
ON SPHERICAL CHARACTERISTIC COHOMOLOGY (i)

MY

A. W. ADLER

The theory of characteristic classes, primarily a topological discipline, can be

(and, at its inception, was) treated geometrically by means of mappings into clas-

sifying spaces and invariant polynomials in the curvature forms of these spaces.

The theory goes something like this. Suppose that n and p are positive integers,

that G is a closed subgroup of the orthogonal group 0(n), and that S is an invariant

symmetric ^-linear functional on the Lie algebra of G. Let Í2 denote the curvature

form of the canonical connection of the second kind on 0(n + p) as a bundle

over the classifying space BG = 0(n + p)¡G x O(p). The 2^-form

Alternation S(Q,-..,Q)

on 0(n + p) then induces a closed 2<j-form Qs on BG; the 2qth real coho-

mology group of BG is, for any 2q < p, generated by such forms £2S. If M

is an n-dimensional manifold and B a principal G-bundle over M, then B can be

induced by a mapping g of M into BG (with p sufficiently large); the characteristic

2q-forms of M with respect to the bundle B are then the forms g*(Qs). The

resulting characteristic cohomology groups of M turn out to be independent

of the choice of p and g.

An analogous spherical characteristic cohomology of M can be defined

oe means of a more carefully chosen bundle BG and mapping g. If p

is large, it can be shown as a consequence of Nash's imbedding theorem

that there exists an isometric imbedding of M in the unit sphere Sn+P~ . The

spherical image of this imbedding (defined in §2) then gives rise to a mapping g

of M into the space BG = 0(n +p)/Gx 0(p - 1) .The forms g*(Q?) axe nothing

new: they generate the characteristic cohomology groups of M. But now one can

choose instead to consider the curvature form Q' of the canonical connection on

0(n + p) as a bundle over Sn+P~\ The 2g-forms Alternation S(Q',--,ii') on

0(n + p) then induce 2q-forms Q's on BG, and hence induce 2q-forms Qs = g*(Q's)

on M. The question, of course, is whether the forms Qs are closed, whether they

are independent of p and g, and whether they generate some noncharacteristic

cohomology in M. This paper is a preliminary attempt to supply some answers.

For obvious reasons we will call the forms Qs the spherical characteristic forms

of M with respect to the bundle B.
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First, the conditions under which the forms fis are closed. It is easy to show

that the characteristic forms of M are closed, because the forms Qs are closed in

BG; but such is not the case for the spherical characteristic forms, because the

forms Q's are in general not closed in BG . It can be proved using the methods of

§2 that Qs is closed whenever the restriction of the form Alternation S(Q',---,Q')

to g(M) is invariant under the right-action of 0(n), but such a condition is quite

unsatisfactory. A better condition uses Chern's notion of a G-manifold: An

n-dimensional Riemannian manifold M is a G-manifold if its bundle of frames

can be reduced to a principal G-bundle B which admits a torsionless connection.

It is proved in §2 that the spherical characteristic forms of M with respect to such

a bundle B are closed.

The proof that the spherical characteristic classes are independent of p and of

g is, on the other hand, much simpler than the corresponding proof for charac-

teristic classes (§3). For characteristic classes, independence is established by a

theorem of Weil. For spherical characteristic classes, independence is essentially

a consequence of the fact that the forms Q's are horizontal over sa+p~1 (this,

of course, is due to the fact that the form £V is horizontal over Sn+P~1;

the forms Q and Qs are horizontal only over BG). Part C of Theorem 2 is the

heart of the proof.

In the special case n even and G the unitary group U(n/2), the G-manifolds M

are the almost-Kähler manifolds. There exists a nonvanishinginvariant 1-linear

functional S0 on the Lie algebra of l/(n/2): The elements of the Lie algebra are

certain n x n matrices A = (au), and
n

So\A) =   2w (¡k,k+n/2 •
*=1

The resulting characteristic 2-form (27t)_1- g*(QSo) on M is then the Chern form

Cy of the almost-Kähler metric of M. Cy and the fundamental form of the metric

will in general differ ; Cy is an integral form, while the fundamental form is integral

only if the metric is Hodge. The fundamental form in fact will generally not be

found among the characteristic forms of M. It is proved in [1], however, that the

fundamental form is a spherical characteristic form of M: It is the form

(2n)~1-g*('rl'So). This example suggests that it is exactly the differences

g*(Qs) — g*(Q's) between the characteristic forms and the spherical characteristic

forms which give the most fundamental information about the geometry of

G-manifolds.

The forms Alternation S(Q,--,Q) on 0(n + p) are exact (although the induced

forms Í2S on BG are not). Analogously, it would be useful to know when the forms

Alternation S(Q',-,Cl')

are exact over images g(M) of G-manifolds (they cannot be exact on all of 0(n + p)

since they are not even closed there).The following result has been proved (§4).
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The integrals over the group SO(n) of the forms Alternation S(Q',.-,Q') axe

exact forms on 0(n + p).

Exactness can, in general, be expected to have quite strong consequences. It

is shown in Theorem 4 of [1], for example, that for the case G = U(n¡2) the

following conclusion can be drawn :

If the spherical characteristic form Alternation S0(Í2') is exact over g(M), then

M is an algebraic manifold.

The important topological properties of compact Kahler manifolds are conse-

quences of the fact that the fundamental form is never exact: the n/2th power of

the fundamental form is the volume element. It is tempting to conjecture that this

is a special case of some property shared by all spherical characteristic forms

on all compact G-manifolds. For this reason we consider in §6 the set s(0(it)IG)

of all invariant symmetric multilinear f unctionals on the Lie algebra of G which

cannot be written in the form

I St-Tt,
i

with S, and T¡ invariant symmetric multilinear functional of positive degree on

the Lie algebra of G such that each S¡ is extendable to an invariant symmetric

multilinear functional on the Lie algebra of 0(n). It is proved that, for G-manifolds,

the algebraic homomorphism S -* Qs induces an algebraic homomorphism 9 of

s(0(n)jG) onto the spherical characteristic cohomology ring of M. Since the

previously-defined linear functional S0 on the Lie algebra of U(n¡2) cannot be

extended to Lie algebra of 0(n), the generalization of the nonexactness property

of fundamental forms should be of the following form :

If M is compact, then 9 is an isomorphism.

This proposition remains to be proved. Since s(0(n) / G) is isomorphic to the

characteristic cohomology ring of 0(n)jG, it would follow that the spherical

characteristic cohomology ring of a compact G-manifold is isomorphic with the

characteristic ring of 0(n) / G.

If (^ is a mapping and.?a vector, then (¡>(X) will always denote the vector often

denoted by d<j)(X). A form on a bundle will be called horizontal if it vanishes

whenever one of its arguments is a vertical vector. If His some connection (concept

of horizontality) on the bundle, then a form will be called H-horizontal (resp.

V-vertical) if it vanishes whenever one of its arguments is a vertical (resp. H-

horizontal) vector. (Thus horizontal and //-horizontal mean the same thing.)

1. The forms Q¿. Let G be a closed subgroup of 0(n) and let p be a large

positive integer. Let BG = 0(n + p)/G x 0(p — 1), and let

B0+(n) = 0(n+p)/0(n)xO(p-l).
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Then we have the following collection of bundles and mappings (a, x, d, and a

denote the natural projection mappings, and sn+p"1 is the unit sphere

0(n + p)¡0(n + p — 1) of Euclidean space £(n + p)).

0(n + p)

i
0(n+p)IO(p-l)

i
Bt

d
V

B0(n)

a.

OB+p-l

Let o(n + p), o(n) and o(p - 1) denote, respectively, the Lie algebras of 0(n + p),

0(n) and 0(p - 1); let g denote the Lie algebra of G. Let co be the 1-form on

o(n + p) which assigns to each element of o(n + p) its o(n)-component (with

respect to the Killing form). Let oj° be the 1-form which assigns to each element of

o(n + p) its g-component. Finally, let co' be the 1-form which assigns to each

element of o(n + p) its component in the Lie algebra of 0(n + p - l).(The forms

co, co°, and co' are the canonical connections of the second kind on 0(n + p) as

a bundle over 0(n + p)¡0(n), 0(n +p)¡G, and 0(n +p)¡0(n + p - 1).)

Let S be a symmetric ^-linear functional on the Lie algebra of G. If P denotes

the projection of o(n + p - 1) onto g (with respect to the Killing form), then the

functional P*(S) is an extension of S to the Lie algebra of 0(n + p - 1). For

simplicity we denote it also by S. Let

Q'= dco' + (1 l2)-co' A co'

be the curvature form of co'. Let s(jy,---,j2q) denote the sign of the permutation

taking (1, —,2q) into (jy,---,j2q). Then a real-valued 2^-form As can be defined

on 0(n + p) in the following way:

If Xy,—,x2q are tangent vectors to 0(n + p) and if Xy,---,X2q denote their

extensions to elements of o(n + p), then

As(xl,-,x2q) = ((2q)\)-1-le(jy,-,j2qyS(a'(Xj1,XJ2),-,Çi'(Xj2q_1,XjJ)

(the summation extends over all permutations oí l,--,2q).

More concisely, one can write

As = Alternation S(£2', -",£2').
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Let //' denote the operator which assigns to each vector of 0(n + p) its compo-

nent in the nullspace of cu'. It follows immediately (from the fact that Q'is //'-

horizontal) that As is an //'-horizontal form on 0(n + p). It is of course left-

invariant under 0(n + p), and invariant under the right-action of G x 0(p — 1).

So there exists a 2^-form £l's on BG with (t 0 <j)*(Q's) = As. The form Q.'s is also

invariant under left-translation by 0(n + p).

2. G-manifolds. Let M be a G-manifold of dimension n. Let F be an isometric

imbedding of Min S"+p_1, for p sufficiently large. For each point m of M, let

7t(F(m)) denote the n-plane through the origin of £(n + p) parallel to the tangent

plane to F(M) at F(m). Then n is a mapping of F(M) into BJ^icalled the spherical

image mapping) and f=naF is a mapping of M into Bq^. Since M is a

G-manifold, there exists a mapping g of M into BG satisfying the following

conditions :

1. d eg =/;

2. g induces (as a characteristic mapping) the principal G-bundle B over M to

which the frame bundle of M can be reduced.

Let Qs denote the 2q-form öf*(£2s) on M.

Theorem 1. Qs is closed.

Proof. Let M' = g(M). Let ô = x 0 a. Since <5*(iYs) = As, it suffices to prove

that As is a closed form on the submanifold ô~1(M) of 0(n + p). This is proved

in the following lemmas.

Lemma 1. The restrictions of a and co° to Ô-1(M') coincide.

Proof. This is proved in Theorem 1 ' of [1]. What is involved in the proof is this :

In order for the Riemannian connection of M to reduce to a connection on the

bundle B, the manifold M ' = g(M) must be horizontal in BG as a bundle over BqW.

Lemma 2. TAe restrictions of dQ' and Q.' /\w to ô~1(M') have identical

o(n)-components.

Proof. The Bianchi identity for Q' can be written in the form

dQ' = Q' Au)'.

So it must be shown that the restrictions of £T A a)' and fi'Ara to <5_1(M')

have identical o(n)-components. Letx, y, and z be tangent vectors to <5_1(M');

it will be shown in A—C, below, that the components in o(n) of

[ß'(x,y),co'(z)-]    and    [ü'(x,y),o)(z)]

coincide (and so the lemma is proved).

A. Let Xj and x2 be tangent vectors to 0(n + p), and let Xj and X2 denote

their extensions to left-invariant vector fields on 0(n + p). So

Cl'(X1,X2)=-(ll2).(o'lH'(Xl),H'(X2)l
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The sphere S"+p  * is a symmetric homogeneous space; that is, \H'(Xy),H'(X2)~\

is in o(n + p — 1) for any left-invariant vector fields Xy and X2. So

co'lH'(Xy),H'(X2)-] = lH'(Xy),H'(X2)l

and we conclude that

(*) Q'(Xy,X2) = -(ll2)-lH'(Xy),H'(X2)l

B. The vector fields Xy and X2 are elements of o(n + p) and so can be considered

skew-symmetric (n + p) x (n + p) matrices:

Xt   =

Ai

-ci B
-U,        -V,

V,
o

¿ = 1,2.

Here

(a) A, is an n x n matrix with A', = — ̂¡,

(b) B, is an (p-1) x (p-1) matrix with B\ = -B;,

(c) C¡ is a (p — 1) x n matrix,

(d) U, is a 1 x n matrix, and F¡ is a 1 x (p — 1) matrix.

Note that

H«    =

O

O

O

o
-U,       -V,

Ui
V:

o

and, furthermore, that Lemma 1 is the statement that A, lies in g if x¡ is tangent

toa_1(M').

The manifold M' satisfies the condition

d(M') = n(F(M)) ;

that is, d(M') is the spherical image of a submanifold of Sn+p~l. Hence if xx and

x2 are tangent to b~1(M'), then the fields Xy and X2 satisfy the condition

(**) Vy = V2 = 0.

It follows from (*) and (**) that £l'(Xy,X2) is in o(n) whenever Xy and x2 are

tangent to b~1(M'). Hence we conclude:

Í2' is o(n)-valued on 3~1(M').

C. Suppose U is an element of o(n) and V an element of o(n + p — 1). Let

V0(n) denote the o(n)-component of V. It follows immediately from matrix-

multiplication that

¿»(n)-component of [U,V~\ = o(n)-component of [U,Vo(n)].

Note that co(z) is the o(n)-component of co'(z). So the substitution U — 0.'(x,y)

and V= co'(z) proves the assertion of the lemma.
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Lemma 3. dAs = 0 on 5 1(M').

Proof.     Using Lemmas 1 and 2 we find that (letting S denote Alternation S)

dAs   = d(S(Q',...,n'))

= S(dí2',Q',...,n') + ... + S(Si',-,Q',dSl')

= S(Cl' Am',&,-,&')+ - +S(Q',..,CI',Ç1' A co')

= S(Çi' Aco,Q',..,Q') + ... +S(il',.,Q',Q' A co)

= S(Q' Aco°,Q.',■■■,&') + ■■■ +S(Q',.-.,Q',Í2' Aco°).

S is invariant under the group G, and a»0 is g-valued; hence, the last line of the

above string of equalities equals zero.

3. Dependence on the G-structure.

Theorem 2. Qs depends only on the G-structure of M.

Proof. Let B again denote the principal G-bundle over M defined by the

G-structure on M (that is, the bundle to which the frame bundle of M can be

reduced). For i = 1, 2, let F' be an isometric imbedding of M in sn+''~1) iet

/'= 7t ° Fl, and let gl be a mapping of M into BG satisfying the conditions

1. 3° <?'=/,'
2. g 'induces the bundle B over M.

It must be proved that gu(n's) = g2*(Cl's). Let 4> and O be the mappings defined by

1. F2(m) = (¿»(F^m)) for each point m of M,

2. 02(»O = ^>(g\m)) for each point m of M.

So it suffices to prove that 3>*(fis) = ^s-

The proof that 3>*(i2s) = ^'s proceeds as follows. Let M" = g'(M), let m1 be a

point of M'1, and let n1 = ¿(m1). Suppose that (n\ff, •••,/„1) is a point of

0(n + p)/0(p - 1) with tOíS/Í, •••,/„1) = m1 (note that/J, •••,/„1 is an orthonormal

basis of the n-plane n1). Let pj, ■■■,F], he vectors tangent to M'1 at m1 satisfying

the condition

(*od)(Fl)=fk\   k = l,-,n.
We will show that

&s(®(F{), -MFl)) = Sl's(F\, ...,Fj,),

thus proving the theorem.

A. Bg anonprincipal bundle over Sn+P~1; its associated principal bundle is

the bundle 0(n + p) over S""1"''-1. Thus the connection H' induces a connection

H, (concept of horizontal vectors) on BG as a bundle over S"+P~\ We will show

in C, below, that there exists an element A in 0(n + p) satisfying the condition

H,(cl>(Fk1)) = Hl(LhF1k),   k = l,.-,n
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(Lh denotes left-translation by the element n).

It then follows from the fact that £2S is H,-horizontal and invariant under the

left-action of 0(n + p) that

Qs(d>(£î), -,$(£],)) = Qs(H,0(£Î),-,iî,i)(£i?))

= £2S(/7,LA(£Í),,-ÍÍ;LA(FÍS))

= ü's(LhFy,---,LhF2q)

= (L*hQ's)(Fl,-,Fí2q)

= a^Fl-,Flq),
as required.

B. We first show that (^(m1),^/^ •■,<£(/„))) is a point of 0(n + p)¡0(p -1)

which projects onto the point ^(m1) under %.

Since a1 induces the bundle B, there exists a point b of B which maps into

(n1,/}", •'•»/») under a1. B is a subbundle of the bundle of frames of M; hence

b = (m,ey,...,e„), with m a point of M and with elt—,em an orthonormal basis

of the tangent space to M at m. Thus

l./1(m) = «1.

2. F1(eà)=/t1,fe = l,-,n.

The mapping a2 also induces the bundle B over M, and so the point

(f2(m),F2(ey),-,F2(en))

is in 0(n + p)10(p — 1) and projects onto the point g2(m) under t. Since

/2(m) = ¿(Oim1)) and £2(et) = $(/*) (see a and b below) the assertion of B is

proved.

a. d^m1)) = dmg^m))) = d(g\m)) =f2(m),

b. WÎ) = <¡>(F\ek)) = £2(e*),   k = 1, -, n.

C. 0(n + p) acts transitively on 0(n + p)/0(p— 1) by left-translation. So

there exists an element n of 0(n + p) with

(d^m1)), cp(fi), -, W1)) = L^m1),/!1, • • ■ Jn) ■

Hence Lh(fk) = tp(jl),    fc = 1, • • ■, n, and we have :

a. (a » ÔXLJl) = L„(a o ¿})(£¿) = L„(/¿) = <£>(#),    /c = 1,-,n;

b. Fi is the tangent vector to M'1 at m1 which projects onto/^nder ccoô;

hence í>(£¿) is the tangent vector to M'2 = 4>(Ma) at m2 =d>(mx) which projects

onto cb(fk) under a ° d,   k=l,---,n.

Hence L,,^1 and 3>(Ffc) are vectors at m2 both of which project onto cb(fk) under

a » ô. Hence their Í7,-horizontal components H,(LhFl) and #,($(**))coincide.

4. Invariant integration. If ß is a left-invariant r-form on 0(n + p) and

if g is an element of SO(n + p), let jS9 denote the right-translate R*(ß) of ß. Let

/(/?) denote the following r-form on 0(n + p) :
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If x is a point of 0(n + p) and if the integration is taken with respect to the

normalized Haar measure on SO(n), then

I(ß)(x)=!       ß9(x)dg.
JS0(n)

The integral / has the following properties;

1. I oI = I;

2. d o I = / o d;

3. if ß is invariant under the right-action of SO(n), then I(ß) = ß.

For a detailed discussion and proofs, see [2].

Definition. If x is a tangent vector of 0(n + p), we will denote by F'(x)the

unique vector satisfying the condition

x = H'(x) + V'(x).

Theorem 3.   /(As) is an exact form on 0(n +p).

Proof. The remainder of this section is devoted to the proof of this theorem.

The following formula for differentiation will be used :

If A is a left-invariant (q — l)-form on a Lie group, and if Xu ...,Xq are left-

invariant vector fields on the group, then

(1)    q-dA(Xu-,Xq)= I (-iy+°+xA(ix„xsixu.~,x„-,x„:;Xq).
r< s

We first show, in (l)-(8') below, that /(As) is closed.

The Bianchi identity for £i' can be written in the form dSl' = SI' A <o'. Hence

d/(As)   = I(dS(Si',-,Sl'))

= /(S(dí2',Ü',...,í2')) + ... + I(S(Sï',-,Si',dSl'))

= /(S(Q'Aa>',Q',-,íl')) + - +I(S(Çl',-,Cï',Sl' Aco')).

Since SI' is //'-horizontal and co' is F'-vertical, it follows that it suffices to prove

that

d/(As)(o,A1,...,A2s) = 0

for any F'-vertical vector 5 and any //'-horizontal vectors hu-..,h2q.

We extend v, hi,---,h2q to left-invariant vector fields on 0(n + p), to be denoted

by V, Hx,--,H2q. The sphere sn+p~1 is a symmetric homogeneous space, that

is, the brackets [//;,//,] are F'-vertical for all 1 ^ i, j i£ 2q. Formula (1) thus

shows that

(2q + i)-dI(As)(V,H1,-,H2q)

= I(As)({V,H1lH2,-,H2q)+ ... + I(As)(Hi,..;H2q-1,lV,H2q]).

Let us for the moment consider one of the terms

I(As)(ffir.'Jffr^,iV,SrjMr+1,..;S2i).
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It follows from the definition of / and of As that this term is equal to

(2a)! I  e-irJ.-
(3) ^;s

•f      S(QXR9r7Jl,Rí/?i2),..^ÛXRa[^,^,ÄÄ.+ 1),.•^QXÄA,-.^Ä2,))^,
J SO(n)

where e is the sign of the permutation taking (l,---,2q) into (jy,---,j2q), and

where the sum extends

1. over all such permutations, and

2. over all s for each fixed choice of (jy, ■■•J2q). It follows from the symmetry

ofS"+p_1that

Cl'(RgHx,RgHß)=-(ll2)Rg[Hx,Hß-];

and so the expression (3) becomes

(4) 2~q(2q)\ S 8-¿rJ.-/(S)([Í^1,5,J,...,[|T,J?JJ,Í?y.tl],...,[^a..1,5,J).

Application of the Jacobi identity

then shows that

I(As)(Hy,H2,-,\y,Hr-\,-,H2q)

(5) = 2-q(2q)\ le-ôrJs.I(S)(lHjl,HjJ,-,lV,lHjs,Hjs+Jl...,lHj2q_i,HJ2 ]).
js-.S

We thus conclude from (2) and (5) that

2*(2o. + l)((2q)\Tx-dI(\s)(?,Ru-,R2t)

= I e-I(S)([_Hjl,Hj2\-,{V,iHjs,Hj^l-\l-,{HJ2ii_l,HjJ).
j ;

We next show that the right side of the equality (6) is equal to

(7) (q + 1) I e ■ dI(S)(V, [HSi,Hj2l -, [ßj^ßj J).

This can be done in the following way. With the aid of (1), the expression (7)

becomes

I 8-7(S)([/?,1,r7,J, -, I?, lßj.,ffj„ J], ■...[#,,._t,HjJ)

(8) + Z«• 2 (- l)"("s)-/(S)([[r?,r,Jf/jV+ J,ÍHjs,Hjs. J],[,?,,,#,,], •■•),
r<s

where j8(r,s) = 1 + (1/2)((r + 1) + (s + 1)).

For fixed r and s, however, we have:

a-   £('"Jr)Jr+lJ ,">Js>7s+l' "V = £V" dads+l' '">JrJr+l> "V»

Hence (8) reduces to

(8')      z 8--?(s)([^,1,Jr7,2],...>[r,[^,^il]],...,[^.l,j?/j) +0.
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This is, of course, the right side of the equality (6).

It is now a simple matter to show that d/(As) = 0. In view of (6) and (7), it suffices

to show that dI(S) = 0. The form I(S) is an invariant g-form on SO(n), hence,

(see [2]) it is closed : dI(S) vanishes identically on the Lie algebra of SO(n). Since

the fields [_ßjk,ßJk+ J and \\y,Hjk~\,Hh+¡\ all lie in this Lie algebra, we see that

d/(As) = 0.

The proof of exactness proceeds as follows. /(As) is a horizontal form on

0(n + p) as a bundle over 0(n+p)¡0(p — 1), and is invariant under the right-

action of 0(p — 1). Hence, there exists a form ß on 0(n + p) ¡0(p — 1) with

o*(ß)=I(As). The form ß is closed because /(As) is; hence, the form ß is exact,

since for p much larger than q the qth cohomology group of 0(n + p)jO(p — 1)

vanishes. So ß = dif for some form =£?, and so /(As) = d(o*(ä?)).

5. Homomorphisms.

Lemma. Suppose S— I^S;-^, wi'rA T¡ invariant by G and S¡ invariant by

0(n). ThenSls = 0.

Proof. It suffices to show that Sls = 0 if S invariant by 0(n). For i = 1, •••,??,

let X¡ he the (n + p) x (n + p) matrix with (i, n + p)th entry 1, (n + p, ¿)th entry

— 1, and all other entries 0. As before (part B, Lemma 2, §2) the tangent planes

to g(M) axe spanned by vectors xu---,xn with H,(x¡) = 0(X¡); and so it suffices

to show that

As(Xh,-,Xil) = 0

for any 1 ^ i1, ■■•, i2q ;£ n and any invariant symmetric q-linear functional S on

the Lie algebra of 0(n).

If g is an element of 0(n), then

As(Xh, ...,X,J = As(RgXii,-,RgXlJ.

If we choose g in 0(n) with

1. RgXu = —Xti,
2.RgXik = Xik,   k = 2,-,2q,

we thus have

As(X¡1,-,xÍ2j=-As(x¡l,...,jr¡2),

as required.
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