
ON THE SCHRODINGER AND HEAT
EQUATIONS FOR NONNEGATIVE POTENTIALS(')

BY

JACOB FELDMAN

1.   Introduction.   Consider the equation

(1) 1-Ô^ = (A-V(x))u(x,t)

x varying over Euclidean n-space, and 0 g ( < oo, with the initial condition

m(x,0+) =/(x). For positive a, this is the heat equation; for purely imaginary a,

it is Schrödinger's equation for a particle in a force field. In his dissertation,

and later in a published article [6], R. Feynman indicated how one might get this

solution as a limit of averages over polygonal paths. His prescription was not

mathematically rigorous, however, since it involved infinite constants and inte-

gration with respect to a fictitious translation-invariant measure in an infinite

product of real lines. In the case of the heat equation, Kac [11] made this precise

by using Wiener measure instead. The approximating averages became finite-

dimensional approximants to a Wiener integral: for sufficiently well-behaved

V^O and/,

u(x,t) = EÍexp(-j^s + x)ds\f(ít + x)

(2)

= limE jexpi- I Kfc, +x)As,J/(£ + *))

where ¿;t is Brownian motion with parameter a, starting at 0, and the limit is

taken as maxAs¡-»0. This was developed further by Rosenblatt [16] and Ray

[15]. The problem was treated for larger classes of Fand for more general Markov-

processes by Getoor [8; 9], Dynkin, VolkonskiT[17],et al. Gel'fand and Yaglom

[7] indicated heuristically how the same sort of approximating finite-dimensional

integrals might be used to get solutions to the Schrödinger equation. They made

the error of stating that, for re a # 0, the limit could be expressed as an integral

over path space. Cameron [3] pointed out this error, but proved rigorously (for

a rather narrow class of V: required to satisfy certain analyticity assumptions)

using certain other approximating expressions, that the limit existed for recr > 0.
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The case of purely imaginary a was gotten as a boundary value of an analytic

function. His approximants, incidentally, were not the same as those used by

the nrevious authors; they corresponded to using a Simpson's rule rather than a

Riemann sum to approximate ¡'0 V(Qds. Recently, D. Babbitt, in his doctoral

dissertation [1], noted that Feynman's program could be carried out rather

effectively if one regarded t rather than a as an analytic parameter. In this way,

he defined a semigroup which, for re a > 0, gave the solution to (1), and approxim-

ated it by an expression like (2). This worked for V satisfying a local Lipschitz

condition (and, again, ^ 0; or, more generally, bounded below).

In the present paper we proceed as follows. First, we construct a semigroup

Ty which gives a solution to (1), for arbitrary positive measurable V. This was

already done more generally by Getoor [8; 9], so this is merely an exposition of

a special case. Next, we investigate some smoothing properties of the operators

Tv. In §4, an infinitesimal generator for Tv is shown to exist. By means of the

generator, Tv is defined for reÇ^O. This is then approximated by Babbitt's

method, but in a more general situation. In §6, it is shown that TJ may be ob-

tained from a Green's function, whose regularity properties are investigated.

It should be added that we have just learned that E. Nelson [14] has also

succeeded in constructing a semigroup and a Feynman approximation for a

large class of potentials, not necessarily bounded below.

For general background and bibliographical references, we refer the reader

to [2; 7; 12]. The author would like to express his gratitude to D. G. Babbitt

for the opportunity of seeing his manuscript at an early stage; and to E. Nelson

for a stimulating discussion, and in particular, for pointing out an error in an

earlier version of Theorem 3.5.

2. Brownian motion in ¿-dimensions. Let X be a real Hubert space of dimension

k, the inner product being denoted by x • y. Let SI he the set of continuous functions

a) : [0, co) -y X, and £, the function from Si to X defined by ¡;t(a>) = co(t). Let

#£ be the smallest cr-field of subsets of Í2 for which is is measurable for all s in

[0, i], and let J5" be the smallest cr-field containing all the ¿Ft.

Let
Ga(x) = (noYkl2e- M2/* (a > 0,xeX).

Observe that Ga(x/yjt0)d(x/yjt0) = Gtoa(x)dx. More generally, if L0 is a non-

singular linear transformation on X such that L*0L0 = t0I, then

Ga(L0x)d(L0x) = Gtoa(x)dx.

There is a unique probability measure Pr£ on ¿F characterized by the property

that if hx,---,h„> 0,andi,= h^l— + Aj-,andS0,...,S„areBorelsetsin Jf,then

Pr^0eS0,|tlGS1,...,^eS/I} = lSo(x)JSl... JSnG„1(x1-x)...GAn(xn-xn_1)dxi...dxII.

(Notation. 1s will mean the characteristic function of S. /s will mean the

operation of multiplication by ls.)
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So Pr" makes £, into a temporally homogeneous Markov process starting at

x, with transition function

Pritf, = dy | &„ = y0} = G^^y-y^y.

When cr = 1 the superscript in Pr* will often be omitted, and when x = 0 the

subscript will often be omitted. We also denote by £*{•••} the operation of inte-

gration with respect to Pr"x, and make the same conventions about omitting a

when it equals 1 and x when it equals 0.

Let us introduce some transformations on Q:

(1) if t > 0, set jt(co)(s) =co(st). Thus,

Ss 'Jt =  Csf>

(2) if L is a continuous map: Jf-*JiT, we set kL(co)(s) = Lco(s). Thus,

UkL(co)) = LUco).

Remark 2.1. If Ly — L0y — x0, where L0 is a linear transformation on ¿f

with L*0L0 = tö1 I, then:

Pr^/cZ1 = Ptf-V

In particular:

Pr'-L-1 = Pi*'.

Proof. This merely involves computing, for both sides of the equation, the

measure of the set where Ç0eS0, Çhi eSy,---,Ch¡+^+hn eSn, and using the trans-

formation property of Ga observed above. The details are omitted.

3. The semigroup obtained from a potential V- Call a complex Borel measurable

function/ on Jf moderate if J|/(x) |e_c"x"2 dx < oo for each c> 0. These

functions form a translation-invariant linear space Jt. Observe also that a mod-

erate/is Lebesgue integrable on compact sets. For any t > 0 and positive meas-

urable V (the value + oo being permitted), we set

ÏÏf(x) = £,{exp[-|V(QdsJ/fê)}

= EÍexpí-jV«, + x)dsj/fè + x)).

This makes sense, since

exp^-j'v(Qdsjf(Q\z%\f(Q\,

and
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Ex{\f(Q\}S(ntykl2\\f(y)\e^^dy.
Now, J

||y-xp_||y/2-2x||^3||y|P     3_|xP
t t At

so

e-||j--*li2/i < g-3H)>|l2/4 'g 3||x|p/(

and '

Ex{\f(Q\}í(KcTkl2e-W j\f(y)\e-^dy,

where c = (3/4)r.

Measurability of the integrand is not diffficult to see, by first considering V

of the form ls, S open, and then approximating. Or see [8; 9] for proof.

Theorem 3.1. Tv is a linear transformation from Jt to Jt, sending a.e.

nonnegative functions to nonnegative functions. If 0^/„f/ a.e., then

T¿/„Í T¥f a.e. Finally, Tvs+' = TVTV.

Proof.   All statements but the first and last are evident. To prove these:

j\Trf(x)\e-c^2dx <: JEx{\f(tt)\}e-°Wdx

= jGt*\f\(x)e-^dx    (where • is convolution)

= (^) J\fM\G<*GUc(x)dx

= (-J2j\f(x)\Gt+llc(x)dx<œ.

So Ty takes Jt to Jt. Finally:

TvTyf(x)   -  Ex{«p^-JV«,)dr]n/(ü)

= Ex jexp[ - J"V«r)dr] £e.{exp[ -j V(ÍJd«]/(«} j

= £x{exp[-JV(£r)drj exp[-jy(^+s)ds]/fe+s)j,

by  the  strong  Markov  property.   This   can   be   rewritten   as   Tv+,f(x).

Next, we examine the effect of varying V.

Theorem 3.2. V^W a.e.^Tyf ÚT^f for all a.e. nonnegative f in Jt.

Furthermore, if V^V a.e., then TyJlTyffor such f.
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Proof.   The only difficulty is to see that if V= W a.e., then Tyf = T¿f. This

is true because, for any set S of measure 0 in Ctf, we have

({| U«ds)   = f   f Gx(y-x)dyds = 0,

so that V is unaffected by a change on a set of measure 0.

Finally, we consider the action of Tv on the various 3?p spaces over ¿f (taken

with Lebesgue measure, normalized via the inner product in ¿f), and also on

the space J1 of bounded Borel functions on Jf. By || ■ ||p we will mean the norms

in £fp = áCp(jf), 1 <; p ^ oo, and by just plain || • || the norm in S8.

Theorem 3.3. Tr is a contraction on ¿?p (1 ^ p ^ oo) and on 3S. Further-

more, iffe¿epandge Sfq,with 1/p + 1/q = 1,then ¡Tvf(x)g(x)dx = $f(x)T¿g(x)dx.

Proof. Since Tvf(x) i% TÓ/(x) for each nonnegative / in Jt, the first sen-

tence will follow once we have it for the case V = 0. But this case is well known

for p =1 and p = oo, while for other p it follows from the Riesz convexity

theorem.

As for the self-adjointness : Consider Q x Q. If we denote by Q the subset of

pairs (co,co') such that Ç0(co) = £,o(co'), then Q can be identified with the space

of all continuous functions & from the real line to JT, by letting

¡co(-t)       if   r<0
ffl(i) = Uo        if ría

The measure Prx x Prx has its support on h. We set Pr{Ä} = /Pr^ x Prx{A}dx,

for A a measurable set in Q. Pr is, of course, an infinite measure. Define

¿lt(co) = co(t). Then it is easy to see that the joint distributions of |tl,■•■,lt„ are

the same as those of |t,+»,•••,!»„+», and of ¿;_tl,--,|_(ii. Thus,

(Tvf,g) = J^jexpJ-^ Ffe)ds]/(£,)} g(x)dx

= £Jexp[-jV(fs)d5J/(?()iKl0)}  = £{exp[- j'vtft-Jds /(&)*(!.)}

= £(exp[- ÍVtfjdu]/(?<>)*(&)} =JEX{exp[- \'v(Qdu g(Q)/(x)dx

= (f,Trg).

Remark.   The self-adjointness has been proved by Getoor for S£2, in [8],

and could be shown generally by approximation.

Theorem 3.4. /// is in 2p and \/q + 1/p = 1, then \\ Tvf\\ < C(g)i'(?)||/||p,

where C(q) = 7t'(,) q'k,2q  and l(q) = (1/q - l)k/2. Furthermore,  if SN is the
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N-sphere, then \\ls±Tvf\\ ->0 as JV-» oo, uniformly in V and in t restricted to

an interval 0 < tQ < t < it < co.

Notation.   Sx is the complement of the set S.

Proof. | Tvf(x) | g | G, *f(x) \£¡Gt \\q \\f\\p. Evaluating || Gt ||, gives the first

part.

Choose e>0. Choose M so big that ||/s¿/||p < e(2|| G(o |4)_1. Then

|| Tvlsjjfj < 6/2. Now, if I y || ^ M and [] x || ^ TV, then || y - x | ^ 7Y - M, and

|GXy-x)|áOrto)~*/2e "^ provided t0^t^h. Now, /Sm/ is an &p

function with support of finite measure, hence an ¿^ function. Choose JV so

large that | Gt(y - x) \ < e(21ISJ || {f1 if | y || ̂  M, || x | ^ JV, and t0^t^tx.
Then | T¿/(x)| < e if || x || ^ JV and t0 ^ t ^ ft.

Lemma.   // V0 is in 2?pfor some p > fe/2, then

£,{JV0(Qdu} ̂c(p) ||F0||pV/2+1.

Proof.

|^(JV0(^)d«) I I = j V0(x + y)Gu(y)dydu

==     [ II V0 ||p I Gu||,du =  || V0 I [C(q)ul^du
Jo Jo

(using the notation in the proof of the previous theorem)

= c(p)||F0||pr^ + 1,

where c(p) = C((l - l/pfl){l - kßp)'1.

Theorem 3.5. If, for somep > k/2, Vis in JSfp on an open set &, and f is in

any S£p class, then Tyf is continuous in 0. More precisely: for any compact

subset C of 0, e > 0, and tx > 0, we can choose r0 such that Trf(x) differs

by less than sfrom the continuous function TÓTv~rf(x) = Gr* TY'rf(x),for all x

in C,0<r ^ r0, and t ^ tt.

Proof. Let As = {co \ Çr(co) e 0 for 0 g r ^ s}. This is in ¿F, as is also the set

rs,* = H RV(Zr)dr < a}. Write <Drs for the function exp[- \srV(Qdu] on Si.

Then

Tyf(x) = Ex{®¿f(Q} = £x{Atu r¿ „(Vo-WlñQ}

+ EX{AS nrr,„(*5 - Wrf(Q} + r0Tv-Tf(x).

We estimate the first two terms.
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Let C be a compact subset of <5, d its distance from &\ and x any point in

C. Then Prx{Aj-} ̂  Pr0{|| £„ || ^ d for some u in [0,s]}. This is known to go to 0

as s 10. Thus, we can choose s so small that Prx{Aj}C(q)(ty/2)'iq) <s/3 (l(q)

defined as in Theorem 3.4). We can also require that s < tJ2.

Next, denote by V0 the function IeV. Then if r ^ s,

Prx{Asnit,,} =Prx{ As, j'uQdu ^ a) Ú Prj^UQdu ^ a).

From the previous lemma, this is dominated by c(p)/a\\ F0||p*/2 + 1. If a is pre-

assigned, then by choosing r sufficiently small (and in particular, smaller than s

and ty/2), we can thus guarantee that

Prx{Asnr^}C(q)(ty/2)w < s/3.

a was at our disposal. We choose it so small that (1 - e~*)C(q)(ty/2)Kq) < e/3.

Then

.   |£x{A,nrr..,(*S-l)*;/(6)}|^ (l-e-")EM\f\(Q} Û (1 -e-x)Ex{Tv-r\f\(c:r)}

z% (1 - e~')C(q)(t - r/2)'w ||/||, 5¡ e/3 ||/|p.

Thus, for all t^ty and x in C, || TK3f-T0T¿~7|| is dominated by e||/||p,

the choice of r depending on s, ty and || V0 \\j.

Summarizing some of this:

Corollary 3.1. Tv takes each ¿Tp class into ypnl0 (where â§0 is

{/ in ^|/(x)->-0 as ¡x|| -»• oo}). Furthermore, Tyf is continuous on the open

set {x| V is in £fp in some neighborhood of x,for some p > k/2}.

Remark 3.1. Choosing F to be + oo on the complement of some set is one

way of relativizing the process to that set (see also the method used by Getoor

in [9], where everything gets cut down to an open set G).

4. The infinitesimal generator. In [8] Getoor incorrectly said that Tv is contin-

uous at 0 as a semigroup on ¿T2 (and hence, has a densely defined infinitesimal

generator). This statement was, however, corrected in [9], and even in [8] he

mentioned a necessary and sufficient condition on V that Ty be continuous in

this sense. Also, in [9], a rather stringent sufficient condition is given. The con-

tion in [8] js just that lim,^0exp[- ^(Qds] = 1 Pr^-a.e., for almost every

x in ctf. We shall not assume this, but rather investigate for arbitrary V the sub-

space on which Ty is continuous; or, equivalently, the closure of the domain of

the infinitesimal generator of Ty*.

Consider, for fixed x, the condition that limt_0exp[- JÓF(^s)ds] = 0 Pr'-a.e.

This condition is actually independent of a. One way of seeing this is the fol-

lowing. Recall the map j„ from £2 to Q sending co to the function whose value at
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t is co(ta). Then ja is a 1-1 measure-preserving transformation from (Í2, &, Pr)

to (Q,^, Pr"), and /JT«, + x)ds = <r f0K(^-jff + x)ds.

Let Qx = {lim,^0exp [— JÓF(|S + x)ds~\ = 1}. This is exactly

(lim i F(£s + x)ds=0>,
lf->oJo I

and also {3i > 0 such that $'0V(ÇS + x)ds < oo}. The set is in &t for each t > 0.

Thus, by the zero-one law, it differs from a set in ^0 by a set which has

Prff-measure 0 for each a. Then for given x, Qx either has Pr"-measure 0 for all

a or has Pr"-measure 1 for all a.

F will be called controllable at x if P^fi*} = 1. So if Fis not controllable at

x, then for each moderate/ we have Tvf(x) = 0 for all t > 0.

Definition. Let Cv be the set of points where V is controllable, and let Iv be

the operation of multiplication by the function which is 1 on Cv and 0 elsewhere.

Also, let ¿fp be SCp with respect to Lebesgue measure cut down to Cv, with

corresponding norms || ||p.

Theorem 4.1. (a) For each moderate f we have

IyTylyf =  Tyf a.e.,
and

lim Tyf = Iyf a.e.
no

(b) Furthermore, Tv is strongly continuous on each i£vp, 1 ^ p < oo, and is

weak * continuous on Sf^. Let AY be the infinitesimal generator (no distinct-

ion is necessary for different p, since there is agreement on functions in several

different £fvp).

(c) On JS?2, AY is a  nonnegative self-adjoint operator, and f* v = Tv.

Proof. If x is not in Cv, then £{exp[- $'0V(is + x)ds]/(£( + x)} = 0 for

each t > 0. So IvTtf=ae Tvf for moderate/. If/ is actually in JS?2, then self-

adjointness of Ty tells us that IvTvIvf = a e Ty f. For general moderate /, the

last equality still holds, by the Lebesgue convergence theorem. The fact that

limíi0T¿/(x) =/(x) for a.e. x in Cv can be shown as follows: first one proves

it for continuous /, by applying the Lebesgue convergence theorem ; then for

arbitrary moderate/ by Theorem 3.1.

As for (b): since Tvf converges a.e. to Ivf as i|0, and since

H Tyf\\vp <; || Tyf I = || Tylyf\\p z% || Ivf\\p = \\f\\vp, we have that Tyf^f in <
in the weak topology, or, in the case p = oo in the weak * topology. Since each Tv

is a contraction, we get Tv weakly continuous at all t ^ 0 if 1 ^ p < œ, or weak

* continuous if p = oo. If 1 ^ p < oo, then 3?yp is separable, so weak continuity

implies strong measurability by [10], Theorem 3.55, and therefore Tv is

strongly continuous for í ^ 0 by [10, Theorem 10.5.5].
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(c) Finally, that Av on !£v2 is a nonnegative self-adjoint operator can be seen

as follows. Tv has some representation of the form e~tB for a self-adjoint ope-

rator B (easily seen to be positive), by [13, XI, 2]. Now, the domain of Av is

the range of ^Tve~"dt=\/(B + X), and (Av + A)(1/(B + X))f=f. Thus, Av is

precisely B.

Next, two theorems which cast a little light on the question "what is Cv for

given K"?

Theorem 4.2.    Cy is a.e. contained in the set where V is finite.

Proof. Let R = {x | V(x) = co}. Then, for a.e. x in R, the set R has density 1

at x. Selecting such an x:

£,(yJo'lR«,)dS) = \ j'oEx{lR(Q}ds = 1ij^GR*lR(x)ds.

Now, Gs * lR(x) -> 1 as s -> 0, since Gs is an approximate identity and R has density

1 at x. Thus

j j G.*lR(x)ds-*L

As a consequence, Pr^ j'0V(£,s)ds = co} = 1 for each t > 0, and x is in R.

Theorem 4.3.   If p > fc/2 and VeS?p (&), 6, open c /C, íAe« CK => 0 a.e.

Proof. It is no loss of generality to assume V vanishes outside 6, since each

path starting at an x in 6 stays there for a while. But then the lemma after Theo-

rem 3.4 tells us that Ex{\\V(Qds\ < co, so that ¡0V(Qds < ooPr^-a.e., and

therefore x is in Cv if it is in 0.

Remark 4.1. Operators on Sfp axe in an obvious 1-1 correspondence with

operators B on S£p such that IVB Iv = B. Thus, we will occasionally treat Av as

an operator on 3?p, without further comment.

Remark 4.2. If V=0, then Ar is just the negative of the usual Laplacian

(on jS?2). More generally, it is shown in [8] that if Cv is almost all of Jf, and

Mv is the operation of multiplication by V on X', then

Ay => ( - A + My) I ̂ A n 3)Hv        (where 2)T is the domain of T).

For example, if V is bounded, then Av is just - A + Mv. However, it would

be of interest to have the answer to the following question, for instance. Suppose

the Laplacian off exists locally, in some sense, but the function g thereby ob-

tained is no longer in jS?2. Suppose, however, that - g + Vf is in <£2. Is it then

the case that/ is in 2>A and Avf'= — g + Vfl (The considerations of [9, §4],

do not apply, unfortunately, because A is not a "local operator" in the sense

used there.)
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Remark 4.3. Here is a phenomenon which was surprising at least to me.

Recall that

T'0 =e~tAf= Gt*f

is actually infinitely differentiable for all moderate/. Recall also that for general

V, and/ in ^,î Tv is continuous where Fis in some £Cp class (Corollary 3.1).

One might therefore expect that if, say, V were bounded then Tv'f would be in-

finitely differentiable. However, this is far from true!

Example. Let F be a nonnegative bounded measurable function, and let /

be in SAy Thus Tvf is again in 3¡Ay, and AvTvf = Tv'Avf. But 3Ay= 2

and Ay = - A + Mv, so -AT¿f+ VTvf = AvTvf = TvAvf. Now, Tvf is con-

tinuous, as is also TvAYf, by Corollary 3.1. If Tvf had two continuous derivatives,

then a representative for Trf could be chosen which was continuous. But VTvf

can be made as irregular as one likes, for example by choosing F to be unequal

to any continuous function on any open set. So Tyf cannot always be twice con-

tinuously differentiable, even if F is bounded and / itself is a Cœ function with

compact support. (However, regularity assumptions on F would presumably

result in regularity for Tyf.)

5. Complexification of the semigroup, and the limiting Feynman integral. Let

A be the set of complex numbers with positive real part, A its closure. Let A

be a fixed nonnegative self-adjoint operator on the Hubert space 3tf. For any

C in A, the functional calculus defines a bounded operator e~u. This

operator is unitary if Ç is imaginary, nonnegative and self-adjoint if £ is non-

negative, and has norm :g 1 for £in A. The map Ç-» e~u is continuous in the

strong operator topology for r in A, and satisfies e~iAe~;'A= e ~a+l>')A . For £

in A,it is continuous in the uniform operator topology, and even holomorphic.

These facts are all. at worst, straightforward applications of the functional

calculus.

Example. We can extend Ty, as an operator on =S?2, to Tj for s in A, by

setting A = Av.

We quote, for later use, a fast abrat canvsrgsnse of analytic functions.

Fact 5.1 (Vitali). Let FltF2,— be a sequence of analytic functions on A,

with values in a Banach space. Suppose the F„ are uniformly bounded in norm

on each compact subset of A. Suppose also that they converge in norm at all

points of (0, oo). Then they converge in norm on A, uniformly on compact sub-

sets, to an analytic function Fœ on A.

Proof.   [10, p. 104, Theorem 3.14.1].

For the purposes of our first theorem, we will want, for each t > 0,

VtxiViQ Riemann-integrable on (0,i)} = l for a.e. x. This amounts to

Prx{V(Çs) bounded and a.e. continuous on (0,f)} = l for a.e. x. Call such a V

Riemann-approximable. Observe that if V is Reimann-approximable then Cv is

almost all of £, so that Tv is strongly continuous at 0 in ^?p.
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Theorem 5.1. Suppose Vis Riemann-approximable. Let x be a finite sequence

of positive numbers: x = (x1,---,xn(x)), with St, = 1. Let |t| = max/r,-. For £

in A, let TJt=Y\j e~SljKeÇljA, everything operating on S£2. This is clearly

holomorphic on A, strongly continuous on A. Then lini|T|_0 TVt exists in the

strong operator topology, and uniformly for Ç in any compact subset of A,

and equals Ty. Finally: if (j) is any integrable function on the real line, then

lim    [  X(Tvszf,g)cj>(s)ds^  f   \ñsf,g)ct>(s)ds,
|t|-»0 J —oo J —oo

for allf, g in ^2 (where T" is the strongly continuous extension of Ty to the

imaginary axis).

Remark 5.1. The fact of convergence was proved by D. Babbitt [1], under

the added assumption that V satisfied a local Lipschitz condition. The proof of

the present generalization is just a simplification of Babbitt's proof.

Proof of theorem. Consider the sum Z,-K(^(I|+ ... + r.)t(co))Xjt. This is a Riemann

sum for the integral \QV(£,s(co))ds, using the partition (xtt, ■■■,x„Mt). Thus,

I;F(£(tl+„ + t.)t(«))T;i converges to f¿ V(t,s(co))ds as |t|-»0, for Pr^-almost

every co. Now let / be in Jt. Then, since the functions within Ex{...} are all bounded

in norm by |/(i,)|, and converge Pr^-a.e., we have

lim  £jexp - I K({jtl+...+t.yjTjt
M-o      {      L     j

f(Q\ = Tvf(x)

for each x. Also

EJexp - I n£(tl+...+tj)t)T,í]/fó)j-T,í/(x)|2á 2Ex{\Mt)\y.

Thus, iff is in &2, then lim, C|_>0||T^-> r/-T¿/||2=0, i.e. Tyt converges stronglyto

Ty. Now we can apply Fact 4.1 to get the existence of a holomorphic

limit Ty, C in A, which must agree with e~MKon A since it agrees for ( > 0.

The fact that lim|t|_0 pa(1$, zf,g)<j>(s)ds = ¡~„(T$f,g)Ms)ds for all <f> in

3? ! is a consequence of the fact that (Ty xf,g) and (Tvf,g) axe bounded holomorphic

functions and (TyfJ,g) -* (Tyf,g) on A. This can be seen as follows. Let

pt(s) = (l/n)(t/(t2 + s2)). Pt is an approximate identity, so that Pt *</>-> 0 in

S£x(—co, oo). If *P is any bounded analytic function in the right half plane, then

f(i + is) = \Pt(s - s') V(is')ds'. Now let *Ft(Q = (TvJ,g), and V(Q=(T¿f,g).

Notice that J"P,* \¡i(s)<t>(s)ds = $ip(s)Pt* 4>(s)ds. Thus: ÍQ¥z(is) - ¥(¿s))0(s)ds

= $(Vz(t + is)-y(t + is))<f>(s)ds + f(V¿is)-W(is))(<l>(s)-Pt*<Ks))d5. The

second term has absolute value ^ const. J|</>(s) — Pt*cb(s)\ds. By choosing t

small, this can be made arbitrarily small (for fixed 0). The first term can then be

made small by choosing | x | small, since | *Pt(i + is) — *Ft(i + is) | stays bounded

by 21|/1| || g ||, and converges to 0 for each s.

Remark 5.2. Observe that one point which came out in the proof was that

for each x at which Fis Riemann-approximable,
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£x{exp[-SF(^(Il+... + rj)()tJ.i]/fô)}
I

converges to Tvf(x), for each / in Jt. (Note : Riemann-approximabity at x has

not been defined, but it should be obvious what is meant.)

What sort of F are Riemann-approximable? A large class is the following. It

permits arbitrarily bad infinities on a set of capacity zero.

Theorem 5.2. Let D be the closed set of x for which V is essentially un-

bounded in every neighborhood of x. Suppose D forms a set of capacity 0. Sup-

pose also the points of discontinuity of Vform a set of measure 0. Then V is

Riemann-approximable.

Proof. By changing F on a set of measure 0 in D±, we can assume that F

is actually locally bounded in Dx. Namely, let Cn î D, Cn compact, and replace

V on C„-C„_y by FA || lc„^||- This will not introduce any new discontinuities.

Then Prx{Çs lies in D for some s}=0, for a set D of capacity 0. See, for example,

[4]. Thus, for Pr^-a.e. co, the range of is(co), 0 ^ s ^ t, is a compact subset of

D1, and so s -* V(Çs(co)) is bounded on [0, f]. Also, for Prx-a.e. co, the set of s

for which £,s(co) lies in the set of discontinities of V has Lebesgue measure 0.

Thus, for Prx-a.e. co, äs(co) is Riemann-integrable for 0 < s ^ t.

6. The Green's function. Recall that if feStp then || T¿/|| x £ C(q)t(llq~1)k'2. So, for

IS p < oo, Tvf(x) = \kx(y)f (y)dy, where kx is an equivalence class of Lebesgue

measurable functions, and || kx\q ^ C(q)t(llq~1)k'2. For/^0 in jSfœ choose

/„ 6^2. /.Î/. Then Tyf„(x)\ Trf(x), so that

¡K(y)f(y)dy = Um \kxfn(y)dy = lim Tyfn(x) =  Tvf(x),

so again we have lkx(y)f(y)dy = Tvf(x), || k'x || ! ^ C(l), independent of t.

We introduce a canonical version of k'x.

Lemma 6.1. $kx(z)ksy(z)dz is, for each x, equal to kx(y) for almost every y,

provided r + s = t. Further, it is independent on the choice of r and s.

Proof. kx(y) can be chosen a jointly Borel measurable function of x and y,

since the map x -» kx is a measurable map from Jf to, for example, £C2. Further-

more,

jg(x)ksx(y)f(y)dy =   ^g(x)Tyf(x)dx = \Tvg(y)f(y)dy,

since Ty is self-adjoint. So

j^K(z)k¡(y)dzy(y)dy = jjk'x(z)K(y)f(y)dydz = jk'¿z)Tvf(z)dz = TvTYlf(x)

l(y)f(y)dy.J*
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To show independence of r and s, we choose r,s,r',s', with r + s = r' + s'.

Assume r < r'. Then, from what has been shown,

íkx\z)ksj(z)dz =   [kx^r'-'\z)ks;(z)dz

\kx(q)kr;-r(z)ks;(y)dwdz

\kx(w)ks~s'(w)C(y)dwdz

=   \k'x(w)K(y)dw,

which completes the proof.

Now it makes sense to define Kv(x,y) = ¡kx(z)ksy(z)dz, since it is independent

of r and s, provided r + s = t.

Thus we have

Remark 6.1. (a) There is a function Kv(x,y) such that Tyf(x) = ¡Kv(x,y)f(y)dy

for/ in any ^?p-class. Kv is symmetric. Further, KY+t(x,z)= $Kv(x,y)Kv(y,z)dy.

(b) The last property, together with the fact that Tvf(x) = JKv(x,y)f(y)dy

for enough /, uniquely determine KY. (I use the label "remark" rather than

"theorem" in order to avoid being precise about the word "enough".)

Properties of Tv easily translate into properties of K'r. For example:

Theorem 6.1. x-+Ky(x,-) is continuous into all£Cp, and Kv is jointly con-

tinuous in x and y, on the open set where V is locally integrable.

Proof. The first statement is an immediate consequence of the definition

and of Theorem 3.5. As for the second part: if x„ -» x and y„ -» y, and Fis locally

integrable at x and y, then

| ÍKv(xn,z)Ky(yn,z)dz - ÏKry(x,z)Ky(y,z)dz

g \\Kv(xn,-)-Ky(x,-) |2||K,K(j'.,0ia+ II KTy(x,-) \\2 ¡Ky(yn,-) - Kv(y„,-) \\2.

But || Ky(y„,-)\\2 and ||^(xB,-)||2 stay bounded, while the other factors go to zero.
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