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By degree we mean degree of recursive unsolvability as defined by Kleene and

Post in [4]. Following Shoenfield [7], we say a degree c is recursively enumerable

in a degree b if there is a set of degree c which is the range of a function of degree

less than or equal to b, and we call a degree recursively enumerable if it is re-

cursively enumerable in 0 (i.e., if it is the degree of a recursively enumerable set).

The jump operator, which takes the degree d to the degree d' (the completion

of d), was defined in [4] and has the following properties: if h is recursively

enumerable in d, then h^ d'; d' > d; and d' is recursively enumerable in d.

In [4] a degree c is said to be complete if there exists a degree d such that d' = c.

Friedberg [1] showed that a degree c is complete if and only if c ^ 0'.

For any degree b, if b ^ d ^ b', then b' ^ d' ^ b and d' is recursively enu-

merable in b'. Shoenfield [7] proved that if b' i% c z% b" and c is recursively

enumerable in b', then there is a degree d such that b z% d g b' and d' = c. Thus

the degrees which lie between b' and b" and are recursively enumerable in b' can

be viewed as the completions of the degrees which lie between b and b'. He also

showed there is a degree greater than b and less than b' which is not recursively

enumerable in b.

Our main result below is that the degrees which lie between b' and b" and are

recursively enumerable in b' can be viewed as the completions of the degrees

which lie between b and b' and are recursively enumerable in b. Our notation is

that of [3].

Theorem 1. Let a, b and c be degrees such that a^b, a i% b' ¿j c and c

is recursively enumerable in b'. Then there exists a degree d such that a ^d,

b ^ d, d' = c and d is recursively enumerable in b.

Proof. We first prove the theorem when b = 0, and then indicate the changes

needed when b > 0. Thus we have degrees a and c such that a > 0, a ^ 0' ^ c

and c is recursively enumerable in 0', and we wish find a recursively enumerable

degree d such that a^ d and d' = c.

Let/ be a function of degree less than or equal to 0' whose range is a set C of
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degree c. Let c be the representing function of C. Let g be a recursive function

whose range is a set J of degree 0'. Let j be the representing function of J. We

define

rO       if (Ek)k<s(g(k) = n),
j(ß,n) = <

11       otherwise.

It is clear that j(s, n) is a recursive function, and that for each n, lims j(s,n) exists

and is equal to j(n). Since/is recursive in j, there is a Gödel number zx such that

fin) = {ZiY(n) = V(ßyT\(j(y),zun,y))

for all n. We define a recursive function/(s, n) of supreme importance to our

argument ;

f(s,n)

tf(«Tí(n PÍ(s"'Yz1,«,v))

Ls + l

if(£yWl III píl''a),zun,y),
\i<y

otherwise.

We claim that lims/(s, n) exists and is equal to/(n) for all n. Our claim is a con-

sequence of the fact that/(n) = {z^Xn) and lims j(s, n) =j(n) for all n.

Let a he an everywhere positive function of degree a, and let z2 be a Gödel

number such that {z2}J(n) = a(n) for all n. We define

a(s, n) =

'[/^yrj(np^">,z2,n,yjj

if (Ey)yú^T[^Y[pÍ^,z2,n,y^&U(y)^í^,

1 otherwise.

The function a(s, n) is recursive; for each n, lims a(s, n) exists and is equal to a(n).

A useful property of the Gödel numbering devised by Kleene in [3] to arith-

metize his formalism for recursive functions is : the Gödel number of a deduction

is greater than the intuitive counterpart of any formal numeral occurring in the

deduction. We will denote this fact by GND. It follows from GND that a(s, n) = 1

whenever n^ s.

We define two recursive functions, t(s, n) and h(s, n), by means of an induction

on s:

t(s,n) = pmm<s(f(s,m) = n);

h(0,ri) = 0;

h(s + i,ri) = h(s,n) + sg(|t(s + 1,ft)- t(s,n)\).

Recall that the bounded least number operator is defined in such a way that

t(s, n) = s if and only if there is no m < s such that/(s, m) = n.
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We now proceed to define four recursive functions, y(s,n,e), m(s,e), r(s,n,e)

and d(s, n), simultaneously by induction on s. The function d(s, n) will be such that

0^d(s + l,n)gd(s,n)^l

for all s and n. Thus for each n, lims d(s,n) will exist; furthermore, lims d(s,n)

will be the representing function of a recursively enumerable set D. The degree

of D will be the desired degree d. At stage s of the construction we put finitely

or infinitely many natural numbers in D; our main objective is to see that c ^ d';

however, with the aid of a system of priorities, we exercise restraint when we add

members to D in order to insure that a:g d and d' ^ c.

Stage s = 0. We set y(0, n, e) = r(0, n, e) = 0, m(0, e) = e + 1 and d(0, n) = 1

for all n and e.

Stage s > 0. We define y(s, n, e) for all n and e:

y(s,n,e) =

'pyTliflpf8' U\e,n,y
\i<y

ifn^e&(Ey)f!SlT\(Ylp'i
\i<y

d(s-l.i)
,e,n,y\,

10     otherwise.

It follows from GND that y(s, n, e) = 0 whenever n~2i s.

We define m(s,e) for all e; there are three mutually exclusive cases.

Case 1. y(s, e, e) = 0. We set m(s, e) = e + 1.

Case 2. y(s, e, e) > 0 and there is an n such that

e < n < m(s - l,e)&y(s,n,e) ^ y(s - l,n,e)&a(s,ri) ^ U(y(s,n,e)).

We set

m(s,e) = pne<„[y(s, n, e) ¿ y(s - 1, n, e) &a(s, n) ± U(y(s, n,e))].

Case 3. Otherwise.

We set

m(s, e) = pn\m(s — 1, e) ^ n < 2m(s — 1, e) + s

&(£() (e < t ^ n&a(s,t) ^ U(y(s,t,e))~\.

Note that Case 3 of the definition of m(s, e), the least number operator is bounded.

We define r(s,n,e) and d(s,p"^) for all n and e by means of a simultaneous

induction on e. Let e ^ 0 and suppose r(s,n,i) and d(s,p1) have been defined for

all i < e and all n ; we define r(s, n, e) and d(s, p") for all n as follows :

r(s, n, e)

\0   if(Ei)(Em)(Et)li<e£t^n&p,<y(s,t,e)

&d(s,pT)*d(s-l,p?)l

1   otherwise;
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rd(s-l,p") ifn^A(s,e),

d(s - 1, p") if (Ei)(Em) [i ^ e & i ^ m < m (s, i)

d(5' P"e) = & <s, m, i) = 1 &pne < y(s, m, i)],

^ 0 otherwise.

We conclude the construction by setting d(s, n) = d(s — 1, n) for all n not a power

of a prime. It is readily verified by the method of [4] that each of the four functions

just defined is recursive. Such a verification is possible for two reasons: each of

the functions a(s,n) and h(s,n) is recursive; at stage s > 0, all quantifiers, as well

as all applications of the least number operator, are bounded. For each n, let

d(n) = lims d(s, n) ;

it is clear that d(n) = 0 if and only if there is an s such that d(s, n) = 0. Thus d is

the representing function of a recursively enumerable set. Let d be the degree of d.

We list some remarks which will be needed in vital parts of the body of our

argument:

(Rl)(s)(e)lm(s,e)>el,

(R2) (s)(n)(e)\_r(s,n,e) = 0-> r(s,n + l,e) = 0];

(R3) (s)(n)(e)l(y(s,n,e) = O&n > e)->m(s,e) ^ n].

Remark (Rl) is easily proved by induction on s if the definition of the bounded

least number operator is kept in mind.

We prove remark (R3) by induction on s. We have

0)(e) [(y(0, n, e) = 0 & n > e) -► m(0, e) ^ n].

Let s be such that s > 0 and

(n)(e)[(y(s - \,n,e) = O&n > e)-> m(s - l,e)g»].

Let e and n be such that

y(s, n,e) = 0       and n > e.

Then a(s, n) ^ U(y(s, n, e)), since a(s, n) ^ 1 and U(0) = 0. First we suppose

n< m(s - l,e). Then y(s — l,n,e) > 0 as a consequence of the induction hypo-

thesis. But then either Case 1 or Case 2 of the definition of m(s,e) holds, and so

m(s,e) ^ n. Now we suppose m(s — \,e) ^ n. If either Case 1 or Case 2 of the

definition of m(s,e) holds, then m(s,e) ;£ m(s - l,e) ^ n by remark (Rl). If Case

3 holds and n < 2m(s - 1, e) + s, then m(s, e) g n. If Case 3 holds and

n t 2m(s - l,e) + s, then m(s,e) ^ 2m(s -l,e) + s^n. (Note that if Case 3

holds and

(t)[e < t < 2m(s - 1, e) + s -»■ a(s, t) = U(y(s, t, e))},

then m(s,e) = m(s — l,e) + s; this last is a consequence of the definition of the

bounded least number operator.)
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We introduce two predicates :

A(e): if the set {m(s,e)\s ^ 0} is infinite, then there is an n^e such that

lims y(s,n,e) either does not exist or is equal to 0.

B(e): lim„ d(p"e) exists and is equal to 1 — c(e).

We will prove (e)A(e) and (e)B(e) by means of a simultaneous induction on e.

From (e)A(e) it will follow that a^d. From (e)B(e) it will follow that c ^ d'.

Fix e* ^ 0 and suppose A(e) and B(e) are true for all e < e*. We proceed to prove

A(e*) and B(e*).

Lemma 1.   Let y(s,n,e*) > 0 and m(s,e*) > n ^ e*. Lei d(s,pf) = d(s - l,pj")

/or aZZ i, m and í such that i < e* ^ 11% n and p"' < y(s, t, e*).    Then   y(s, n, e*)

= y(s + l,n,e*).

Proof.   Since  y(s,n,e*)>0,  we  have

y(s,n,e*)^pyT1y(Ylpf^i'i\e*,n,y).

We suppose y(s + l,n,c*) / j(s,n,e*) and then show there is an i, an m and a í

such that

i<e*^t^n &pT < y(s,t,e*)&d(s,pf) # d(s - Lpj").

Since y(s+ l,n,e*) =£ y(s,n,e*), there must be a ; < y(s,n,e*) such that

d(s,j)¥=d(s - l,j). Recall that d(s,w) = d(s - l,w) for all w not a power of a

prime. Thus there is an V and an m' such that

d(s,p?')#d(s-l,pï?')

and p™' < Xs,n,e*). But then by the hypothesis of the lemma, e* ^ ¡". Thus we

have

e* ^ i'&e* ^ n < m(s,e*)&p^' < y(s,n,e*)&d(s,pT') í d(s - l,pf).

It follows from the definition of d(s, pf) that r(s, n, e*) = 0. But this last means

the desired i, m and t exist.

Lemma 2.     Lei >>(s, n, e*) > 0 and m(s, e*)> n> e*. Let d(s, p?) = d(s - l,p?)

for alii, m and t such that i < e* ^ í íS nandp™ < y(s,t,e*). Thenm(s + l,e*)>n.

Proof.    Since m(5, e*) > n > e*, it follows from remark (R3) and Case 1 of

the definition of m(s, e) that

y(s,t,e*)>0

for all t such that e* ^ í ^ n. But then by Lemma 1,

y(s,r,e*) = j;(s + l,f,e*)

for all í such that e* ^(gn. Suppose m(s + l,e*) ^ n.Then m(s + l,e*) <m(s,e*),
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and consequently, Case 2 of the definition of m(s + i,e*) holds. This means

there is a t (namely, m(s + l,e*)) such that

e* < t ^n&y(s,t,e*)¿y(s,+ í,t,e*).

Lemma 3.   A(e*).

Proof. By the hypothesis of our theorem the function a is nonrecursive. We

suppose A(e*) is false and show a is recursive.Thus the set {m(s,e*)\s S: 0} is

infinite, and for each n S; e*, lims y(s, n, e*) exists and is positive. Let R(n, s)

denote the predicate

m(s,e*) > n &(e)(m)(t)[(p^ < y(s,t,e*)&e <e*^t^ri)

->d(s-l,p:) = d(p")l

We know B(e) is true for all e < e*. This means limm d(p™) exists for all e < e*.

For each e < e*, let g(e) be such that

(m){m^g(e)^d(P:) = d(pl^)l

We define a recursive function z(n) as follows : first we require that z(n) = 1 for

all n not a power of a prime ; then we specify

*(pD =

d(pe/e))     ife>e*&m^g(e),

d(p") if e>e*&m<g(e),

1 otherwise.

The predicate R(n, s) can now be rewritten as

m(s,e*) > n &(e)(m)(t)[(p™ < y(s,t,e*)&e <e* ^t^n)

^d(s-l,p") = z(p™)].

It is clear that R(n,s) is recursive, since the functions m,y and z are recursive.

Now we show (n)(Es)R(n,s). Fix n. Since lims y(s,n,e*) exists for all n ^ e*

there is a y such that

y ^y(s,t,e*)

for all t and s such that e* i£ t i£ n. Let s ' be so large that

d(s-l,w) = d(w)

for all s and w such that s^s' and w < y. Since the set {m(s, e*) | s ^ 0} is infinite,

there is an s 2: s' such that m(s,e*) > n. But then R(n,s).

Let w(n) denote the recursive function psR(n,s). Note that w(n + 1) ^ w(n)

for all n.
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Next we prove y(w(n),n,e*) = limsy(s,n,e*) for all n > e*. Fix n > e*. We

show by induction on s that y(w(n), n,e*) = y(s, n, e*) for all s ^ w(n). Let s be

such that s ^ w(n) and

y(w(n),e*) = y(s,n,e*)&R(n,s).

Since m(s, e*)> n> e*, it follows from remark (R3) and Case 1 of the definition

of m(s,e*) that y(s,t,e*) > 0 for all / such that e* ^ t ^ n. By the definition of

R(n,s), we have

d(5-l,p") = d(p^)

for all e, m and t such that e < e* z% t z% n and p™ < y(s, t, e*). Recall that if

d(s — 1, w) = iZ(vv) then d(s', w) = d(w) for all s' ^ s. It follows from Lemma 1 that

y(s,t,e*) = y(s + l,t,e*)

for all t such that e* ^ i g n. It follows from Lemma 2 that

m(s + l,e*) > n.

But then

y(w(n), n, e*) = y(s + l,n,e*)&R(n,s + 1).

Thus y(w(n), n,e*) = y(s, n, e*) for all s ^ w(n), and lims y(s, n, e*) = y(w(n), n, e*).

Finally, we show by means of a reductio ad absurdum that

a(n)= U(y(w(n),n,e*))

for all n > e*. It will then follow that a is recursive, since w is recursive. Fix

n > e* and suppose a(n) ^ U(y(w(n), n, e*)). Since y(w(n),n,e*) = limsy(s,n,e*),

and since a(n) = lims a(s, n), there is an s* such that for all s ^ s*,

a(n) = a(s,n)^ (7(Xs,«,e*)) = rj(Xw(n),n,e*)).

Let s> s* and suppose m(s — l,e*) g m(s*,e*) + n + e* + 1. If either Case 1

or Case 2 of the of the definition of m(s, e*) holds, then

m(s,e*) g max(e* + l,m(s — l,e*)) S m(s*,e*) + n + e* + 1.

If Case 3 holds and n < 2m(s - 1, e*) + s, then m(s,e*) ^ n. If Case 3 holds and

2m(s — l,e*) + s z% n, then m(s, e*) i% n. Thus we have shown by induction on s

that

m(s, e*) ^ m(s*, e*) + n + e* + 1

for all s ^ s*. But this last is absurd, since the set {m(s, e*) \ s ^ 0} is infinite.

For each e ^ 0, we say e is stable if for all n ^ e, limsXs>n>e) exists and is

positive. Note that if e is not the Gödel number of a system of equations, then

y(s,n,e) = 0 for all s and n, and consequently, e is not stable. It follows that

there are infinitely many e which are not stable, since there are infinitely many e

which are not Gödel numbers of systems of equations. We define
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e0  = pe (e is not stable);

ej+1   = pe (e > e¡ and e is not stable).

Thus e0<el< e2< ■■■ is a listing of all the e which are not stable. For each

j 2; 0, let n¡ be the least n 5; e} such that lims y(s, n, ej) either does not exist or is

equal to 0.

The most important part of our argument is contained in Lemma 4. If the proof

of our theorem is a heavy meal, then the proof of Lemma 4 is the main course;

furthermore, it is there that the combinatorial flavor of our reasoning is strongest.

Lemma 4.   For each k and v, there is an s^v such that

(j)j<kím(s,e¡) Ú rij V r(s, np ej) = 0 V y(s, np ej) = 0].

Proof. Fix k and v. We suppose there is no s with the properties required by the

lemma, and then show it is possible to define an infinite, descending sequence of

natural numbers.

We propose the following system of equations as a means of defining two

functions, S(t) and M(t), simultaneously by induction:

S(0) = ps (s^v);

M(t) = pjlj <k&nj< m(S(t), ej)

& r(S(t), np ej) = 1 &y(S(t), np ej) > 0] ;

S(t + 1) = ps(Em)ls ^ S(t)&m < y(S(t),nMm,eM(t))

&d(s,m) ± d(S(t) - l,m)].

Clearly S(0) is well defined and greater than or equal to v. Suppose t 2:0 and

S(t) is well defined and greater than or equal to v. Then M(t) < k, since we have

supposed the lemma to be false. Thus

y(S(t),nMit),em))>0

and limsy(s,nM((),eM(()) does not exist or is equal to 0. Then there must be an

s > S(t) such that

yi.s,nm},em)) # y(S(t),nm),em));

note that S(t) > 0, since y(0, n, e) = 0 for all n and e ; this means there is an s > S(t)

and an m such that

m < y(S(t),nM(t),em))&d(s -\,m)¿ d(S(t) - l,m).

Then S(t + 1) is well defined and greater than or equal to v.

For each t ^ 0, let

u(t) = pm\d(S(t + 1), m) # d(S(t) - 1, m)].
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Now we show w(f) < «(i — 1) for all t > 0. Fix t > 0. Since we have

u(t) < y(S(t),nM(t),eMW)

by definition of u, it will be sufficient to show

y(S(t),nM(t),eM(t)) ^ u(t - 1).

Since d(w) — 1 for all w not a power of a prime, there must exist i and m such

that u(t - 1) = p?. Note that d(S(t), u(t - 1)) í d(S(t) - 1, u(r - 1)); this last

follows from the definitions of S(t) and u(t — 1). Let

e = eM(t), s = S(t) and n = nM(().

First we suppose i < e. This means

i < e g n &iZ(s,p") ̂  d(s - l,pD&Ks,">e) = 1,

since M(t) < k. But then it follows from the definition of r(s, n,e) that y(s, n, e) ̂  pf.

Now we suppose i ^ e. This means

e<= i &e ^ n < m(s,e)&r(s,n,e) = 1 &d(s,p?) + d(s - l,pf),

since M(t)<k. But then it follows from the definition of d(s,p") that

y(s,n,e)z%pT = u(t-l).

Lemma   5. 1/ c(e*) = 0, then lim„ d(p"*) exists and is equal to 1.

Proof. Let t be the least m such that/(m) = e*. Let s' be so large that s' >i

and f(s, m) =f(m) for all s and m such that s^s' and m^i. Then t(s,e*) = t

for all s ^ s', and consequently, h(s,e*) = h(s',e*) for all s^ s'. But then

d(s,pe".) = d(s-l,p^)

for all s and n such that s > 0 and n ^ n(s',e*), since n(s,e*) i% h(s',e*) for all

s ^ s'. It follows that limsiZ(s,p"*) = 1 for all n^h(s',e*), since d(0,vv) = l

for all w. Then d(py = 1 for all n ^ n(s',e*), and lim„d(p;.) = 1.

Lemma   6. //c(e*) = 1, then lim„d(p",) exists and is equal to 0.

Proof. First we show that the set {t(s, e*) \ s ^ 0} is infinite. Suppose

t(s,e*) ^ t for all s. Let s' be so large that s' > t and f(s,m) =f(m) for all s and

m such that s^s' and m ^ i. Then f(s',t(s',e*)) = e*, since i(s',e*) < s'. But

/(S',í(s',e*))=/(í(s',e*)),

since i(s',e*)^t. But then/(i(s',e*)) = e*; this last is impossible because C is the

range of/ and c(e*) = 1.

Since the set {t(s, e*) \ s ^ 0} is infinite, it is clear that the set {Zi(s, e*) | s ^ 0}

is infinite.

By Lemma 3, we know A(e) holds for all e ^ e*. This means that if e ^ e* and e
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is stable, then the set {m(s,e*) | s ^ 0} is finite. If e :£ e* and e is stable, let m(e)

be the greatest member of {m(s, e*) | s 2: 0} ; if e ;£ e* and e is not stable, let

m(e) = n}, where j is such that e = e¡. If e ;£ e* and e ¿m < m(e), then

lims)>(s> m,e) exists. Let y be so large that

y^y(s,m,e)

for all s, m and e such that e ;£ e* and e ^ m < m(e).

Fix n > y. We show d(p".) = 0. It will suffice to find an s such that d(pe", s) = 0.

Let v be such that h(v, e*) > n. Let k be such that if e ^ e* and e is not stable,

then e = e¡ for some j < k. By Lemma 4 there is an s ïï v such that

0)j<*[™(s, e,-) Ú ij V Hs> «j, ej) = 0 V y(s, n;, e,) = 0].

We will show :

h(s,e*)> n;

(e) (m) [(e ^ e* & e ^ m < m(s, e)) -» (r(s, m, e) = 0 V p"» ̂  )>(s> Wj e))].

It will then follow from the definition of d(s,p".) that: d(s,p",) = 0. We have

h(s, e*) > n, since s^d and h(s, e*) is a nondecreasing function of s. Fix e and m

so that ef^e* and eim< m(s, e). Suppose e is stable. Then m < m(e), since

m(s,e) g m(e). But then y ^ y(s,m,e), and consequently p"* S: y(s, m, e), since

n > y.

Now suppose e is not stable. Then e — ep where j < k, and m(e) = n,-. If m < ny,

then m < m(e) and p"* ?ï y(s>m>e)- Suppose m~¿.nP Then m(s,ej)> n¡. This

last means that either r(s, n}, e) = 0 or >»(s, n,-, e) = 0. If r(s, np e) = 0, then

by remark (R2), r(s, m, e) = 0, since m k np Suppose y(s, np e) = 0. Since

n}fim< m(s, e), it follows from remark (R3) that n¡ = e. But then v(s, e, e) = 0,

and Case 1 of the definition of m(s,e) holds. It follows that m(s,e) = e + \,m = e

and y(s, m, e) = 0.

Thus d(p"e,) = 0 for all n> y, and lim„ d(p",) exists and is equal to 0.

Lemmas 5 and 6 constitute a proof of B(e*). That concludes our proof by

induction of (e)A(e) and (e)B(e). It is now easily seen that c ;£ d'. Observe that

(e)(£i)[(m)mèI(d(p?) = 1) V(m)mêI(d(pD = 0)]

is an immediate consequence of (e)B(e). We define

k(e) = ptl(m)m^(d(P:) = 1) V(m)mèI(d(p") = 0)].

The function k has degree less than or equal to d', and by (e)B(e),

c(e) = 1 - d(pT)

for all e.

Lemma   7. a^d.

Proof. We suppose there is a Gödel number e such that
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a(n) = {e} (n)

for all n, and then show A(e) is false. First we show that limsy(s,n,e) exists and

is positive for all n ¿t e. Fix n 5: e; let

w = pyT¡(a(y),e,n,y).

Let s' be so large that d(s,m) = d(m) whenever s^s' and m < w. Then

y(s, n,e) = w& U(w) = a(n)

for all s ^ s' + w; w > 0, since 0 is not the Gödel number of a deduction.

Now we show the set {m(s, e) | s ^ 0} is infinite. We fix m > e and obtain an s'

such that m(s',e) > m. Let s be so large that s> m and

a(s,t) = a(t) = {e}d(t)=U(y(s,t,e))

for all í such that e^lgm. If m(s — l,e) > m, then s — 1 is the desired s'.

Suppose m(s - l,e) ^ m. This means

a(s,t) = U(y(s,t,e))

for all í such that e^(^ m(s — l,e); in addition, Xs>e,e) > 0, since a(s,e) ^ 1

and 1/(0) = 0. But then Case 3 of the definition of m(s, e) holds. It follows that

m(s, e) > m, since s > m.

Lemma 8. d' ^ c.

Proof. We will define two functions, E(e, n) and L(e), simultaneously by

induction on e so that each is recursive in the function c(n). We will combine the

definition of £ and L with a proof by induction on e of the following :

(e) (n) {E(e, n)  = 0 «-> [n ^ e & (w) (£s) (s > w & m(s, e) > n)

&(m)(n S: m ^ e -> (Ey) T\(ä(y),e, m,>>))]};

(e)(m)\m 2; L(e) -> d(pD = d(pet(e))].

It follows immediately from the above and remark (Rl) that

(e)[E(e,e) = Q~(Ey)T\(d(y),e,e,y)-];

but then if £ is recursive in c, we have d' 5j c.

Fix e ^ 0. Our induction hypothesis has two parts:

(1, e) for each ¿ < e and each n, E(i,n) has been defined and

£(i, n) = 0 <-> [n ^ i & (w) (Es) (s>w& m(s, i) > n)

&(m)(n^m^i-+ (Ey)T\ (d(y), i, m, >>))] ;

(2, e) for each i < e, L(i) has been defined and

(m)[m^L(0->d(pr) = d(p1L(O)].
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We proceed to define E(e,n) for all n, verify (1, e + 1), define L(e) and verify

(2, e + 1).

Let (1, e + 1, n) denote the following predicate: for each t <n, E(e,t) has been

defined and

E(e,t) = 0<^[t^e&(w)(Es)(s > w&m(s,e) > t)

&(m)(t ^ m ̂ e^(Ey)T\(d(y),e,m,y))l

To verify (1, e + 1), it suffices to prove (1, e + 1, n) for all n. We define E(e,n)

and prove (1, e + 1, n) for all n by means of an induction on n. First we set

E(e, t) = 1 for all t < e. Then it is clear that (1, e + 1, t) holds for all t ^ e. Now

we fix n^e and suppose (1, e + 1, n) holds. We define E(e,n) and then prove

(1, e + 1, n + 1). The definition of E(e,n) has two cases.

Case 1. (Et)(e ^t<n &£(<?, i) ^ 0). We set E(e, n) = 1.

Case 2. Otherwise. It follows from (1, e + 1, n) that

(#>m^^ (£y)Ti (d(y), e, m, y)).

For each m such that n > m S; e, let

y(m) = /tyT11(d(y),e,m,y).

Let y* be the largest member of {y(m) \ n > m >: e} U {0}. Let

s* = aís[_(0(i < y* -» d(s - 1, i) = d(i)) &s > y*].

Recall that for each s > 0 and i, if d(s - 1, i) = d(i), then d(s', i) = d(i) for all

s' ?î s. It follows from the definition of y(s,m,e) and the fact that 0 is not the

Gödel number of a deduction that

(s) (tri)[(s ^s* &n> m^e)-y y(s, m, e) = y(m) > 0].

We define

'0       if (Es) {y(s, n,e)>0&n< m(s, e)&s>s*&

(i)i<e[(m)(m < L(i) ^ d(s - l,pT) = d(p?))

E(e,n) = &(m)(y(s,n,e)>m^ L(i)-+ d(s - l,pf)

= d(pf(i)))]},

. 1       otherwise.

To verify (1, e + 1, n + 1), it suffices to prove

E(e,n) = 0<->[n ^. e&(w)(Es)(s > w&m(s,e) > n)

&(m)(n ^ m ^e-*(Ey)T\(d(y),e,m,y))l

Suppose E(e, n) = 0. Then Case 2 of the definition of E(e, n) must hold. Let s be

the natural number whose existence is required by the fact E(e, n) = 0; thus
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y(s,n,e) > 0 &n < m(s,e)&s> s*.

It is our aim now to prove

y(s,n,e) = y(s',n,e)&n < m(s',e)

for all s' ^ s by means of an induction on s'. Fix s' > s and suppose

y(s,n,e) = Xs' _ l,n,e)&n < m(s' — l,e).

Suppose for the sake of a reductio ad absurdum that there is a w such that

d(s' — l,w) t¿ d(s' — 2,w) and w < y(s' — l,n,e). Then there must be an i and

an m such that (0) and (1) are true:

(0) d(s' - l,pT) # d(s' - 2,p?)&p? < y(s' - l,n,e) = y(s,n,e);

(1) (Oi'<¿m')ld(s' - 1,P?') = d(s' - 2,pT')VpT' i% Ás' - l,n,e)].

If i < e, then it follows from the second half of (0), the definition of s and (2, e)

that d(s — l,pT) = d(pf); but this last contradicts the first half of (0), since s'> s.

Thus i ^ e. Since e ^ n < m(s' — l,e), it follows from (0) and the definition of

d(s' — 1,pT) that r(s' — l,n,e) = 0. This last means there is an V, an m' and a í

such that

t' < e z% t ^ n&p?: < y(s' - l,t,e)&d(s' - l,pJ7') ̂  d(s' - 2,p,"i').

If í = n, this last contradicts (1), since i' < e 5¡ i. Thus í < n, and

p? <y(s'-l,t,e) = y(s*,t,e)<iy*,

since s' > s > s* and e ^ í < n. But this is absurd, since

d(s' - l,Pp')= d(s' - 2,pT') = d(s - l,p?) = d(p?)

is a consequence of the fact that s' > s> s* and p™ < y*.

Since d(s' — l,w) = d(s'- 2,w) for all w < y(s'-l,n,e), and sincey(s' — l,n,e)

= >>(s, n>e) > 0, it must be that

y(s',n,e) = y(s' - l,n,e) = y(s,n,e).

Then we have

(m)\n ^ m ^ e-> y(s',n,e) = y(s' - l,n,e)>0],

since s' > s > s*. It follows that either Case 2 or Case 3 of the definition of m(s',e)

holds. If Case 2 of the definition of m(s',e) holds, then it is clear n < m(s',e).

If Case 3 holds, then n < m(s',e) because n < m(s' — l,e).

Thus we have shown that

y(s',n,e) = y(s,n,e) > O&n < m(s',e)

for all s' 2: s. It follows immediately that (Ey)T\(d(y), e, n, y) and
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(w) (Es) (s> w & m(s, e) > n).

Note that

(m)(n>m^e-> (Ey)T\(d(y),e, m, y))

is a consequence of the fact that Case 2 of the definition of E(e,n) holds. That

completes the first half of the verification of (1, e + 1, n + 1); in order to verify

the second half, we suppose

(w)(Es)(s >w& m(s, e) > n) & (m) (n ^ m ^ e ->• (Ey)T\(d(y), e, m, y)),

and then show E(e, n) = 0. It follows from (1, e + 1, n) that Case 2 of the definition

of E(e, n) holds. Let v he so large that v > L(i) for all / < e. Let

z = pyT\(d(y),e, n,y). Let w be so large that w> z and

d(w-l,í) = d(í)

for all t < pl+v. Let s be such that s > w + s* and m(s,e) > n. It follows easily

from (2, e) that s has the properties required to conclude E(e,n) = 0; note that

y(s, n, e) = z > 0.

The definition of L(e) has two cases :

Case 1. c(e) = 0. Then by B(e), limm d(p") = 1. We set

L(e) m pt(s)(m)lm ^ t -> d(s,pnt) = 1].

Case 2. c(e) = 1. It is a consequence of (1, e + 1) and of the definition of

y(s, n, i) that for each i ^ e and each n,

£(i,n) = 0-> l(Es)(m(s, i) > n) & limy(s,n,i) exists and is positive].

For each i ^ e, it follows from A(i) that there is a t such that i S: i and £(i, í) = 1.

For each i S e, let

í, = pt(E(i,t) = í&t^i).

It follows from (1, e + 1) that for each i ^ c, t¡ satisfies either (2) or (3):

(2) (Ew) (s) (s>w-+ m(s, i) <> f¡) ;

(3) limsy(s, r., i) does not exist or is equal to 0.

Note that since £(i, i) = 0 whenever í¡ > í 2: i, it follows from (1, e + 1) that

(m)(t¡ > m Sí i -*limy(s, m,i)  exists  and  is  positive).
5

But then

(Ey) (i) (m) (s)l(i S e & t¡ > m ^ i & s ^ 0) -» y(s, m, i) ̂  y] ;

let L(e) he the least such y. We now verify (2, e + 1). What follows is similar to the

proof of Lemma 6. Fix n ¿l L(e). We must show d(p") = limmd(p"). If Case 1 of

the definition of L(e) holds, there is nothing to prove. Suppose Case 2 of the

definition of L(e) holds. Then c(e) = 1, and by B(e), limm d(p™) = 0. In order to
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show d(p"e) = 0, it suffices to find an s such that d(s,pl) = 0. Let k be such that if

i :£ e and i is not stable, then i = e¡ for some j < k. Let w be so large that for all

i ^ e, if (2) holds, then

(s) (s > w -* m(s, i) g í¡).

By the same argument as in Lemma 6, there is a v > w such that

(s)(s è; v -» h(s, e) > n).

By Lemma 4, there is an s 2ï t; such that

(J)j<kím(s, ej) ^ Bj V r(s, n¡, ej) = 0 V X«. n¡, e¡) = 0].

If we can show for each i and m that

(i iS e & i ^ m < m(s, i)) -> (r(s, m, i) = 0 V p" è Xs> w, i)),

then it will be clear that d(s,pl) = 0. Fix i and m so that i ^ <? and i z%m < m(s, i).

Suppose (2) holds. Then m(s,i) rg fi; since s^v>w. But then t,> m}z i, and

consequently,

pe">nlL(e)kXs,m,i).

Now suppose (3) holds. Then i is not stable, and there is a j < k such that e} = i;

in addition, nj = t¡. If m <nj = t¡, then p"^y(s,m,i), since n 5; L(e). Suppose

m 2ï n;. Then m(s, i) > n¡. This last means either

r(s, Uj, ej) = 0       or       y(s, n3, e}) = 0.

If r(s, ttj, i) = 0, then by remark (R2), r(s, m, i) = 0, since m 2; n¡. Suppose

v(s,n¡,i) = 0. Since nj?=m<m(s,i), it follows from remark (R3) that n} = i.

But then y(s, i, i) = 0,     m(s, i) = / + 1,     m = i and ^(s, m, i) = 0 < p".

Inspection of the definitions of £ and L readily reveals they are recursive in c.

We make some informal remarks to indicate how to write equations defining £

and L recursively in c. Fix e 2ï 0 and n 2: e, and consider the definition of £(e, n).

The choice between Case 1 and Case 2 can be made effectively once the values of

E(e,t)(t< n) are known. Suppose Case 2 holds. The values of y* and s* are

defined by means of a predicate recursive in d. Then the value of £(e, n) is found

from the values of d(pf) (m ;£ L(i) and i < e) by means of a predicate of degree

less than or equal to 0'. Thus the value of E(e, n) can be expressed in terms of the

values of £(e, í)(í < n) and L(i) (i < e) with the aid of a predicate of degree less

than or equal to d U 0'. Similarly, the value of L(e) can be expressed in terms of

the values of E(i, n) (i z% e and n 2ï 0) with the aid of a predicate of degree c U 0'.

Then d' 5j c, since d' is the degree of the function E(e, e), and since d U 0' U c = c.

When b > 0, the changes needed in the above argument are largely notational.

The notion of recursiveness is replaced throughout by the notion of recursiveness

in a function of degree b. The arguments contained in Lemmas 1-8 are retained
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unaltered save for relativization to a function of degree b. The functions a(s, n),

f(s,n) and d(s,n) axe now recursive in a function of degree b. We set

d(s, 2 • 3") = b(n) for all s and all n > 0, where b has degree b, in order to insure

b ^ d. The value of £(e, n) is now obtained from the values of E(e, t) (t < n) and

L(i)(i < e) with the aid of a predicate of degree less than or equal to b' u d.

Corollary 1. If b and c are degrees, then the following conditions are

equivalent:

(i)   b' ^ c ^ b" and c is recursively enumerable in b';

(ii)  there is a d such that b :£ d ^ b' and d' = c;

(iii) there is a d such that b ^ d ^ b', d is recursively enumerable in b and

d' = c.

For each degree b, let Rb denote the set of all degrees greater than or equal to b,

recursively enumerable in b and less than or equal to b'. Let j denote the jump

operator. Then Corollary 1 tells us that the order-preserving map

is onto. It also follows from Theorem 1 that any element of Rb- greater than b' is

the image of more than one element of Rb ; Friedberg (result unpublished) has shown

that b' does not have a unique pre-image in Rb. We do not know if Rb and Rb.

are order-isomorphic, but we conjecture that they are. We can show (announced

in [6] for b = 0): for any degree b, Rb is a universal, countable partial ordering.

Corollary 2. There exists a recursively enumerable degree à such that

d<0'<0" = d'.

Proof. Let b = 0, c = 0" and a = 0', and apply Theorem 1 to obtain d. Then

d is recursively enumerable, 0':jS d and d' = 0".

Note that Corollary 2 provides still another solution to Post's problem.

Corollary 3. For each degree b and each natural number n, there is a degree

d recursively enumerable in b such that

b < d < b' < d' < b" < ••• < b(B) < d(n) < b(n+1).

Proof. We know from [2] that there exists a degree g such that g is recursively

enumerable in b(n) and b(n)< g < b(n+1). By Theorem 1, there is a degree ht

such that b.! is recursively enumerable in b("_1), b(n_1) < hl < b(n) and hi = g.

By making n -1 further applications of Theorem 1, we obtain degrees

h2, h3, •••, h„ such that for 2 ^ i ^ n, h. is recursively enumerable in b("_,),

b("_,) < hf < b("-i+1)       and       hi = h,-v

Let d = h„. Then d is recursively enumerable in b, and for all i ^ n,

b(i)<d(i)<b(i+1).
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Corollary 3 improves a result of Shoenfield [7] ; he showed that for each degree

b, there is a degree d such that b < d < b' < d < b". We do not know if for any

degree b there exists a degree d such that for all n 2: 0,

bw<dw<b"+1);

if for some b, such a d exists, then by Theorem 1, d can be given the additional

property of recursive enumerability in b.

Theorem 1 can be extended without any radical alteration of its proof. For

example, we can show: if g is a recursively enumerable degree such that g' < 0",

then there is a recursively enumerable degree d such that

g < d < 0' < 0" = d'.

We saya sequence a0,a!,a2, ■•• of degrees is simultaneously recursively enumer-

able if there is a sequence A0,AX,A2,--- of simultaneously recursively enumerable

sets such that a. is the degree of A, for all i. Using the method underlying the

proof of Theorem 1, we can show: if a0 < Hy < a2 < ••• is an infinite, ascending

sequence of simultaneously recursively enumerable degrees, then there exists a

recursively enumerable degree d such that

a0 <&y <a2 < ••• < d<0'.

We end with a conjecture: the upper semi-lattice of recursively enumerable

degrees is dense (i.e., if b and c are recursively enumerable degrees such that

b < c, then there exists a recursively enumerable degree d such that b < d < c).

The only evidence we have to offer in favor of this conjecture is contained in the

results we announced above and the result of Muchnik [5] that there is no minimal,

nonzero, recursively enumerable degree(2).
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