RECURSIVE ENUMERABILITY AND THE JUMP OPERATOR

BY
GERALD E. SACKS ${ }^{1}$)

By degree we mean degree of recursive unsolvability as defined by Kleene and Post in [4]. Following Shoenfield [7], we say a degree \mathbf{c} is recursively enumerable in a degree \mathbf{b} if there is a set of degree \mathbf{c} which is the range of a function of degree less than or equal to \mathbf{b}, and we call a degree recursively enumerable if it is recursively enumerable in 0 (i.e., if it is the degree of a recursively enumerable set). The jump operator, which takes the degree \mathbf{d} to the degree \mathbf{d}^{\prime} (the completion of \mathbf{d}), was defined in [4] and has the following properties: if h is recursively enumerable in \mathbf{d}, then $\mathbf{h} \leqq \mathbf{d}^{\prime} ; \mathbf{d}^{\prime}>\mathbf{d}$; and \mathbf{d}^{\prime} is recursively enumerable in \mathbf{d}. In [4] a degree \mathbf{c} is said to be complete if there exists a degree \mathbf{d} such that $\mathbf{d}^{\prime}=\mathbf{c}$. Friedberg [1] showed that a degree \mathbf{c} is complete if and only if $\mathbf{c} \geqq \mathbf{0}^{\prime}$.

For any degree \mathbf{b}, if $\mathbf{b} \leqq \mathbf{d} \leqq \mathbf{b}^{\prime}$, then $\mathbf{b}^{\prime} \leqq \mathbf{d}^{\prime} \leqq \mathbf{b}$ and \mathbf{d}^{\prime} is recursively enumerable in \mathbf{b}^{\prime}. Shoenfield [7] proved that if $\mathbf{b}^{\prime} \leqq \mathbf{c} \leqq \mathbf{b}^{\prime \prime}$ and \mathbf{c} is recursively enumerable in \mathbf{b}^{\prime}, then there is a degree \mathbf{d} such that $\mathbf{b} \leqq \mathbf{d} \leqq \mathbf{b}^{\prime}$ and $\mathbf{d}^{\prime}=\mathbf{c}$. Thus the degrees which lie between \mathbf{b}^{\prime} and $\mathbf{b}^{\prime \prime}$ and are recursively enumerable in \mathbf{b}^{\prime} can be viewed as the completions of the degrees which lie between \mathbf{b} and \mathbf{b}^{\prime}. He also showed there is a degree greater than \mathbf{b} and less than \mathbf{b}^{\prime} which is not recursively enumerable in \mathbf{b}.

Our main result below is that the degrees which lie between \mathbf{b}^{\prime} and $\mathbf{b}^{\prime \prime}$ and are recursively enumerable in \mathbf{b}^{\prime} can be viewed as the completions of the degrees which lie between \mathbf{b} and \mathbf{b}^{\prime} and are recursively enumerable in \mathbf{b}. Our notation is that of [3].

Theorem 1. Let \mathbf{a}, \mathbf{b} and \mathbf{c} be degrees such that $\mathbf{a} \nsubseteq \mathbf{b}, \mathbf{a} \leqq \mathbf{b}^{\prime} \leqq \mathbf{c}$ and \mathbf{c} is recursively enumerable in \mathbf{b}^{\prime}. Then there exists a degree \mathbf{d} such that $\mathbf{a} \not \ddagger \mathbf{d}$, $\mathbf{b} \leqq \mathbf{d}, \mathbf{d}^{\prime}=\mathbf{c}$ and \mathbf{d} is recursively enumerable in \mathbf{b}.

Proof. We first prove the theorem when $\mathbf{b}=\mathbf{0}$, and then indicate the changes needed when $\mathbf{b}>\mathbf{0}$. Thus we have degrees \mathbf{a} and \mathbf{c} such that $\mathbf{a}>\mathbf{0}, \mathbf{a} \leqq \mathbf{0}^{\prime} \leqq \mathbf{c}$ and \mathbf{c} is recursively enumerable in $\mathbf{0}^{\prime}$, and we wish find a recursively enumerable degree \mathbf{d} such that $\mathbf{a} \nsubseteq \mathbf{d}$ and $\mathbf{d}^{\prime}=\mathbf{c}$.

Let f be a function of degree less than or equal to 0^{\prime} whose range is a set C of

Presented to the Society, April 19, 1962; received by the editors May 4, 1962.
${ }^{(1)}$ The author is a National Science Foundation Postdoctoral Fellow.
degree \mathbf{c}. Let \mathbf{c} be the representing function of C. Let g be a recursive function whose range is a set J of degree $\mathbf{0}^{\prime}$. Let j be the representing function of J. We define

$$
j(s, n)= \begin{cases}0 & \text { if }(E k)_{k<s}(g(k)=n) \\ 1 & \text { otherwise }\end{cases}
$$

It is clear that $j(s, n)$ is a recursive function, and that for each $n, \lim _{s} j(s, n)$ exists and is equal to $j(n)$. Since f is recursive in j, there is a Gödel number z_{1} such that

$$
f(n)=\left\{z_{1}\right\}^{j}(n)=U\left(\mu y T_{1}^{1}\left(j(y), z_{1}, n, y\right)\right)
$$

for all n. We define a recursive function $f(s, n)$ of supreme importance to our argument;

$$
f(s, n)= \begin{cases}U\left(\mu y T_{1}^{1}\left(\prod_{i<y} p_{i}^{j(s, n)}, z_{1}, n, y\right)\right) \\ & \text { if }(E y)_{y \leq s} T_{1}^{1}\left(\prod_{i<y} p_{i}^{j(s, n)}, z_{1}, n, y\right), \\ s+1 & \text { otherwise. }\end{cases}
$$

We claim that $\lim _{s} f(s, n)$ exists and is equal to $f(n)$ for all n. Our claim is a consequence of the fact that $f(n)=\left\{z_{1}\right\}^{j}(n)$ and $\lim _{s} j(s, n)=j(n)$ for all n.
Let a be an everywhere positive function of degree a, and let z_{2} be a Gödel number such that $\left\{z_{2}\right\}^{j}(n)=a(n)$ for all n. We define

$$
a(s, n)=\left\{\begin{array}{l}
U\left(\mu y T_{1}^{1}\left(\prod_{i<y} p_{i}^{j(s, n)}, z_{2}, n, y\right)\right) \\
\text { if }(E y)_{y \leq s}\left[T_{1}^{1}\left(\prod_{i<y} p_{i}^{j(s, n)}, z_{2}, n, y\right) \& U(y) \geqq 1\right], \\
1 \\
\text { otherwise. }
\end{array}\right.
$$

The function $a(s, n)$ is recursive; for each $n, \lim _{s} a(s, n)$ exists and is equal to $a(n)$.
A useful property of the Gödel numbering devised by Kleene in [3] to arithmetize his formalism for recursive functions is: the Gödel number of a deduction is greater than the intuitive counterpart of any formal numeral occurring in the deduction. We will denote this fact by GND. It follows from GND that $a(s, n)=1$ whenever $n \geqq s$.

We define two recursive functions, $t(s, n)$ and $h(s, n)$, by means of an induction on s :

$$
\begin{aligned}
t(s, n) & =\mu m_{m<s}(f(s, m)=n) \\
h(0, n) & =0 \\
h(s+1, n) & =h(s, n)+\operatorname{sg}(|t(s+1, n)-t(s, n)|)
\end{aligned}
$$

Recall that the bounded least number operator is defined in such a way that $t(s, n)=s$ if and only if there is no $m<s$ such that $f(s, m)=n$.

We now proceed to define four recursive functions, $y(s, n, e), m(s, e), r(s, n, e)$ and $d(s, n)$, simultaneously by induction on s. The function $d(s, n)$ will be such that

$$
0 \leqq d(s+1, n) \leqq d(s, n) \leqq 1
$$

for all s and n. Thus for each $n, \lim _{s} d(s, n)$ will exist; furthermore, $\lim _{s} d(s, n)$ will be the representing function of a recursively enumerable set D. The degree of D will be the desired degree \mathbf{d}. At stage s of the construction we put finitely or infinitely many natural numbers in D; our main objective is to see that $\mathbf{c} \leqq \mathbf{d}^{\prime}$; however, with the aid of a system of priorities, we exercise restraint when we add members to D in order to insure that $\mathbf{a} \nsubseteq \mathbf{d}$ and $\mathbf{d}^{\prime} \leqq \mathbf{c}$.

Stage $s=0$. We set $y(0, n, e)=r(0, n, e)=0, m(0, e)=e+1$ and $d(0, n)=1$ for all n and e.

Stage $s>0$. We define $y(s, n, e)$ for all n and e :

$$
y(s, n, e)=\left\{\begin{array}{l}
\mu y T_{1}^{1}\left(\prod_{i<y} p_{i}^{d(s-1, i)}, e, n, y\right) \\
\quad \text { if } n \geqq e \&(E y)_{y \leq s} T_{1}^{1}\left(\prod_{i<y} p_{i}^{d(s-1, i)}, e, n, y\right) \\
0 \quad \text { otherwise }
\end{array}\right.
$$

It follows from GND that $y(s, n, e)=0$ whenever $n \geqq s$.
We define $m(s, e)$ for all e; there are three mutually exclusive cases.
Case 1. $y(s, e, e)=0$. We set $m(s, e)=e+1$.
Case 2. $y(s, e, e)>0$ and there is an n such that

$$
e<n<m(s-1, e) \& y(s, n, e) \neq y(s-1, n, e) \& a(s, n) \neq U(y(s, n, e))
$$

We set

$$
m(s, e)=\mu n_{e<n}[y(s, n, e) \neq y(s-1, n, e) \& a(s, n) \neq U(y(s, n, e))] .
$$

Case 3. Otherwise.
We set

$$
\begin{aligned}
& m(s, e)=\mu n[m(s-1, e) \leqq n<2 m(s-1, e)+s \\
& \&(E t)(e<t \leqq n \& a(s, t) \neq U(y(s, t, e))] .
\end{aligned}
$$

Note that Case 3 of the definition of $m(s, e)$, the least number operator is bounded.
We define $r(s, n, e)$ and $d\left(s, p_{e}^{n}\right)$ for all n and e by means of a simultaneous induction on e. Let $e \geqq 0$ and suppose $r(s, n, i)$ and $d\left(s, p_{i}^{n}\right)$ have been defined for all $i<e$ and all n; we define $r(s, n, e)$ and $d\left(s, p_{e}^{n}\right)$ for all n as follows:

$$
r(s, n, e)= \begin{cases}0 & \text { if }(E i)(E m)(E t)\left[i<e \leqq t \leqq n \& p_{i}^{m}<y(s, t, e)\right. \\ & \left.\& d\left(s, p_{i}^{m}\right) \neq d\left(s-1, p_{i}^{m}\right)\right] \\ 1 & \text { otherwise } ;\end{cases}
$$

$$
d\left(s, p_{e}^{n}\right)=\left\{\begin{array}{lc}
d\left(s-1, p_{e}^{n}\right) & \text { if } n \geqq h(s, e) \\
d\left(s-1, p_{e}^{n}\right) & \text { if }(E i)(E m)[i \leqq e \& i \leqq m<m(s, i) \\
& \left.\& r(s, m, i)=1 \& p_{e}^{n}<y(s, m, i)\right] \\
0 & \text { otherwise }
\end{array}\right.
$$

We conclude the construction by setting $d(s, n)=d(s-1, n)$ for all n not a power of a prime. It is readily verified by the method of [4] that each of the four functions just defined is recursive. Such a verification is possible for two reasons: each of the functions $a(s, n)$ and $h(s, n)$ is recursive; at stage $s>0$, all quantifiers, as well as all applications of the least number operator, are bounded. For each n, let

$$
d(n)=\lim _{s} d(s, n)
$$

it is clear that $d(n)=0$ if and only if there is an s such that $d(s, n)=0$. Thus d is the representing function of a recursively enumerable set. Let \mathbf{d} be the degree of d.
We list some remarks which will be needed in vital parts of the body of our argument:
(R1) $(s)(e)[m(s, e)>e] ;$
(R2) $(s)(n)(e)[r(s, n, e)=0 \rightarrow r(s, n+1, e)=0]$;
(R3) $(s)(n)(e)[(y(s, n, e)=0 \& n>e) \rightarrow m(s, e) \leqq n]$.
Remark (R1) is easily proved by induction on s if the definition of the bounded least number operator is kept in mind.

We prove remark (R3) by induction on s. We have

$$
(n)(e)[(y(0, n, e)=0 \& n>e) \rightarrow m(0, e) \leqq n] .
$$

Let s be such that $s>0$ and

$$
(n)(e)[(y(s-1, n, e)=0 \& n>e) \rightarrow m(s-1, e) \leqq n] .
$$

Let e and n be such that

$$
y(s, n, e)=0 \quad \text { and } n>e .
$$

Then $a(s, n) \neq U(y(s, n, e))$, since $a(s, n) \geqq 1$ and $U(0)=0$. First we suppose $n<m(s-1, e)$. Then $y(s-1, n, e)>0$ as a consequence of the induction hypothesis. But then either Case 1 or Case 2 of the definition of $m(s, e)$ holds, and so $m(s, e) \leqq n$. Now we suppose $m(s-1, e) \leqq n$. If either Case 1 or Case 2 of the definition of $m(s, e)$ holds, then $m(s, e) \leqq m(s-1, e) \leqq n$ by remark (R1). If Case 3 holds and $n<2 m(s-1, e)+s$, then $m(s, e) \leqq n$. If Case 3 holds and $n \geqq 2 m(s-1, e)+s$, then $m(s, e) \leqq 2 m(s-1, e)+s \leqq n$. (Note that if Case 3 holds and

$$
(t)[e<t<2 m(s-1, e)+s \rightarrow a(s, t)=U(y(s, t, e))]
$$

then $m(s, e)=m(s-1, e)+s$; this last is a consequence of the definition of the bounded least number operator.)

We introduce two predicates:
$A(e)$: if the set $\{m(s, e) \mid s \geqq 0\}$ is infinite, then there is an $n \geqq e$ such that $\lim _{s} y(s, n, e)$ either does not exist or is equal to 0 .
$B(e): \lim _{n} d\left(p_{e}^{n}\right)$ exists and is equal to $1-c(e)$.
We will prove $(e) A(e)$ and $(e) B(e)$ by means of a simultaneous induction on e. From $(e) A(e)$ it will follow that $\mathbf{a} \nsubseteq \mathbf{d}$. From $(e) B(e)$ it will follow that $\mathbf{c} \leqq \mathbf{d}^{\prime}$. Fix $e^{*} \geqq 0$ and suppose $A(e)$ and $B(e)$ are true for all $e<e^{*}$. We proceed to prove $A\left(e^{*}\right)$ and $B\left(e^{*}\right)$.

Lemma 1. Let $y\left(s, n, e^{*}\right)>0$ and $m\left(s, e^{*}\right)>n \geqq e^{*}$. Let $d\left(s, p_{i}^{m}\right)=d\left(s-1, p_{i}^{m}\right)$ for all i, m and t such that $i<e^{*} \leqq t \leqq n$ and $p_{i}^{m}<y\left(s, t, e^{*}\right)$. Then $y\left(s, n, e^{*}\right)$ $=y\left(s+1, n, e^{*}\right)$.

Proof. Since $y\left(s, n, e^{*}\right)>0$, we have

$$
y\left(s, n, e^{*}\right)=\mu y T_{1}^{1}\left(\prod_{i<y} p_{i}^{d(s-1, i)}, e^{*}, n, y\right) .
$$

We suppose $y\left(s+1, n, e^{*}\right) \neq y\left(s, n, e^{*}\right)$ and then show there is an i, an m and a t such that

$$
i<e^{*} \leqq t \leqq n \& p_{i}^{m}<y\left(s, t, e^{*}\right) \& d\left(s, p_{i}^{m}\right) \neq d\left(s-1, p_{i}^{m}\right)
$$

Since $y\left(s+1, n, e^{*}\right) \neq y\left(s, n, e^{*}\right)$, there must be a $j<y\left(s, n, e^{*}\right)$ such that $d(s, j) \neq d(s-1, j)$. Recall that $d(s, w)=d(s-1, w)$ for all w not a power of a prime. Thus there is an i^{\prime} and an m^{\prime} such that

$$
d\left(s, p_{i^{\prime}}^{m}\right) \neq d\left(s-1, p_{i^{\prime}}^{m \prime^{\prime}}\right)
$$

and $p_{i^{\prime}}^{m^{\prime}}<y\left(s, n, e^{*}\right)$. But then by the hypothesis of the lemma, $e^{*} \leqq i^{\prime}$. Thus we have

$$
e^{*} \leqq i^{\prime} \& e^{*} \leqq n<m\left(s, e^{*}\right) \& p_{i^{\prime}}^{m^{\prime}}<y\left(s, n, e^{*}\right) \& d\left(s, p_{i^{\prime}}^{m^{\prime}}\right) \neq d\left(s-1, p_{i^{\prime}}^{m^{\prime}}\right) .
$$

It follows from the definition of $d\left(s, p_{i^{\prime}}^{m^{\prime}}\right)$ that $r\left(s, n, e^{*}\right)=0$. But this last means the desired i, m and t exist.

Lemma 2. Let $y\left(s, n, e^{*}\right)>0$ and $m\left(s, e^{*}\right)>n>e^{*}$. Let $d\left(s, p_{i}^{m}\right)=d\left(s-1, p_{i}^{m}\right)$ for all i, m and t such that $i<e^{*} \leqq t \leqq n$ and $p_{i}^{m}<y\left(s, t, e^{*}\right)$. Then $m\left(s+1, e^{*}\right)>n$.

Proof. Since $m\left(s, e^{*}\right)>n>e^{*}$, it follows from remark (R3) and Case 1 of the definition of $m(s, e)$ that

$$
y\left(s, t, e^{*}\right)>0
$$

for all t such that $e^{*} \leqq t \leqq n$. But then by Lemma 1,

$$
y\left(s, t, e^{*}\right)=y\left(s+1, t, e^{*}\right)
$$

for all t such that $e^{*} \leqq t \leqq n$. Suppose $m\left(s+1, e^{*}\right) \leqq n$. Then $m\left(s+1, e^{*}\right)<m\left(s, e^{*}\right)$,
and consequently, Case 2 of the definition of $m\left(s+1, e^{*}\right)$ holds. This means there is a t (namely, $m\left(s+1, e^{*}\right)$) such that

$$
e^{*}<t \leqq n \& y\left(s, t, e^{*}\right) \neq y\left(s,+1, t, e^{*}\right)
$$

Lemma 3. $A\left(e^{*}\right)$.
Proof. By the hypothesis of our theorem the function a is nonrecursive. We suppose $A\left(e^{*}\right)$ is false and show a is recursive. Thus the set $\left\{m\left(s, e^{*}\right) \mid s \geqq 0\right\}$ is infinite, and for each $n \geqq e^{*}, \lim _{s} y\left(s, n, e^{*}\right)$ exists and is positive. Let $R(n, s)$ denote the predicate

$$
\begin{aligned}
& m\left(s, e^{*}\right)>n \&(e)(m)(t)\left[\left(p_{e}^{m}<y\left(s, t, e^{*}\right) \& e<e^{*} \leqq t \leqq n\right)\right. \\
& \rightarrow d\left(s-1, p_{e}^{m}\right)\left.=d\left(p_{e}^{m}\right)\right] .
\end{aligned}
$$

We know $B(e)$ is true for all $e<e^{*}$. This means $\lim _{m} d\left(p_{e}^{m}\right)$ exists for all $e<e^{*}$. For each $e<e^{*}$, let $g(e)$ be such that

$$
(m)\left[m \geqq g(e) \rightarrow d\left(p_{e}^{m}\right)=d\left(p_{e}^{g(e)}\right)\right] .
$$

We define a recursive function $z(n)$ as follows: first we require that $z(n)=1$ for all n not a power of a prime; then we specify

$$
z\left(p_{e}^{m}\right)= \begin{cases}d\left(p_{e}^{g(e)}\right) & \text { if } e>e^{*} \& m \geqq g(e) \\ d\left(p_{e}^{m}\right) & \text { if } e>e^{*} \& m<g(e), \\ 1 & \text { otherwise. }\end{cases}
$$

The predicate $R(n, s)$ can now be rewritten as

$$
\begin{aligned}
m\left(s, e^{*}\right)>n \&(e)(m)(t)\left[\left(p_{e}^{m}<y\left(s, t, e^{*}\right) \& e\right.\right. & \left.<e^{*} \leqq t \leqq n\right) \\
& \left.\rightarrow d\left(s-1, p_{e}^{m}\right)=z\left(p_{e}^{m}\right)\right] .
\end{aligned}
$$

It is clear that $R(n, s)$ is recursive, since the functions m, y and z are recursive.
Now we show $(n)(E s) R(n, s)$. Fix n. Since $\lim _{s} y\left(s, n, e^{*}\right)$ exists for all $n \geqq e^{*}$ there is a y such that

$$
y \geqq y\left(s, t, e^{*}\right)
$$

for all t and s such that $e^{*} \leqq t \leqq n$. Let s^{\prime} be so large that

$$
d(s-1, w)=d(w)
$$

for all s and w such that $s \geqq s^{\prime}$ and $w<y$. Since the set $\left\{m\left(s, e^{*}\right) \mid s \geqq 0\right\}$ is infinite, there is an $s \geqq s^{\prime}$ such that $m\left(s, e^{*}\right)>n$. But then $R(n, s)$.

Let $w(n)$ denote the recursive function $\mu s R(n, s)$. Note that $w(n+1) \geqq w(n)$ for all n.

Next we prove $y\left(w(n), n, e^{*}\right)=\lim _{s} y\left(s, n, e^{*}\right)$ for all $n>e^{*}$. Fix $n>e^{*}$. We show by induction on s that $y\left(w(n), n, e^{*}\right)=y\left(s, n, e^{*}\right)$ for all $s \geqq w(n)$. Let s be such that $s \geqq w(n)$ and

$$
y\left(w(n), e^{*}\right)=y\left(s, n, e^{*}\right) \& R(n, s)
$$

Since $m\left(s, e^{*}\right)>n>e^{*}$, it follows from remark (R3) and Case 1 of the definition of $m\left(s, e^{*}\right)$ that $y\left(s, t, e^{*}\right)>0$ for all t such that $e^{*} \leqq t \leqq n$. By the definition of $R(n, s)$, we have

$$
d\left(s-1, p_{e}^{m}\right)=d\left(p_{e}^{m}\right)
$$

for all e, m and t such that $e<e^{*} \leqq t \leqq n$ and $p_{e}^{m}<y\left(s, t, e^{*}\right)$. Recall that if $d(s-1, w)=d(w)$ then $d\left(s^{\prime}, w\right)=d(w)$ for all $s^{\prime} \geqq s$. It follows from Lemma 1 that

$$
y\left(s, t, e^{*}\right)=y\left(s+1, t, e^{*}\right)
$$

for all t such that $e^{*} \leqq t \leqq n$. It follows from Lemma 2 that

$$
m\left(s+1, e^{*}\right)>n .
$$

But then

$$
y\left(w(n), n, e^{*}\right)=y\left(s+1, n, e^{*}\right) \& R(n, s+1) .
$$

Thus $y\left(w(n), n, e^{*}\right)=y\left(s, n, e^{*}\right)$ for all $s \geqq w(n)$, and $\lim _{s} y\left(s, n, e^{*}\right)=y\left(w(n), n, e^{*}\right)$.
Finally, we show by means of a reductio ad absurdum that

$$
a(n)=U\left(y\left(w(n), n, e^{*}\right)\right)
$$

for all $n>e^{*}$. It will then follow that a is recursive, since w is recursive. Fix $n>e^{*}$ and suppose $a(n) \neq U\left(y\left(w(n), n, e^{*}\right)\right)$. Since $y\left(w(n), n, e^{*}\right)=\lim _{s} y\left(s, n, e^{*}\right)$, and since $a(n)=\lim _{s} a(s, n)$, there is an s^{*} such that for all $s \geqq s^{*}$,

$$
a(n)=a(s, n) \neq U\left(y\left(s, n, e^{*}\right)\right)=U\left(y\left(w(n), n, e^{*}\right)\right) .
$$

Let $s>s^{*}$ and suppose $m\left(s-1, e^{*}\right) \leqq m\left(s^{*}, e^{*}\right)+n+e^{*}+1$. If either Case 1 or Case 2 of the of the definition of $m\left(s, e^{*}\right)$ holds, then

$$
m\left(s, e^{*}\right) \leqq \max \left(e^{*}+1, m\left(s-1, e^{*}\right)\right) \leqq m\left(s^{*}, e^{*}\right)+n+e^{*}+1 .
$$

If Case 3 holds and $n<2 m\left(s-1, e^{*}\right)+s$, then $m\left(s, e^{*}\right) \leqq n$. If Case 3 holds and $2 m\left(s-1, e^{*}\right)+s \leqq n$, then $m\left(s, e^{*}\right) \leqq n$. Thus we have shown by induction on s that

$$
m\left(s, e^{*}\right) \leqq m\left(s^{*}, e^{*}\right)+n+e^{*}+1
$$

for all $s \geqq s^{*}$. But this last is absurd, since the set $\left\{m\left(s, e^{*}\right) \mid s \geqq 0\right\}$ is infinite.
For each $e \geqq 0$, we say e is stable if for all $n \geqq e, \lim _{s} y(s, n, e)$ exists and is positive. Note that if e is not the Gödel number of a system of equations, then $y(s, n, e)=0$ for all s and n, and consequently, e is not stable. It follows that there are infinitely many e which are not stable, since there are infinitely many e which are not Gödel numbers of systems of equations. We define

$$
\begin{aligned}
e_{0} & =\mu e(e \text { is not stable }) \\
e_{j+1} & =\mu e\left(e>e_{j} \text { and } e \text { is not stable }\right) .
\end{aligned}
$$

Thus $e_{0}<e_{1}<e_{2}<\cdots$ is a listing of all the e which are not stable. For each $j \geqq 0$, let n_{j} be the least $n \geqq e_{j}$ such that $\lim _{s} y\left(s, n, e_{j}\right)$ either does not exist or is equal to 0 .

The most important part of our argument is contained in Lemma 4. If the proof of our theorem is a heavy meal, then the proof of Lemma 4 is the main course; furthermore, it is there that the combinatorial flavor of our reasoning is strongest.

Lemma 4. For each k and v, there is an $s \geqq v$ such that

$$
(j)_{j<k}\left[m\left(s, e_{j}\right) \leqq n_{j} \vee r\left(s, n_{j}, e_{j}\right)=0 \vee y\left(s, n_{j}, e_{j}\right)=0\right] .
$$

Proof. Fix k and v. We suppose there is no s with the properties required by the lemma, and then show it is possible to define an infinite, descending sequence of natural numbers.

We propose the following system of equations as a means of defining two functions, $S(t)$ and $M(t)$, simultaneously by induction:

$$
\begin{gathered}
S(0)=\mu s(s \geqq v) ; \\
M(t)=\mu j\left[j<k \& n_{j}<m\left(S(t), e_{j}\right)\right. \\
\left.\& r\left(S(t), n_{j}, e_{j}\right)=1 \& y\left(S(t), n_{j}, e_{j}\right)>0\right] ; \\
S(t+1)=\mu s(E m)\left[s \geqq S(t) \& m<y\left(S(t), n_{M(t)}, e_{M(t)}\right)\right. \\
\& d(s, m) \neq d(S(t)-1, m)]
\end{gathered}
$$

Clearly $S(0)$ is well defined and greater than or equal to v. Suppose $t \geqq 0$ and $S(t)$ is well defined and greater than or equal to v. Then $M(t)<k$, since we have supposed the lemma to be false. Thus

$$
y\left(S(t), n_{M(t)}, e_{M(t)}\right)>0
$$

and $\lim _{s} y\left(s, n_{M(t)}, e_{M(t)}\right)$ does not exist or is equal to 0 . Then there must be an $s>S(t)$ such that

$$
y\left(s, n_{M(t)}, e_{M(t)}\right) \neq y\left(S(t), n_{M(t)}, e_{M(t)}\right)
$$

note that $S(t)>0$, since $y(0, n, e)=0$ for all n and e; this means there is an $s>S(t)$ and an m such that

$$
m<y\left(S(t), n_{M(t)}, e_{M(t)}\right) \& d(s-1, m) \neq d(S(t)-1, m)
$$

Then $S(t+1)$ is well defined and greater than or equal to v.
For each $t \geqq 0$, let

$$
u(t)=\mu m[d(S(t+1), m) \neq d(S(t)-1, m)] .
$$

Now we show $u(t)<u(t-1)$ for all $t>0$. Fix $t>0$. Since we have

$$
u(t)<y\left(S(t), n_{M(t)}, e_{M(t)}\right)
$$

by definition of u, it will be sufficient to show

$$
y\left(S(t), n_{M(t)}, e_{M(t)}\right) \leqq u(t-1)
$$

Since $d(w)=1$ for all w not a power of a prime, there must exist i and m such that $u(t-1)=p_{i}^{m}$. Note that $d(S(t), u(t-1)) \neq d(S(t)-1, u(t-1))$; this last follows from the definitions of $S(t)$ and $u(t-1)$. Let

$$
e=e_{M(t)}, s=S(t) \text { and } n=n_{M(t)}
$$

First we suppose $i<e$. This means

$$
i<e \leqq n \& d\left(s, p_{i}^{m}\right) \neq d\left(s-1, p_{i}^{m}\right) \& r(s, n, e)=1
$$

since $M(t)<k$. But then it follows from the definition of $r(s, n, e)$ that $y(s, n, e) \leqq p_{i}^{m}$. Now we suppose $i \geqq e$. This means

$$
e \leqq i \& e \leqq n<m(s, e) \& r(s, n, e)=1 \& d\left(s, p_{i}^{m}\right) \neq d\left(s-1, p_{i}^{m}\right)
$$

since $M(t)<k$. But then it follows from the definition of $d\left(s, p_{i}^{m}\right)$ that $y(s, n, e) \leqq p_{i}^{m}=u(t-1)$.

Lemma 5. If $c\left(e^{*}\right)=0$, then $\lim _{n} d\left(p_{e^{*}}^{n}\right)$ exists and is equal to 1 .
Proof. Let t be the least m such that $f(m)=e^{*}$. Let s^{\prime} be so large that $s^{\prime}>t$ and $f(s, m)=f(m)$ for all s and m such that $s \geqq s^{\prime}$ and $m \leqq t$. Then $t\left(s, e^{*}\right)=t$ for all $s \geqq s^{\prime}$, and consequently, $h\left(s, e^{*}\right)=h\left(s^{\prime}, e^{*}\right)$ for all $s \geqq s^{\prime}$. But then

$$
d\left(s, p_{e^{*}}^{n}\right)=d\left(s-1, p_{e^{*}}^{n}\right)
$$

for all s and n such that $s>0$ and $n \geqq h\left(s^{\prime}, e^{*}\right)$, since $h\left(s, e^{*}\right) \leqq h\left(s^{\prime}, e^{*}\right)$ for all $s \leqq s^{\prime}$. It follows that $\lim _{s} d\left(s, p_{e^{*}}^{n}\right)=1$ for all $n \geqq h\left(s^{\prime}, e^{*}\right)$, since $d(0, w)=1$ for all w. Then $d\left(p_{e^{*}}^{n}\right)=1$ for all $n \geqq h\left(s^{\prime}, e^{*}\right)$, and $\lim _{n} d\left(p_{e^{*}}^{n}\right)=1$.

Lemma 6. If $c\left(e^{*}\right)=1$, then $\lim _{n} d\left(p_{e^{*}}^{n}\right)$ exists and is equal to 0 .
Proof. First we show that the set $\left\{t\left(s, e^{*}\right) \mid s \geqq 0\right\}$ is infinite. Suppose $t\left(s, e^{*}\right) \leqq t$ for all s. Let s^{\prime} be so large that $s^{\prime}>t$ and $f(s, m)=f(m)$ for all s and m such that $s \geqq s^{\prime}$ and $m \leqq t$. Then $f\left(s^{\prime}, t\left(s^{\prime}, e^{*}\right)\right)=e^{*}$, since $t\left(s^{\prime}, e^{*}\right)<s^{\prime}$. But

$$
f\left(s^{\prime}, t\left(s^{\prime}, e^{*}\right)\right)=f\left(t\left(s^{\prime}, e^{*}\right)\right)
$$

since $t\left(s^{\prime}, e^{*}\right) \leqq t$. But then $f\left(t\left(s^{\prime}, e^{*}\right)\right)=e^{*}$; this last is impossible because C is the range of f and $c\left(e^{*}\right)=1$.

Since the set $\left\{t\left(s, e^{*}\right) \mid s \geqq 0\right\}$ is infinite, it is clear that the set $\left\{h\left(s, e^{*}\right) \mid s \geqq 0\right\}$ is infinite.

By Lemma 3, we know $A(e)$ holds for all $e \leqq e^{*}$. This means that if $e \leqq e^{*}$ and e
is stable, then the set $\left\{m\left(s, e^{*}\right) \mid s \geqq 0\right\}$ is finite. If $e \leqq e^{*}$ and e is stable, let $m(e)$ be the greatest member of $\left\{m\left(s, e^{*}\right) \mid s \geqq 0\right\}$; if $e \leqq e^{*}$ and e is not stable, let $m(e)=n_{j}$, where j is such that $e=e_{j}$. If $e \leqq e^{*}$ and $e \leqq m<m(e)$, then $\lim _{s} y(s, m, e)$ exists. Let y be so large that

$$
y \geqq y(s, m, e)
$$

for all s, m and e such that $e \leqq e^{*}$ and $e \leqq m<m(e)$.
Fix $n>y$. We show $d\left(p_{c^{*}}^{n}\right)=0$. It will suffice to find an s such that $d\left(p_{e^{*}}^{n}, s\right)=0$. Let v be such that $h\left(v, e^{*}\right)>n$. Let k be such that if $e \leqq e^{*}$ and e is not stable, then $e=e_{j}$ for some $j<k$. By Lemma 4 there is an $s \geqq v$ such that

$$
(j)_{j<k}\left[m\left(s, e_{j}\right) \leqq n_{j} \vee r\left(s, n_{j}, e_{j}\right)=0 \vee y\left(s, n_{j}, e_{j}\right)=0\right]
$$

We will show:

$$
\begin{aligned}
& h\left(s, e^{*}\right)>n \\
& (e)(m)\left[\left(e \leqq e^{*} \& e \leqq m<m(s, e)\right) \rightarrow\left(r(s, m, e)=0 \vee p_{e^{*}}^{n} \geqq y(s, m, e)\right)\right]
\end{aligned}
$$

It will then follow from the definition of $d\left(s, p_{e^{*}}^{n}\right)$ that' $d\left(s, p_{e^{*}}^{n}\right)=0$. We have $h\left(s, e^{*}\right)>n$, since $s \geqq v$ and $h\left(s, e^{*}\right)$ is a nondecreasing function of s. Fix e and m so that $e \leqq e^{*}$ and $e \leqq m<m(s, e)$. Suppose e is stable. Then $m<m(e)$, since $m(s, e) \leqq m(e)$. But then $y \geqq y(s, m, e)$, and consequently $p_{e^{*}}^{n} \geqq y(s, m, e)$, since $n>y$.

Now suppose e is not stable. Then $e=e_{j}$, where $j<k$, and $m(e)=n_{j}$. If $m<n_{j}$, then $m<m(e)$ and $p_{e^{*}}^{n} \geqq y(s, m, e)$. Suppose $m \geqq n_{j}$. Then $m\left(s, e_{j}\right)>n_{j}$. This last means that either $r\left(s, n_{j}, e\right)=0$ or $y\left(s, n_{j}, e\right)=0$. If $r\left(s, n_{j}, e\right)=0$, then by remark (R2), $r(s, m, e)=0$, since $m \geqq n_{j}$. Suppose $y\left(s, n_{j}, e\right)=0$. Since $n_{j} \leqq m<m(s, e)$, it follows from remark (R3) that $n_{j}=e$. But then $y(s, e, e)=0$, and Case 1 of the definition of $m(s, e)$ holds. It follows that $m(s, e)=e+1, m=e$ and $y(s, m, e)=0$.

Thus $d\left(p_{e^{*}}^{n}\right)=0$ for all $n>y$, and $\lim _{n} d\left(p_{e^{*}}^{n}\right)$ exists and is equal to 0 .
Lemmas 5 and 6 constitute a proof of $B\left(e^{*}\right)$. That concludes our proof by induction of $(e) A(e)$ and $(e) B(e)$. It is now easily seen that $\mathbf{c} \leqq \mathbf{d}^{\prime}$. Observe that

$$
(e)(E t)\left[(m)_{m \geqq t}\left(d\left(p_{e}^{m}\right)=1\right) \vee(m)_{m \geqq t}\left(d\left(p_{e}^{m}\right)=0\right)\right]
$$

is an immediate consequence of $(e) B(e)$. We define

$$
k(e)=\mu t\left[(m)_{m \geqq t}\left(d\left(p_{e}^{m}\right)=1\right) \bigvee(m)_{m \geqq t}\left(d\left(p_{e}^{m}\right)=0\right)\right] .
$$

The function k has degree less than or equal to \mathbf{d}^{\prime}, and by $(e) \mathrm{B}(e)$,

$$
c(e)=1-d\left(p_{e}^{k(e)}\right)
$$

for all e.

Lemma 7. $\mathbf{a} \neq \mathbf{d}$.

Proof. We suppose there is a Gödel number e such that

$$
a(n)=\{e\}(n)
$$

for all n, and then show $A(e)$ is false. First we show that $\lim _{s} y(s, n, e)$ exists and is positive for all $n \geqq e$. Fix $n \geqq e$; let

$$
w=\mu y T_{1}^{1}(\tilde{d}(y), e, n, y)
$$

Let s^{\prime} be so large that $d(s, m)=d(m)$ whenever $s \geqq s^{\prime}$ and $m<w$. Then

$$
y(s, n, e)=w \& U(w)=a(n)
$$

for all $s \geqq s^{\prime}+w ; w>0$, since 0 is not the Gödel number of a deduction.
Now we show the set $\{m(s, e) \mid s \geqq 0\}$ is infinite. We fix $m>\epsilon$ and obtain an s^{\prime} such that $m\left(s^{\prime}, e\right)>m$. Let s be so large that $s>m$ and

$$
a(s, t)=a(t)=\{e\}^{d}(t)=U(y(s, t, e))
$$

for all t such that $e \leqq t \leqq m$. If $m(s-1, e)>m$, then $s-1$ is the desired s^{\prime}. Suppose $m(s-1, e) \leqq m$. This means

$$
a(s, t)=U(y(s, t, e))
$$

for all t such that $e \leqq t \leqq m(s-1, e)$; in addition, $y(s, e, e)>0$, since $a(s, e) \geqq 1$ and $U(0)=0$. But then Case 3 of the definition of $m(s, e)$ holds. It follows that $m(s, e)>m$, since $s>m$.

Lemma 8. $\mathbf{d}^{\prime} \leqq c$.
Proof. We will define two functions, $E(e, n)$ and $L(e)$, simultaneously by induction on e so that each is recursive in the function $c(n)$. We will combine the definition of E and L with a proof by induction on e of the following:

$$
\begin{gathered}
(e)(n)\{E(e, n)=0 \leftrightarrow[n \geqq e \&(w)(E s)(s>w \& m(s, e)>n) \\
\left.\left.\&(m)\left(n \geqq m \geqq e \rightarrow(E y) T_{1}^{1}(\tilde{d}(y), e, m, y)\right)\right]\right\} ; \\
(e)(m)\left[m \geqq L(e) \rightarrow d\left(p_{e}^{m}\right)=d\left(p_{e}^{L(e)}\right)\right] .
\end{gathered}
$$

It follows immediately from the above and remark (R1) that

$$
(e)\left[E(e, e)=0 \leftrightarrow(E y) T_{1}^{1}(\tilde{d}(y), e, e, y)\right] ;
$$

but then if E is recursive in c, we have $\mathbf{d}^{\prime} \leqq c$.
Fix $e \geqq 0$. Our induction hypothesis has two parts:
$(1, e)$ for each $i<e$ and each $n, E(i, n)$ has been defined and

$$
\begin{aligned}
E(i, n)=0 \leftrightarrow[& n \geqq i \&(w)(E s)(s>w \& m(s, i)>n) \\
& \left.\&(m)\left(n \geqq m \geqq i \rightarrow(E y) T_{1}^{1}(\tilde{d}(y), i, m, y)\right)\right] ;
\end{aligned}
$$

$(2, e)$ for each $i<e, L(i)$ has been defined and

$$
(m)\left[m \geqq L(i) \rightarrow d\left(p_{i}^{m}\right)=d\left(p_{i}^{L(i)}\right)\right] .
$$

We proceed to define $E(e, n)$ for all n, verify $(1, e+1)$, define $L(e)$ and verify (2, $e+1$).

Let $(1, e+1, n)$ denote the following predicate: for each $t<n, E(e, t)$ has been defined and

$$
\begin{aligned}
& E(e, t)=0 \leftrightarrow[t \geqq e \&(w)(E s)(s>w \& m(s, e)>t) \\
&\left.\&(m)\left(t \geqq m \geqq e \rightarrow(E y) T_{1}^{1}(\tilde{d}(y), e, m, y)\right)\right] .
\end{aligned}
$$

To verify $(1, e+1)$, it suffices to prove $(1, e+1, n)$ for all n. We define $E(e, n)$ and prove $(1, e+1, n)$ for all n by means of an induction on n. First we set $E(e, t)=1$ for all $t<e$. Then it is clear that $(1, e+1, t)$ holds for all $t \leqq e$. Now we fix $n \geqq e$ and suppose ($1, e+1, n$) holds. We define $E(e, n)$ and then prove $(1, e+1, n+1)$. The definition of $E(e, n)$ has two cases.

Case 1. $(E t)(e \leqq t<n \& E(e, t) \neq 0)$. We set $E(e, n)=1$.
Case 2. Otherwise. It follows from ($1, e+1, n$) that

$$
(m)\left(n>m \geqq e \rightarrow(E y) T_{1}^{1}(\tilde{d}(y), e, m, y)\right) .
$$

For each m such that $n>m \geqq e$, let

$$
y(m)=\mu y T_{1}^{1}(\tilde{d}(y), e, m, y) .
$$

Let y^{*} be the largest member of $\{y(m) \mid n>m \geqq e\} \cup\{0\}$. Let

$$
s^{*}=\mu s\left[(i)\left(i<y^{*} \rightarrow d(s-1, i)=d(i)\right) \& s>y^{*}\right] .
$$

Recall that for each $s>0$ and i, if $d(s-1, i)=d(i)$, then $d\left(s^{\prime}, i\right)=d(i)$ for all $s^{\prime} \geqq s$. It follows from the definition of $y(s, m, e)$ and the fact that 0 is not the Gödel number of a deduction that

$$
(s)(m)\left[\left(s \geqq s^{*} \& n>m \geqq e\right) \rightarrow y(s, m, e)=y(m)>0\right] .
$$

We define

$$
E(e, n)=\left\{\begin{aligned}
& 0 \quad \text { if }(E s)\left\{y(s, n, e)>0 \& n<m(s, e) \& s>s^{*} \&\right. \\
&(i)_{i \ll}\left[(m)\left(m<L(i) \rightarrow d\left(s-1, p_{i}^{m}\right)=d\left(p_{i}^{m}\right)\right)\right. \\
& \&(m)\left(y(s, n, e)>m \geqq L(i) \rightarrow d\left(s-1, p_{i}^{m}\right)\right. \\
&\left.\left.\left.=d\left(p_{i}^{L(i)}\right)\right)\right]\right\} \\
& 1 \text { otherwise. }
\end{aligned}\right.
$$

To verify ($1, e+1, n+1$), it suffices to prove

$$
\begin{aligned}
E(e, n)=0 \leftrightarrow[n \geqq e \&(w)(E s)(s>w \& m(s, e) & >n) \\
\&(m)(n \geqq m \geqq e & \left.\left.\rightarrow(E y) T_{1}^{1}(\tilde{d}(y), e, m, y)\right)\right] .
\end{aligned}
$$

Suppose $E(e, n)=0$. Then Case 2 of the definition of $E(e, n)$ must hold. Let s be the natural number whose existence is required by the fact $E(e, n)=0$; thus

$$
y(s, n, e)>0 \& n<m(s, e) \& s>s^{*}
$$

It is our aim now to prove

$$
y(s, n, e)=y\left(s^{\prime}, n, e\right) \& n<m\left(s^{\prime}, e\right)
$$

for all $s^{\prime} \geqq s$ by means of an induction on s^{\prime}. Fix $s^{\prime}>s$ and suppose

$$
y(s, n, e)=y\left(s^{\prime}-1, n, e\right) \& n<m\left(s^{\prime}-1, e\right) .
$$

Suppose for the sake of a reductio ad absurdum that there is a w such that $d\left(s^{\prime}-1, w\right) \neq d\left(s^{\prime}-2, w\right)$ and $w<y\left(s^{\prime}-1, n, e\right)$. Then there must be an i and an m such that (0) and (1) are true:

$$
\begin{gather*}
d\left(s^{\prime}-1, p_{i}^{m}\right) \neq d\left(s^{\prime}-2, p_{i}^{m}\right) \& p_{i}^{m}<y\left(s^{\prime}-1, n, e\right)=y(s, n, e) \tag{0}\\
\left(i^{\prime}\right)_{i^{\prime}<i}\left(m^{\prime}\right)\left[d\left(s^{\prime}-1, p_{i^{\prime}}^{m^{\prime}}\right)=d\left(s^{\prime}-2, p_{i^{\prime}}^{m^{\prime}}\right) \vee p_{i^{\prime}}^{m^{\prime}} \geqq y\left(s^{\prime}-1, n, e\right)\right] .
\end{gather*}
$$

If $i<e$, then it follows from the second half of (0), the definition of s and $(2, e)$ that $d\left(s-1, p_{i}^{m}\right)=d\left(p_{i}^{m}\right)$; but this last contradicts the first half of (0), since $s^{\prime}>s$. Thus $\mathrm{i} \geqq e$. Since $e \leqq n<m\left(s^{\prime}-1, e\right)$, it follows from (0) and the definition of $d\left(s^{\prime}-1, p_{i}^{m}\right)$ that $r\left(s^{\prime}-1, n, e\right)=0$. This last means there is an i^{\prime}, an m^{\prime} and a t such that

$$
i^{\prime}<e \leqq t \leqq n \& p_{i^{\prime}}^{\prime^{\prime}}<y\left(s^{\prime}-1, t, e\right) \& d\left(s^{\prime}-1, p_{i^{\prime}}^{m^{\prime}}\right) \neq d\left(s^{\prime}-2, p_{i^{\prime}}^{m^{\prime}}\right)
$$

If $t=n$, this last contradicts (1), since $i^{\prime}<e \leqq i$. Thus $t<n$, and

$$
p_{i^{\prime}}^{m^{\prime}}<y\left(s^{\prime}-1, t, e\right)=y\left(s^{*}, t, e\right) \leqq y^{*}
$$

since $s^{\prime}>s>s^{*}$ and $e \leqq t<n$. But this is absurd, since

$$
d\left(s^{\prime}-1, p_{i^{\prime}}^{m^{\prime}}\right)=d\left(s^{\prime}-2, p_{i^{\prime}}^{m^{\prime}}\right)=d\left(s-1, p_{i^{\prime}}^{m^{\prime}}\right)=d\left(p_{i^{\prime}}^{m^{\prime}}\right)
$$

is a consequence of the fact that $s^{\prime}>s>s^{*}$ and $p_{i^{\prime}}^{m^{\prime}}<y^{*}$.
Since $d\left(s^{\prime}-1, w\right)=d\left(s^{\prime}-2, w\right)$ for all $w<y\left(s^{\prime}-1, n, e\right)$, and since $y\left(s^{\prime}-1, n, e\right)$ $=y(s, n, e)>0$, it must be that

$$
y\left(s^{\prime}, n, e\right)=y\left(s^{\prime}-1, n, e\right)=y(s, n, e)
$$

Then we have

$$
(m)\left[n \geqq m \geqq e \rightarrow y\left(s^{\prime}, n, e\right)=y\left(s^{\prime}-1, n, e\right)>0\right]
$$

since $s^{\prime}>s>s^{*}$. It follows that either Case 2 or Case 3 of the definition of $m\left(s^{\prime}, e\right)$ holds. If Case 2 of the definition of $m\left(s^{\prime}, e\right)$ holds, then it is clear $n<m\left(s^{\prime}, e\right)$. If Case 3 holds, then $n<m\left(s^{\prime}, e\right)$ because $n<m\left(s^{\prime}-1, e\right)$.

Thus we have shown that

$$
y\left(s^{\prime}, n, e\right)=y(s, n, e)>0 \& n<m\left(s^{\prime}, e\right)
$$

for all $s^{\prime} \geqq s$. It follows immediately that $(E y) T_{1}^{1}(\tilde{d}(y), e, n, y)$ and

$$
(w)(E s)(s>w \& m(s, e)>n) .
$$

Note that

$$
(m)\left(n>m \geqq e \rightarrow(E y) T_{1}^{1}(\tilde{d}(y), e, m, y)\right)
$$

is a consequence of the fact that Case 2 of the definition of $E(e, n)$ holds. That completes the first half of the verification of $(1, e+1, n+1)$; in order to verify the second half, we suppose

$$
(w)(E s)(s>w \& m(s, e)>n) \&(m)\left(n \geqq m \geqq e \rightarrow(E y) T_{1}^{1}(\tilde{d}(y), e, m, y)\right),
$$

and then show $E(e, n)=0$. It follows from $(1, e+1, n)$ that Case 2 of the definition of $E(e, n)$ holds. Let v be so large that $v>L(i)$ for all $i<e$. Let $z=\mu y T_{1}^{1}(\tilde{d}(y), e, n, y)$. Let w be so large that $w>z$ and

$$
d(w-1, t)=d(t)
$$

for all $t<p_{e}^{z+v}$. Let s be such that $s>w+s^{*}$ and $m(s, e)>n$. It follows easily from (2,e) that s has the properties required to conclude $E(e, n)=0$; note that $y(s, n, e)=z>0$.

The definition of $L(e)$ has two cases:
Case 1. $c(e)=0$. Then by $B(e), \lim _{m} d\left(p_{e}^{m}\right)=1$. We set

$$
L(e)=\mu t(s)(m)\left[m \geqq t \rightarrow d\left(s, p_{e}^{m}\right)=1\right]
$$

Case 2. $c(e)=1$. It is a consequence of $(1, e+1)$ and of the definition of $y(s, n, i)$ that for each $i \leqq e$ and each n,

$$
E(i, n)=0 \rightarrow\left[(E s)(m(s, i)>n) \& \lim _{s} y(s, n, i) \text { exists and is positive }\right] .
$$

For each $i \leqq e$, it follows from $A(i)$ that there is a t such that $t \geqq i$ and $E(i, t)=1$. For each $i \leqq e$, let

$$
t_{i}=\mu t(E(i, t)=1 \& t \geqq i)
$$

It follows from (1, $e+1$) that for each $i \leqq e, t_{i}$ satisfies either (2) or (3):
(2) $(E w)(s)\left(s>w \rightarrow m(s, i) \leqq t_{i}\right)$;
(3) $\lim _{s} y\left(s, t_{i}, i\right)$ does not exist or is equal to 0 .

Note that since $E(i, t)=0$ whenever $t_{i}>t \geqq i$, it follows from (1, $e+1$) that

$$
(m)\left(t_{i}>m \geqq i \rightarrow \lim _{s} y(s, m, i) \text { exists and is positive }\right)
$$

But then

$$
(E y)(i)(m)(s)\left[\left(i \leqq e \& t_{i}>m \geqq i \& s \geqq 0\right) \rightarrow y(s, m, i) \leqq y\right] ;
$$

let $L(e)$ be the least such y. We now verify $(2, e+1)$. What follows is similar to the proof of Lemma 6. Fix $n \geqq L(e)$. We must show $d\left(p_{e}^{n}\right)=\lim _{m} d\left(p_{e}^{m}\right)$. If Case 1 of the definition of $L(e)$ holds, there is nothing to prove. Suppose Case 2 of the definition of $L(e)$ holds. Then $c(e)=1$, and by $B(e), \lim _{m} d\left(p_{e}^{m}\right)=0$. In order to
show $d\left(p_{e}^{n}\right)=0$, it suffices to find an s such that $d\left(s, p_{e}^{n}\right)=0$. Let k be such that if $i \leqq e$ and i is not stable, then $i=e_{j}$ for some $j<k$. Let w be so large that for all $i \leqq e$, if (2) holds, then

$$
(s)\left(s>w \rightarrow m(s, i) \leqq t_{i}\right) .
$$

By the same argument as in Lemma 6, there is a $v>w$ such that

$$
(s)(s \geqq v \rightarrow h(s, e)>n) .
$$

By Lemma 4, there is an $s \geqq v$ such that

$$
(j)_{j<k}\left[m\left(s, e_{j}\right) \leqq n_{j} \vee r\left(s, n_{j}, e_{j}\right)=0 \vee y\left(s, n_{j}, e_{j}\right)=0\right] .
$$

If we can show for each i and m that

$$
(i \leqq e \& i \leqq m<m(s, i)) \rightarrow\left(r(s, m, i)=0 \vee p_{e}^{n} \geqq y(s, m, i)\right),
$$

then it will be clear that $d\left(s, p_{e}^{n}\right)=0$. Fix i and m so that $i \leqq e$ and $i \leqq m<m(s, i)$. Suppose (2) holds. Then $m(s, i) \leqq t_{i}$, since $s \geqq v>w$. But then $t_{i}>m \geqq i$, and consequently,

$$
p_{e}^{n}>n \geqq L(e) \geqq y(s, m, i) .
$$

Now suppose (3) holds. Then i is not stable, and there is a $j<k$ such that $e_{j}=i$; in addition, $n_{j}=t_{i}$. If $m<n_{j}=t_{i}$, then $p_{e}^{n} \geqq y(s, m, i)$, since $n \geqq L(e)$. Suppose $m \geqq n_{j}$. Then $m(s, i)>n_{j}$. This last means either

$$
r\left(s, n_{j}, e_{j}\right)=0 \quad \text { or } \quad y\left(s, n_{j}, e_{j}\right)=0
$$

If $r\left(s, n_{j}, i\right)=0$, then by remark (R2), $r(s, m, i)=0$, since $m \geqq n_{j}$. Suppose $y\left(s, n_{j}, i\right)=0$. Since $n_{j} \leqq m<m(s, i)$, it follows from remark (R3) that $n_{j}=i$. But then $y(s, i, i)=0, \quad m(s, i)=i+1, \quad m=i$ and $y(s, m, i)=0<p_{e}^{n}$.

Inspection of the definitions of E and L readily reveals they are recursive in c. We make some informal remarks to indicate how to write equations defining E and L recursively in c. Fix $e \geqq 0$ and $n \geqq e$, and consider the definition of $E(e, n)$. The choice between Case 1 and Case 2 can be made effectively once the values of $E(e, t)(t<n)$ are known. Suppose Case 2 holds. The values of y^{*} and s^{*} are defined by means of a predicate recursive in d. Then the value of $E(e, n)$ is found from the values of $d\left(p_{i}^{m}\right)(m \leqq L(i)$ and $i<e)$ by means of a predicate of degree less than or equal to 0^{\prime}. Thus the value of $E(e, n)$ can be expressed in terms of the values of $E(e, t)(t<n)$ and $L(i)(i<e)$ with the aid of a predicate of degree less than or equal to $\mathbf{d} \cup \mathbf{0}^{\prime}$. Similarly, the value of $L(e)$ can be expressed in terms of the values of $E(i, n)(i \leqq e$ and $n \geqq 0)$ with the aid of a predicate of degree $\mathbf{c} \cup 0^{\prime}$. Then $\mathbf{d}^{\prime} \leqq \mathbf{c}$, since \mathbf{d}^{\prime} is the degree of the function $E(e, e)$, and since $\mathbf{d} \cup \mathbf{0}^{\prime} \cup \mathbf{c}=\mathbf{c}$.

When $\mathbf{b}>\mathbf{0}$, the changes needed in the above argument are largely notational. The notion of recursiveness is replaced throughout by the notion of recursiveness in a function of degree \mathbf{b}. The arguments contained in Lemmas 1-8 are retained
unaltered save for relativization to a function of degree \mathbf{b}. The functions $a(s, n)$, $f(s, n)$ and $d(s, n)$ are now recursive in a function of degree \mathbf{b}. We set $d\left(s, 2 \cdot 3^{n}\right)=b(n)$ for all s and all $n>0$, where b has degree \mathbf{b}, in order to insure $\mathbf{b} \leqq \mathbf{d}$. The value of $E(e, n)$ is now obtained from the values of $E(e, t)(t<n)$ and $L(i)(i<e)$ with the aid of a predicate of degree less than or equal to $\mathbf{b}^{\prime} \cup \mathbf{d}$.

Corollary 1. If \mathbf{b} and \mathbf{c} are degrees, then the following conditions are equivalent:
(i) $\mathbf{b}^{\prime} \leqq \mathbf{c} \leqq \mathbf{b}^{\prime \prime}$ and \mathbf{c} is recursively enumerable in \mathbf{b}^{\prime};
(ii) there is $a \mathbf{d}$ such that $\mathbf{b} \leqq \mathbf{d} \leqq \mathbf{b}^{\prime}$ and $\mathbf{d}^{\prime}=\mathbf{c}$;
(iii) there is a d such that $\mathbf{b} \leqq \mathbf{d} \leqq \mathbf{b}^{\prime}$, \mathbf{d} is recursively enumerable in \mathbf{b} and $\mathbf{d}^{\prime}=\mathbf{c}$.

For each degree \mathbf{b}, let $R_{\mathbf{b}}$ denote the set of all degrees greater than or equal to \mathbf{b}, recursively enumerable in \mathbf{b} and less than or equal to \mathbf{b}^{\prime}. Let j denote the jump operator. Then Corollary 1 tells us that the order-preserving map

$$
j: R_{\mathrm{b}} \rightarrow R_{\mathrm{b}} \text {. }
$$

is onto. It also follows from Theorem 1 that any element of $R_{b^{\prime}}$ greater than \mathbf{b}^{\prime} is the image of more than one element of R_{b}; Friedberg(result unpublished)has shown that \mathbf{b}^{\prime} does not have a unique pre-image in R_{b}. We do not know if R_{b} and $R_{b^{\prime}}$ are order-isomorphic, but we conjecture that they are. We can show (announced in [6] for $\mathbf{b}=\mathbf{0}$): for any degree \mathbf{b}, R_{b} is a universal, countable partial ordering.

Corollary 2. There exists a recursively enumerable degree d such that $\mathbf{d}<\mathbf{0}^{\prime}<\mathbf{0}^{\prime \prime}=\mathbf{d}^{\prime}$.

Proof. Let $\mathbf{b}=\mathbf{0}, \mathbf{c}=\mathbf{0}^{\prime \prime}$ and $\mathbf{a}=\mathbf{0}^{\prime}$, and apply Theorem 1 to obtain \mathbf{d}. Then \mathbf{d} is recursively enumerable, $\mathbf{0}^{\prime} \$ \mathbf{d}$ and $\mathbf{d}^{\prime}=\mathbf{0}^{\prime \prime}$.
Note that Corollary 2 provides still another solution to Post's problem.
Corollary 3. For each degree \mathbf{b} and each natural number n, there is a degree d recursively enumerable in \mathbf{b} such that

$$
\mathbf{b}<\mathbf{d}<\mathbf{b}^{\prime}<\mathbf{d}^{\prime}<\mathbf{b}^{\prime \prime}<\cdots<\mathbf{b}^{(n)}<\mathbf{d}^{(n)}<\mathbf{b}^{(n+1)} .
$$

Proof. We know from [2] that there exists a degree \mathbf{g} such that \mathbf{g} is recursively enumerable in $\mathbf{b}^{(n)}$ and $\mathbf{b}^{(n)}<\mathbf{g}<\mathbf{b}^{(n+1)}$. By Theorem 1, there is a degree \mathbf{h}_{1} such that \mathbf{h}_{1} is recursively enumerable in $\mathbf{b}^{(n-1)}, \mathbf{b}^{(n-1)}<\mathbf{h}_{1}<\mathbf{b}^{(n)}$ and $\mathbf{h}_{1}^{\prime}=\mathbf{g}$. By making $n-1$ further applications of Theorem 1 , we obtain degrees $\mathbf{h}_{2}, \mathbf{h}_{3}, \cdots, \mathbf{h}_{n}$ such that for $2 \leqq i \leqq n, \mathbf{h}_{i}$ is recursively enumerable in $\mathbf{b}^{(n-i)}$,

$$
\mathbf{b}^{(n-i)}<\mathbf{h}_{i}<\mathbf{b}^{(n-i+1)} \quad \text { and } \quad \mathbf{h}_{i}^{\prime}=\mathbf{h}_{i-1} .
$$

Let $\mathbf{d}=\mathbf{h}_{n}$. Then \mathbf{d} is recursively enumerable in \mathbf{b}, and for all $i \leqq n$, $\mathbf{b}^{(i)}<\mathbf{d}^{(i)}<\mathbf{b}^{(i+1)}$.

Corollary 3 improves a result of Shoenfield [7]; he showed that for each degree \mathbf{b}, there is a degree \mathbf{d} such that $\mathbf{b}<\mathbf{d}<\mathbf{b}^{\prime}<\mathbf{d}<\mathbf{b}^{\prime \prime}$. We do not know if for any degree \mathbf{b} there exists a degree \mathbf{d} such that for all $n \geqq 0$,

$$
\mathbf{b}^{(n)}<\mathbf{d}^{(n)}<\mathbf{b}^{(n+1)}
$$

if for some \mathbf{b}, such a \mathbf{d} exists, then by Theorem 1, \mathbf{d} can be given the additional property of recursive enumerability in \mathbf{b}.

Theorem 1 can be extended without any radical alteration of its proof. For example, we can show: if \mathbf{g} is a recursively enumerable degree such that $\mathbf{g}^{\prime}<\mathbf{0}^{\prime \prime}$, then there is a recursively enumerable degree \mathbf{d} such that

$$
\mathbf{g}<\mathbf{d}<\mathbf{0}^{\prime}<\mathbf{0}^{\prime \prime}=\mathbf{d}^{\prime}
$$

We say a sequence $\mathbf{a}_{0}, \mathbf{a}_{1}, \mathbf{a}_{2}, \cdots$ of degrees is simultaneously recursively enumerable if there is a sequence $A_{0}, A_{1}, A_{2}, \cdots$ of simultaneously recursively enumerable sets such that \mathbf{a}_{i} is the degree of A_{i} for all i. Using the method underlying the proof of Theorem 1, we can show: if $\mathbf{a}_{0}<\mathbf{a}_{1}<\mathbf{a}_{2}<\cdots$ is an infinite, ascending sequence of simultaneously recursively enumerable degrees, then there exists a recursively enumerable degree \mathbf{d} such that

$$
\mathbf{a}_{0}<\mathbf{a}_{1}<\mathbf{a}_{2}<\cdots<\mathbf{d}<\mathbf{0}^{\prime}
$$

We end with a conjecture: the upper semi-lattice of recursively enumerable degrees is dense (i.e., if \mathbf{b} and \mathbf{c} are recursively enumerable degrees such that $\mathbf{b}<\mathbf{c}$, then there exists a recursively enumerable degree \mathbf{d} such that $\mathbf{b}<\mathbf{d}<\mathbf{c}$). The only evidence we have to offer in favor of this conjecture is contained in the results we announced above and the result of Muchnik [5] that there is no minimal, nonzero, recursively enumerable degree $\left({ }^{2}\right)$.

References

1. R. M. Friedberg, A criterion for completeness of degrees of unsolvability, J. Symbolic Logic 22 (1957), 159-160.
2. -, Two recursively enumerable sets of incomparable degrees of unsolvability, Proc. Nat. Acad. Sci. U.S.A. 43 (1957), 236-238.
3. S. C. Kleene, Introduction to metamathematics, Van Nostrand, New York, 1952.
4. S. C. Kleene and E. L. Post, The upper semi-lattice of degrees of recursive unsolvability, Ann. of Math. (2) 59 (1954), 379-407.
5. A. A. Muchnik, Negative answer to the problem of reducibility of algorithms, Dokl. Akad. Nauk SSSR 108 (1956), 194-197. (Russian)
6. Gerald E. Sacks, The universality of the recursively enumerable degrees, Abstract No. 60T-14, Notices Amer. Math. Soc. 7 (1960), 996.
7. J. R. Shoenfield, On degrees of unsolvability, Ann. of Math. (2) 69 (1959), 644-653.
8. Clifford Spector, On degrees of recursive unsolvability, Ann. of Math. (2) 64 (1956), 581-592.

Institute for Advanced Study, Princeton, New Jersey
${ }^{(2)}$ Added in proof. Our conjucture is true; we will give a proof elsewhere.

