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Consider the following theorem, first proved (in the real case) by Arens and

Kelley [1] : Let X be a compact Hausdorff space and C(X) the space of all real

(or complex) valued continuous functions on X, with the supremum norm. Let

K be the convex set of linear functionals L on C(X) such that L(l) = 1 = || l||.

The set of extreme points of K coincides with the set of all nontrivial multi-

plicative linear functionals on C(X). Their proof of this result depends on the

representation of linear functionals by means of measures (which makes it pos-

sible to identify a multiplicative functional with evaluation at a point of X).

Using methods of a more algebraic nature, Täte [8] has proved the above equi-

valence for certain partially ordered real commutative algebras (which include

the algebra C(X)). The fact that such methods are at all feasible arises, essentially,

from the fact that the convex set R admits a second description, namely, it is

those linear functionals L on C(X) such that L ^ 0 and L(l) = 1.

Suppose, now, that we represent the algebra C(X) by A and the algebra of

scalars by B. The above result then asserts that the set of nontrivial homomor-

phisms of a certain algebra A into B coincides with the set of extreme points of

a certain convex set of linear transformations from A into B. The purpose of

the present paper is to try to determine the extent to which this type of result

remains valid if the algebra of scalars B is replaced by a more general algebra

(over the same field as A). To the best of our knowledge, the first proof of a

theorem of this type was given by A. Ionescu-Tulcea and C. Ionescu-Tulcea [5]

(announced in [6, footnote 3]), where A and B were taken to be (real) C(X) and

C(Y), respectively. Their method is an extension of the method of Arens and

Kelley. Working more in the spirit of Tate's paper, and with sets of transforma-

tions analogous to the second description of K (above) we will give an extremely

simple proof of a similar result (Theorem 1.1) for certain algebras of functions

which include algebras of the form C(X)(2). It would be possible to work with
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certain commutative, partially ordered algebras with unit, but the appropriate

hypotheses would invariably bring us back to algebras of functions, so we will

restrict our attention to such algebras from the start. More precisely, let A and

B be algebras of complex valued functions defined on the sets X and Y respec-

tively, and assume that both A and B contain the constant functions. Let ¿f(A, B)

be the set of all linear transformations from A into B, and let

K0(A, B) = {T: Te&(A,B), T=0 and Tl ^ 1} (where T=0 means 7/^0

whenever feA and/2:0, and 1 represents the function which equals 1 at each

point). Let KM, B) = {T: TeK0(A, B) and Tl = 1}.

If the functions in A and B axe bounded, and these algebras have the supremum

norm, let Si£e(A, B)be those Tin &(A, B)such that

||T||=sup{||T/||:||/||=|l,/e¿} < oo,

and let K2(A, B) = {T:Te@Se(A, B), || T|| = 1 and Tl = 1}. (Whenever this

set is introduced, the fact that the functions in A and B are bounded is

assumed implicitly.)

We say that A is self-adjoint if feA whenever fe A (where/(x)=/(x) for

x in X). Denoting by AR the set of real valued functions in A, we see that A is

self-adjoint if and only if A = AR + iAR.

It is easily seen that each of the above sets K is convex (i.e., XTl + (1 — X)T2 e K

whenever Tu T2eK and 0 ^ X _ 1). An element Tof Kis an extreme point of

K provided T= |(ïi + r2> and TuT2eK imply T= Tt = T2. Equivalently, T

is an extreme point of K if and only if U in 3?(A, B) and T±U eK imply (7=0.

An element Tof ^C(A, B) is multiplicative, or a homomorphism, if T(fg)=Tf Tg

whenever/, geA.

Our central result is Theorem 1.1 in which we show that, with an additional

assumption on A, the extreme points of K0(A, B) axe multiplicative. We consider

the converse and related questions, and (in §2) we apply these results to obtain,

among other things, the Ionescu-Tulcea theorem. Many of the results concern-

ing the above sets K and their extreme points turn out to depend upon the algebra

A being self-adjoint (this being, for instance, precisely the condition under which

K2(A, B) = Ki(A,B)). The following interesting question remains open: Must

the extreme points of K2(A, B) be multiplicative? (It is well known that the answer

is affirmative if A is a subalgebra of C(X) and B is the algebra of scalars.) An

obvious example of a non-self-adjoint algebra on which to test this question

is the algebra si of all functions which are continuous in the closed unit disc

in the complex plane and analytic in its interior, with supremum norm. We do

not know the answer (with A = B = si) even for this special case, although we

do have an interesting characterization in §3 of those homomorphisms of si into

itself which are extreme points of K2(si, ¿st).

Although all our results are stated and proved for algebras of complex valued
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functions, the analogous results for real algebras of real valued functions are

valid, with somewhat simpler proofs.

1. Basic results.

Theorem 1.1. Let i denote 0 or 1, and suppose that each real valued func-

tion in A is bounded. If Tis an extreme point of K¡(A, B), then Tis multiplicative.

Proof. It is easy to verify that any extreme point of Ky(A, B) is an extreme

point of Ro04, B), so we can restrict our attention to the latter set. We will make

repeated use of the fact that if Ue&(A, B) and T±UeK0, then U = 0. We

show first that Tf = Tl Tf for all / in A. Indeed, let Uf=Tf- T\ Tf. Since
Tl ^ 1, we have U ̂  0, so T+U^O, while (T- U)f = Tl Tf shows that
T- U ^ 0. Furthermore, (T+ U)l = Tl + Tl(l - Tl) g Tl + (1 - Tí) = 1 and

(T- [/)1 =(T1)2 ^ l.ThusT± U eK0, so U = 0. We show next that Tfg=TfTg

whenever g is a real valued function in A. It suffices to prove this for those g

such that 0 ;£ g ^ 1, since if g is real valued, it is bounded and there exist positive

constants a and b such that 0 ^ ag + bl $, 1. If T[f(ag + 61)] = TfT(ag+bl),

then aTfg + bTf = aTfTg + bTfTl and therefore Tfg = TfTg. Assuming, then,

that 0 ̂  g ̂  1, let Uf = Tfg - TfTg; we have C/l = 0 so (T± U)l = Tl g 1.

If / ^ 0, then (T+ U)f = Tf + Tfg ~TfTg= Tf(l - Tg) + Tfg>Z 0 since
g ̂  1 implies Tg S Tí í 1, while (T- U)f = Tf- Tfg +TfTg= T[f(í - g)]
+ TfTg ^ 0 since /(l - g) ̂  0. Thus, 1/ = 0. Finally, to see that Tfg = TfTg
for any /, g in A, choose / and define Ug = Tfg - Tf Tg. If g ^ 0 (and hence

is real valued) the previous result shows that Ug=0; it follows trivially that

T±UeK0 and that Tis multiplicative.

The hypothesis in the above theorem that every real valued function in A

be bounded is (especially in the light of the next result) somewhat strong. We

have no example which shows that it is needed; on the other hand, we see no

way of proving the theorem without it(3). Although we did not assume that A

is self-adjoint, the next result shows that the existence of an extreme point in

K0(A, B)implies this fact (and hence our theorem is actually about an algebra

of bounded functions). The letter C denotes the set of complex numbers.

Proposition 1.2. // R0(4, B) (or KX(A, B)) contains an extreme point, then

the algebra A is self-adjoint.

Proof.   If there exists g in A, g $ AR + iAR, choose a linear subspace N of A

(3) By means of elementary arguments, together with the proof of Theorem 1.1, it is possible

to reduce this question to the following : If A is a real algebra of real valued functions on X which

contain an unbounded function, must every extreme point of Ko(A, B) be multiplicative! A good

example of such an algebra (for which we do not know the answer) is the algebra of all real

polynomials, considered as functions on the line. It follows from Theorems 1.4 and 1.5 that the

multiplicative elements of Ko {A, B) are extreme, and it is easily shown that every multiplicative

element of 3?(A, A) is of the form analogous to that in Theorem 3.4.
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such that AR + iAR c JV, JV (~\Cg = {0} and A = N + Cg, where Cg denotes

the set of all complex multiples of g. Define U in ^C(A, B) by U = 0 on JV and

U(cg) = cl for each c in C. Then if Te K0 we have T±Ue K0, so that T is not

extreme.

As we will see below, the condition that A be self-adjoint turns out to be charac-

teristics of those algebras A for which KY(A,B) c K2(A, B).

If B is the algebra of scalars, then K¡(A, B) becomes a set of linear functionals,

which we abbreviate by K¿(A). The analogous set of functionals on B is denoted

by K¡(B). For each x in X we denote by Lx the evaluation functional at

x : Lxf = f(x) for each / in A.

Theorem 1.3. Always, K2(A,B) a K^A, B). These sets are equal if and

only if A is self-adjoint.

Proof. To prove the first assertion, it suffices to prove the special case

K2(A) cKl(A), since, if the latter holds, then for any Tin K2(A, B) and y in Y

we have Ly0 Te K2(A)cK1(A), so that (Tf)(y) = (Ly0 T)(f) = 0 if/=0. Since

this is true for each y in Y, we have T_ 0 and therefore TeK^(A,B). Suppose,

then, that LeK2(A), so that \Lf\ g |/|| for all/ in A. We want to show that

Lf = 0 if / = 0. Suppose first, that Lf=a + ib, with b # 0. If ô is real, with

ob>0, then \L(f+ ¿<5-l)|2 = a2 + (b + Ô)2, while \f+ ¿<5-l|2 ̂(||/||2 + ¿a)-l.

For sufficiently large |¿|, then, we have|L(/+ iö-l)\2 = a2 + b2 + 2ôb + ô2 > |/||2 + <52

_ ¡/ + iô ■ 11|2, a contradiction. Thus, Lf must be real. If it were negative,

note that since 0£/g||/|-l, we have - |/|| • 1 =/- ||/|| • 1 £ 0, so that

«(/- «/«-DU *\f\. while |L(/-||/||-1)| = |L/-||/||| = 11/11-L/>||/||,
a contradiction which completes the first part of the proof.

Suppose, now, that A = AR + iAR. To prove that K^A, B) c K2(A, B), it

suffices again to prove the special case K^A) c K2(A). Indeed, suppose that the

latter inclusion holds, that Te Kt (A, B) and that yeY. Then Ly°Te K^AjcK^A),

so that for each/ in A, |(T/)(y)| = |(L,,° T)(/)| = ||/||; since this is true for

each y in Y, we conclude that Te K2(A, B). Suppose, then, that Le K¿A). If

feAR, then ||/|| • 1 -/ = 0, so ||/|| - Lf = L(\\f\\ ■ 1 -/) ^ 0, which shows that

Lf is real. By Tate's argument [8] (he considers the discriminant of the quadratic

0 = L[(Xf+ l)2] = X2L(f2) + 2XLf+ 1 in X), L= 0 implies that (Lf)2 = L(f2)

for each/in AR. Now, for arbitrary/in A, we can choose/1;/2 in AR such that

f = fi + if2, and hence ||/||2 ■ 1 = |/|2 = f\ + f\. It follows that

\ff = L(|/||2-l) = L(f\) + L(/2) ^ (L/,)2 + (L/2)2 = |JL/1 + ¿L/2|2 = | L/|2,

so that || L|| = 1.

Finally, we show that if there exists g in A ~ (j4r + iAR), then there exists T

in XiCá, B) ~ K2(A, B). We simply choose a subspace N of A such that

AR + iAR c JV, NnCg= {0}, and /I = JV + Cg. Choose x in X and <5 > || g ||

and define T: ^ -> B by T(/ + cg) = [/(x) + c¿] • 1 for / in JV and complex c.

Then TeK^A, B), but || Tg\\ = ô > \\g\\, so T^K2(A, B).
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The nontrivial part of the next theorem is a slight variation of Tate's result [8]

for the real case; the proof is also his.

Theorem 1.4. Let i denote 0 or 1. Every multiplicative element of K¡(A) is

an extreme point of K,(A) if (and only if) A is self-adjoint.

Proof. The "only if" part is a consequence of Proposition 1.2 and the fact

that Lx is a multiplicative element of K,(A), for each x in X. Suppose that L is

a multiplicative element of K,(A) and that L= %(Lt + L2), Lu L2 in K¡(A). It

suffices to show that L= Lt = L2 on AR. Since each Lk ^ 0, it follows (as in the

proof of Theorem 1.3) that (Lkf)2 ^ Lk(f2) for each/ in AR; hence, for such/,

we have \(Lyf)2+ \LyfL2f + \(L2f)2 =(L/)2 = L(f2) = \Ly(f2) + ±L2(f2)

^ K Li/)2 + K L2f)2, so that (Lyf - L2f)2 ̂  0. This shows that Lyf = L2f and
completes the proof.

The next theorem shows that the converse to Theorem 1.1 for arbitrary B

depends on the validity of the converse when B is taken to be the complex numbers.

Theorem 1.5. Let i denote 0, 1 or 2. Every multiplicative element of the

set Ki(A, B) is an extreme point of this set if and only if the same is true for

the set K,(A).

Proof. Suppose that T is a multiplicative element of K¡(A, B) and that there

exists U in &(A, B) such that T± UeK¡(A, B). If yeY, then the functional

Ly o T is a multiplicative element of K,(A) ; by hypothesis it is extreme. Since

Ly°T± Ly°UeK¡(A), we see that Ly° U = 0. Since this is true for each y in Y,

we must have U = 0 and hence T is extreme. To prove the converse, suppose

that Lis a multiplicative element of K,(A). We define Tin K,(A, B) by Tf = Lf-1

for each/ in A (i.e., Tf is the constant function Lf). Then Tis multiplicative, so

(by hypothesis) it is extreme, and one concludes easily that this implies that L

is extreme in R¡(^4).

Theorem 1.6. Let i denote either 0, 1 or 2, and suppose that A is a self-

adjoint algebra of bounded functions. Then an element T of K¡(A, B)is multi-

plicative if and only if it is extreme.

For i = 0 or 1, the proof is immediate from Theorems 1.1, 1.5 and 1.4. For

i = 2, we use Theorem 1.3 to reduce the theorem to the case i = 1.

2. Applications. If £ is a subset of X, the characteristic function Xe ot"

£ is that function which equals 1 on £, 0 on X ~ £. A topological space X is

said to be totally disconnected if the collection of open and closed subsets of X

forms a basis for its topology. The equivalence between (i), (ii) and (iii) in the

next theorem was first proved (in the real case, with £= C(Y)) by A. Ionescu-

Tulcea and C. Ionescu-Tulcea [5]. A special case of their theorem has been

proved independently by S. Lloyd [7],
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Theorem 2.1. Let X and Y be compact Hausdorff spaces, let A = C(X) and

let B a subalgebra (containing the constants) of C(Y). Then Ky(A, B) = K2(A, B),

and the following assertions about an element T of £f(A,B)  are equivalent:

(i)    T is an extreme point of Ky(A, B).

(ii)   T is multiplicative and is in Ky(A, B).

(iii) There exists a continuous function cb : Y-*X such that Tf—f°cp for all fin A.

If X is totally disconnected, the next assertion is also equivalent to the above:

(iv)   T carries characteristic functions into characteristic functions and is in

Ky(A,  B).

Proof. The fact that Ky(A,B) = K2(A,B) comes from Theorem 1.3 and the

fact that C(X) is self-adjoint, while Theorem 1.6 shows that (i) is equivalent to

(ii). It is obvious that (iii) implies (ii); to see the converse, suppose that T is

multiplicative, that y e Y, and consider Ly ° T. This is multiplicative and is in

Ky(A) = K2(A), so by Theorem 1.4 it is an extreme point of K2(A). By the Arens-

Kelley theorem [1] (see [3, p. 278] for the complex case), there exists a unique

point in X, which we denote by cp(y), such that Ly° T= L^(y). This defines cb

for each y in Y; to see that cp is continuous, one uses the fact that the topology

of X is the same as the "weak" topology induced on it by C(X), and the fact

that Tf is continuous on F for each/in A. To see that (ii) implies (iv), suppose

that Xe e C(X) and that T is a multiplicative element of K¡(A, B). Then

TXe = T(xl) = (Txe)2> so Txe must be a characteristic function. Conversely, if

X is totally disconnected and T carries characteristic functions into characteris-

tic functions, we will show that Tis an extreme point of Ky(A, B). Suppose there

exists U in L(A, B) such that T± UeKx(A, B). Then for any Xe m A, we have

0 ^ Xe fk 1, so that 0 ;£ Txe ± UxE S 1- Since Txe on'y takes on the values 0

and 1, we conclude that Uxe = 0. Thus, U = 0 on the subspace of A spanned

by the characteristic functions. Now, this subspace is in fact a subalgebra, and

since I is a totally disconnected Hausdorff space, the characteristic functions

separate points of X. It follows from the Stone-Weierstrass theorem [3] that

this subspace is dense in A. Furthermore, TeK2(A, B) and T+ UeK2(A, B)

show that U is continuous, so U = 0 on A and the proof is complete.

Parts (i), (ii) and (iv) of the above theorem are valid if we replace Ky(A, B)

by K0(A, B) ; the appropriate formulation of (iii) becomes a little more compli-

cated, since the map ci> is only defined on those y in Y for which (Tl)y = 1.

By using the method of proof of Theorem 1.3, one sees that K0(A, B)

= {T:TeSe(A, B), ¡T\\ gl and 0 ̂  Tl S 1}.
Note that the hypotheses on A in Theorem 1.6 imply that if A is given the

supremum norm, that it is isometric and isomorphic with a dense subalgebra

of C(Z) for some compact Hausdorff space Z [3]. Thus, it is possible to deduce

Theorem 1.6 by means of the above results.

In proving the equivalence of (i) and (iv) in Theorem 2.1, the hypothesis that
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X be totally disconnected was only used in showing that (iv) implies (i). This

implication is not valid otherwise (4) ; indeed, suppose X were not totally dis-

connected. Then an elementary argument shows that there would exist a con-

nected component £ of X containing at least two distinct points xx and x2. De-

fine Tf= i[/(*i) +/(x2)]-l, for each/ in C(X). If /= Xf for some subset F

of X, then, since £ is connected, either/= 0 or/= 1 on £, so that Tf= 0 or 1

and hence is certainly a characteristic function. Clearly, TeK^A, B), although it

is not extreme in this set, since T=2-(Ti + T2), where T¡ is the element of

KM, B) defined by TJ=f(x,)-l, i = 1,2.
We denote by LC0(S, I, p) the space of all essentially bounded measurable

functions on the positive measure space (S,H,p), with essential supremum norm.

Theorem 2.2. Let A = LX(S1, H1, pj) and suppose that B is a subalgebra

(containing the constants) of ^"(S^ E2, p2). Then K0(A, B)={T: Te£(A, B),

|| T|| = 1 and 0 S Tí _ 1} and the following assertions about an element T of

KM' B) are equivalent:

(i)    Tis an extreme point of KM>B).

(ii)   T is multiplicative.

(iii) T carries characteristic functions into characteristic functions.

The proof follows from the proof of Theorem 2.1 (and the subsequent remarks),

together with the well-known fact that there exist extremely disconnected (hence

totally disconnected) compact Hausdorff spaces X, such that L°°(S¡, H¡, p¡)

is isometrically isomorphic with C(X¡), ¿=1,2 [3, p. 445].

3. An example. The first three results of this section deal with an algebra A

of bounded complex valued functions on a set X, with supremum norm. After

that we consider the algebra si of all complex valued functions which are defined

and continuous in | z | _ 1 and analytic in | z | < 1, with supremum norm. By

the unit ball of one of these spaces, we mean the set of all/ of norm at most 1.

Lemma 3.1. Suppose feA, ||/|| = 1. Then f is not an extreme point of the

unit ball of A if and only if there exists g in A, g # 0, such that \f\ + \g\ ^ 1.

Proof(5). If such a g exists, then |/± g| <: |/| + |g| = 1, so ||/± g|| ^ 1

and / is not extreme. Conversely, if ||/± A || = 1, A =¿ 0, then for each x in X

we have

1 ^ |/(x) ± A(x) |2 = |/(x) |2 ± 2®f(x)h(x) + | A(x) |2

andtherefore|/|2 + |A|2 = l.Thus,|A|2 = l-|/|2 = (l-|/|)(l + |/|) = 2(l-|/|),

so |/| + i| « |2 = 1 and we can let g = \h2.

Corollary 3.2. Suppose feA, ||/|| ^ 1. Then f is an extreme point of the

unit ball  if and only iff is an extreme point, n = 1,2,3, •••.

(4) This fact was proved in a conversation with W. G. Bade.

(5) This proof differs slightly from one originally suggested to us by Eva Kallin.
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Proof. If/" is not extreme, there exists g7¿0 such that |/|" + |g|^l.

Then

|*| á i -1/|" = d - |/|)(i +1/| +1/|2 + - + l/l"1) ̂  »a -1/|),

so |/| + (l/n)|g| ^ 1 and hence |/| is not extreme. Conversely, if there exists

£#0 such that |/| + |g|gl then |/|"á|/| shows that |/|" + |g| ^ 1, so that

/" is not extreme.

Corollary 3.3. Suppose \f\eA whenever feA. Then f (|/|| ^ 1) is an

extreme point of the unit ball of A if and only if\f\ = 1.

Proof. If |/(x) | < 1 for some x in X, then g = 1 - |/| ^ 0 and |/| + | g | ^ 1.

Conversely, if there exists g # 0, |/| + | g | ^ 1, then |/(x) | < 1 for some x.

The remainder of this section is devoted to the algebra sé defined above.

Since the only real valued functions in sé are real constants, it follows from

Proposition 1.2 that the sets K0(sé, sé) and Ky(sé, sé) have no extreme points.

Whether the extreme points of K2(sé, sé) are multiplicative remains an open

question; we will describe the homomorphisms of sé into itself, and determine

which of these are extreme in K2(sé, sé). The following result uses no new

methods, but we know of no reference to it in the literature. The function in

sé which sends z into z is denoted by L

Theorem 3.4. Suppose that g ese, \g\ ^ 1, and define (for each f in sé)

Tf=f °g- Then T is a multiplicative element of K2(sé, sé), with TI = g. On

the other hand, if T is a nontrivial multiplicative element of $¿(sé, sé), then

TeK2(sé, sé), I T/1 £ 1 and Tf=f°TIfor all f in se.

Proof. If Tf—f °g, the properties stated above are easily verified. Suppose,

then, that T is a nontrivial multiplicative transformation. Since Tl = (Tl)2,

and since |z| z% 1 is connected, we must have Tl = 0 or Tl = 1. The former

would imply that T= 0, so Tl = 1. If |z| ^ 1, then LZ°Tis a homomorphism

of sé onto the complex numbers and hence is continuous, with norm 1. Thus,

for each/ in sé and |z| ^ 1 we have |(T/)(z)| = \(LZ °T)f\ ^ ||/||, so that

|| 7/1| ^ ||/1| and hence TeK2(sé, sé). Since ||/|| = 1, we have || 77 || ^ 1.

Finally, suppose that /= Y?k=0akIk is a polynomial in sé; then T/= ¿Zak(TI)k

=f °TI. By continuity of Tand density of the polynomials in sé, we get the

desired result.

Theorem 3.5. Suppose T is a homomorphism from sé into sé (so that

Tf=f° Tl for eachf in sé). Then T is an extreme point of K2(sé, sé) if and

only if Tl is an extreme point of the unit ball of sé.

Proof. Suppose h = TI is extreme and suppose there exists U in £f(sé, sé)

such that T±Ue K2(sé, sé). If fe sé, \f || z% 1, we havefl Tf ± Uf || = ||/ o n ± Uf ||
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= 1 ; in particular, taking / = /", n = 0, 1,2, •••, we have || A" ± l/J" J g 1. By

Corollary 3.2, A" is an extreme point of the unit ball for n = 1,2,3, •••, while

1 = A0 is extreme by Lemma 3.1. It follows from Lemma 3.1 that UI" = 0 for

each n, and hence U = 0 on all polynomials. Since U is continuous and the

polynomials are dense in si, U = 0 on si and T is extreme.

To prove the converse, suppose n is not an extreme point of the unit ball of si.

By Lemma 3.1, there exists g ^=0 in si such that | A| + |g| = 1. Define, for/

in si, Uf= i/'(0)g; clearly U is a nontrivial element of £P(si,si) and UÍ = 0.

It remains to show that |T±C/|^1, i.e., if ||/|| ^ 1 and |z|<l, then

|/(A(z)) ± i/'(0)g(z)| _ 1. We will use the following corollaries to Schwartz's

lemma (see, e.g., [2, p. 18]): If fesi, ||/|| = 1 and |w|<l, then |/'(0)|

= l-|/(0)|2and

l/(w)|^[|w| + i/(o)|]-[i + |w| |/(o)ir1.

For our purposes we will take w = A(z), and let a = | A(z)|, b = |/(0)|. Thus,

using  the  above  two  inequalities  as  well  as  |g(z)| _ 1 — | n(z)|,   we  have

|/(A(z))±i/'(0)g(z)| = |/(A(z))| + i|/'(0)||g(z)| =(a + b)(l + ab)-1H(l- b2)(l -a).

Now, 1 + b = 2, so the quantity on the right is at most

(a + b)(l+aby1 + 2-(l-b)(l-a) = [(a+b) + (l + ab)-i(l-b)(l-a)-](l+ab)-1

^[(a + A) + (l-fe)(l-a)](l + ö/jr1 = 1,

since 1 + ab ^ 2. This completes the proof.

It should be noted that the second half of this proof is valid for the algebra

H°° [4]; we need only assume that h is not a constant of modulus one, so that

/ ° A is defined for/ in Z/°°. The proof of the first part (as well as the second half

of Theorem 3.4) fails for Z/00, however, since the polynomials are not dense in

this algebra.

Added in proof. Let A be an algebra of bounded complex-valued functions

on a set X, and suppose that A is complete in the supremum norm. If geA,

|| g || = l,/e¿/and 0 < r < 1, then (as is well known)/o (rg)eA. It follows from

the completeness of A and the uniform continuity off that limr^if • (rg) exists in

A and equals/o g. This fact, together with minor modifications in the proofs of

the last two theorems, proves the following result.

Theorem 3.6. An element T of K2(si,A) iis multiplicative if and only if there

exists g in A, \\g\\ ^ 1, such that Tf = f° g for each f in si. Such a homomor-

phism is an extreme point of K2(si,A) if and only if g is an extreme point of the

unit ball of A.

Finally, we note that characterizations of the extreme points of the unit balls

of si and of//00 appear in [4, p. 139].
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