of the fibre map n : X -* K(Z2,l)

(see [17]).

The first term is a fibre space ti(1) :X(1)->R(Z2,1), with fibre K(Z,h-l)

(which is the first term of the Postnikov system of X). There is a commutative

diagram

I"   ,
R(Z2,1) -> K(Z2,1)

rd)
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where p(1) is a homotopy equivalence through dimension h — 1, i.e., p(1)

is an isomorphism of n¡(X) with 7r,(X(1)) for 0 á » á Ä — 1. Then

/(1) = p(1)0/:P''_1->X(1), with 7t(1)o/(1) = g. Since dimension P*-1 = ft-l,

if we can modify/(1) to make it an isomorphism on cohomology through di-

mension n — 1, then the modified map can be factored through X and induces

isomorphism with the cohomology of X.

Now 7t(1) is a principal fibre space, with group K(Z,h — l), so that there is an

action p :K(Z,/¡-l)xI(1)->I(1), which commutes with the projection n (1! Given

a map y : Ph~' -* K(Z,h -1), we may modify /(1) to a new map / = uo (y,/(1))o A,

and Jt(1)o I = g (here A is the diagonal map Ph~l -* P*'1 xP^J.Then

I* = A*o(y*,f(1)*)op*. Let í be a generator of HH~\X(i);Z). From dimen-

sional reasons and naturality of p, it follows that p*(£) = i*(Ç) ® 1 + 1 ® £,

where i : /C(Z,h — 1)->X(1) is the inclusion of the fibre. By a spectral sequence argu-

ment, it follows that ¿*(0 = 2t, i = fundamental class of //Ä_1(/C(Z,n-l);Z).

Then l*(0 = A*(2y*(0 ® 1 + 1 ®/(1)*(£)) = 2y*(t) +/(1)*(0-
If we could choose / so that /*(£) = x the generator of Hh~1(Ph~1;Z),

then / would be an isomorphism on all integral cohomology. Since /* =/(1)* on

H*(X;Z2),it follows that/(1)*(0 = x + 2n.Hence if we choose y so that y*(t)= -n,

then the modified map I* will send £ to x, and we are done.

8. A summary of "implication" theorems. In this section we present the principal

"implication" theorems about the homology of//-spaces, from various papers(6).

Let X be a connected //-space with H^(X) of finite type, throughout this sec-

tion. (Some of these theorems are true in a slightly wider context as noted in the

introduction.) Br and Br will denote the homology and cohomology Bockstein

spectral sequences of X, modp.

(8.1) Let xeP (B2m), x = ßry. Then x has co-implications [7, Theorem 6.1].

(8.2) Let I e P (B2m), ß& ± 0. Then I; has oo-implications [7, Theorem 6.12].

(8.3) Let X be homotopy commutative and let 2Br be the cohomology Bock-

stein spectral sequence mod 2. If £eP(2B2m), then £, has co-implications [8,

Theorem 8.1].

(8.4) Let X be homotopy associative and homotopy commutative. If

£eP(B2m), then £, has co-implications (no restriction on p) [8, Theorem 8.2].

(8.5) Let H*(X;Zpi) he associative and commutative for all q. If ¿;eP(B2m),

r > 1, then £ has co-implications [11, Theorem 2.3].

(8.6) Let xeP(H2m(X;Zp)), with p\x = 0. Then x has l-implication (Corol-

lary 4.2).

(8.7) Let £ e P(B2m), ßfi = 0 for s g j ^ r and {£} # 0 in B2m, r > s. Then

£ has (r - s)-implications (in Bs) (Corollary 4.4).

(6) I would like to take this opportunity to acknowledge that my proof of the implication

theorem announced in Abstract 553-79, Notices Amer. Math. Soc. 5 (1958), 820, was incorrect.

I do not know whether the theorem is true or not as stated.
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(8.8) Suppose ßm^0, for some m. If ¿¡eP(B2m), ßfi = 0 for s^j-^r,

s ímí r, {£,} ■£ 0 in B2m, then £ has oo-implications (in Bs) (Theorem 4.5).

(8.9) Let £,eP(B2™). Then £ has oo-implications (Theorem 4.7).

This is not a complete list of "implication" theorems in these papers; for

instance, in [8] there are various theorems with hypothesis involving a map

into an //-space. Also we have presented the theorems in this list in the same

format, with reference only to the Bockstein spectral sequence. In the papers in

which they occur, they are usually given also in other forms. Note that in theorems

in which only one term of the Bockstein spectral sequence is mentioned, "n-im-

plications" means in that term.
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