ON THE SCHRÖDINGER AND HEAT EQUATIONS FOR NONNEGATIVE POTENTIALS(1)

BY JACOB FELDMAN

1. Introduction. Consider the equation

(1)
$$\frac{1}{\sigma} \frac{\partial u(x,t)}{\partial t} = (\Delta - V(x)) u(x,t)$$

x varying over Euclidean n-space, and $0 \le t < \infty$, with the initial condition u(x,0+)=f(x). For positive σ , this is the heat equation; for purely imaginary σ , it is Schrödinger's equation for a particle in a force field. In his dissertation, and later in a published article [6], R. Feynman indicated how one might get this solution as a limit of averages over polygonal paths. His prescription was not mathematically rigorous, however, since it involved infinite constants and integration with respect to a fictitious translation-invariant measure in an infinite product of real lines. In the case of the heat equation, Kac [11] made this precise by using Wiener measure instead. The approximating averages became finite-dimensional approximants to a Wiener integral: for sufficiently well-behaved $V \ge 0$ and f,

(2)
$$u(x,t) = E\left\{\exp\left(-\int_0^t V(\xi_s + x)ds\right)f(\xi_t + x)\right\}$$

$$= \lim E\left\{\exp\left[-\sum_i V(\xi_{s_i} + x)\Delta s_i\right]f(\xi_t + x)\right\}$$

where ξ_t is Brownian motion with parameter σ , starting at 0, and the limit is taken as $\max \Delta s_i \to 0$. This was developed further by Rosenblatt [16] and Ray [15]. The problem was treated for larger classes of V and for more general Markov-processes by Getoor [8; 9], Dynkin, Volkonskii [17], et al. Gel'fand and Yaglom [7] indicated heuristically how the same sort of approximating finite-dimensional integrals might be used to get solutions to the Schrödinger equation. They made the error of stating that, for $re \sigma \neq 0$, the limit could be expressed as an integral over path space. Cameron [3] pointed out this error, but proved rigorously (for a rather narrow class of V: required to satisfy certain analyticity assumptions) using certain other approximating expressions, that the limit existed for $re \sigma > 0$.

Received by the editors August 13, 1962.

⁽¹⁾ This work was partially supported by National Science Foundation, Grant G-12911.

The case of purely imaginary σ was gotten as a boundary value of an analytic function. His approximants, incidentally, were not the same as those used by the previous authors; they corresponded to using a Simpson's rule rather than a Riemann sum to approximate $\int_0^t V(\xi_s) ds$. Recently, D. Babbitt, in his doctoral dissertation [1], noted that Feynman's program could be carried out rather effectively if one regarded t rather than σ as an analytic parameter. In this way, he defined a semigroup which, for re $\sigma > 0$, gave the solution to (1), and approximated it by an expression like (2). This worked for V satisfying a local Lipschitz condition (and, again, ≥ 0 ; or, more generally, bounded below).

In the present paper we proceed as follows. First, we construct a semigroup T_v^t which gives a solution to (1), for arbitrary positive measurable V. This was already done more generally by Getoor [8; 9], so this is merely an exposition of a special case. Next, we investigate some smoothing properties of the operators T_v^t . In §4, an infinitesimal generator for T_v^t is shown to exist. By means of the generator, T_v^ζ is defined for re $\zeta \ge 0$. This is then approximated by Babbitt's method, but in a more general situation. In §6, it is shown that T_v^ζ may be obtained from a Green's function, whose regularity properties are investigated.

It should be added that we have just learned that E. Nelson [14] has also succeeded in constructing a semigroup and a Feynman approximation for a large class of potentials, not necessarily bounded below.

For general background and bibliographical references, we refer the reader to [2; 7; 12]. The author would like to express his gratitude to D. G. Babbitt for the opportunity of seeing his manuscript at an early stage; and to E. Nelson for a stimulating discussion, and in particular, for pointing out an error in an earlier version of Theorem 3.5.

2. Brownian motion in k-dimensions. Let \mathcal{K} be a real Hilbert space of dimension k, the inner product being denoted by $x \cdot y$. Let Ω be the set of continuous functions $\omega : [0, \infty) \to \mathcal{K}$, and ξ_t the function from Ω to \mathcal{K} defined by $\xi_t(\omega) = \omega(t)$. Let \mathcal{F}_t be the smallest σ -field of subsets of Ω for which ξ_s is measurable for all s in [0, t], and let \mathcal{F} be the smallest σ -field containing all the \mathcal{F}_t .

Let

$$G_{\sigma}(x) = (\pi \sigma)^{-k/2} e^{-\|x\|^2/\sigma} \qquad (\sigma > 0, x \in \mathcal{K}).$$

Observe that $G_{\sigma}(x/\sqrt{t_0}) d(x/\sqrt{t_0}) = G_{t_0\sigma}(x) dx$. More generally, if L_0 is a non-singular linear transformation on \mathcal{X} such that $L_0^*L_0 = t_0I$, then

$$G_{\sigma}(L_0x)d(L_0x) = G_{t_0\sigma}(x)dx.$$

There is a unique probability measure \Pr_x^{σ} on \mathscr{F} characterized by the property that if $h_1, \dots, h_n > 0$, and $t_j = h_1 + \dots + h_j$, and S_0, \dots, S_n are Borel sets in \mathscr{K} , then $\Pr_x^{\sigma} \{ \xi_0 \in S_0, \xi_{t_1} \in S_1, \dots, \xi_{t_n} \in S_n \} = 1_{S_0}(x) \int_{S_1} \dots \int_{S_n} G_{h_1}(x_1 - x) \dots G_{h_n}(x_n - x_{n-1}) dx_i \dots dx_n$. (Notation. 1_S will mean the characteristic function of S. I_S will mean the operation of multiplication by 1_S .)

So Pr_x^{σ} makes ξ_t into a temporally homogeneous Markov process starting at x, with transition function

$$\Pr_{x}^{\sigma}\{\xi_{t}=dy\,|\,\xi_{t_{0}}=y_{0}\}=G_{\sigma(t-t_{0})}(y-y_{0})dy.$$

When $\sigma=1$ the superscript in \Pr_x^{σ} will often be omitted, and when x=0 the subscript will often be omitted. We also denote by $E_x\{\cdots\}$ the operation of integration with respect to \Pr_x^{σ} , and make the same conventions about omitting σ when it equals 1 and x when it equals 0.

Let us introduce some transformations on Ω :

(1) if t > 0, set $j_t(\omega)(s) = \omega(st)$. Thus,

$$\xi_s \cdot i_t = \xi_{st}$$

(2) if L is a continuous map: $\mathcal{K} \to \mathcal{K}$, we set $k_L(\omega)(s) = L\omega(s)$. Thus,

$$\xi_s(k_L(\omega)) = L\xi_s(\omega).$$

REMARK 2.1. If $Ly = L_0y - x_0$, where L_0 is a linear transformation on \mathcal{K} with $L_0^*L_0 = t_0^{-1} I$, then:

$$\Pr_{\mathbf{x}}^{\sigma} \cdot k_L^{-1} = \Pr_{L^{-1}\mathbf{x}}^{t_0\sigma}$$
.

In particular:

$$Pr^{\sigma} \cdot L^{-1} = Pr_{r_0}^{t_0 \sigma}$$
.

Proof. This merely involves computing, for both sides of the equation, the measure of the set where $\xi_0 \in S_0$, $\xi_{h_1} \in S_1, \dots, \xi_{h_1 + \dots + h_n} \in S_n$, and using the transformation property of G_{σ} observed above. The details are omitted.

3. The semigroup obtained from a potential V. Call a complex Borel measurable function f on \mathscr{K} moderate if $\int |f(x)| e^{-c||x||^2} dx < \infty$ for each c > 0. These functions form a translation-invariant linear space \mathscr{M} . Observe also that a moderate f is Lebesgue integrable on compact sets. For any t > 0 and positive measurable V (the value $+\infty$ being permitted), we set

$$T_{\nu}^{t}f(x) = E_{x} \left\{ \exp \left[-\int_{0}^{t} V(\xi_{s})ds \right] f(\xi_{t}) \right\}$$
$$= E \left\{ \exp \left[-\int_{0}^{t} V(\xi_{s} + x)ds \right] f(\xi_{t} + x) \right\}.$$

This makes sense, since

$$\left| \exp \left[- \int_0^t V(\xi_s) ds \right] f(\xi_t) \right| \leq |f(\xi_t)|,$$

and

Now,

$$E_{x}\{|f(\xi_{t})|\} \leq (\pi t)^{-k/2} \int |f(y)| e^{-\|y-x\|^{2}/t} dy.$$

$$\frac{\|y-x\|^{2}}{t} = \frac{\|y/2 - 2x\|^{2}}{t} - \frac{3\|y\|^{2}}{4t} + \frac{3\|x\|^{2}}{t},$$

so

$$e^{-\|y-x\|^2/t} \le e^{-3\|y\|^2/4} e^{3\|x\|^2/t}$$

and

$$E_{x}\{|f(\xi_{t})|\} \leq (\pi c)^{-k/2}e^{-3||x||^{2}/t} \int |f(y)|e^{-||y||^{2}/c} dy,$$

where c = (3/4)t.

Measurability of the integrand is not diffficult to see, by first considering V of the form 1_S , S open, and then approximating. Or see [8; 9] for proof.

THEOREM 3.1. T_V^t is a linear transformation from \mathcal{M} to \mathcal{M} , sending a.e. nonnegative functions to nonnegative functions. If $0 \le f_n \uparrow f$ a.e., then $T_V^t f_n \uparrow T_V^t f$ a.e. Finally, $T_V^{s+t} = T_V^s T_V^t$.

Proof. All statements but the first and last are evident. To prove these:

$$\int |T_{V}^{t}f(x)|e^{-c||x||^{2}} dx \leq \int E_{x}\{|f(\xi_{t})|\}e^{-c||x||^{2}} dx$$

$$= \int G_{t} * |f|(x)e^{-c||x||^{2}} dx \quad \text{(where * is convolution)}$$

$$= \left(\frac{\pi}{c}\right)^{k/2} \int |f(x)| G_{t} * G_{1/c}(x) dx$$

$$= \left(\frac{\pi}{c}\right)^{k/2} \int |f(x)| G_{t+1/c}(x) dx < \infty.$$

So T_{ν}^{t} takes \mathcal{M} to \mathcal{M} . Finally:

$$\begin{split} T_V^s T_V^t f(x) &= E_x \left\{ \exp \left[-\int_0^s V(\xi_r) dr \right] T_V^t f(\xi_s) \right\} \\ &= E_x \left\{ \exp \left[-\int_0^s V(\xi_r) dr \right] E_{\xi_s} \left\{ \exp \left[-\int_0^t V(\xi_u) du \right] f(\xi_t) \right\} \right\} \\ &= E_x \left\{ \exp \left[-\int_0^s V(\xi_r) dr \right] \exp \left[-\int_0^t V(\xi_{u+s}) ds \right] f(\xi_{t+s}) \right\}, \end{split}$$

by the strong Markov property. This can be rewritten as $T_{\nu}^{s+t}f(x)$. Next, we examine the effect of varying V.

THEOREM 3.2. $V \ge W$ a.e. $\Rightarrow T_V^t f \le T_W^t f$ for all a.e. nonnegative f in \mathcal{M} . Furthermore, if $V_n \uparrow V$ a.e., then $T_{V_n}^t f \downarrow T_V^t f$ for such f.

Proof. The only difficulty is to see that if V = W a.e., then $T_v^t f = T_w^t f$. This is true because, for any set S of measure 0 in \mathcal{K} , we have

$$E_{\mathbf{x}}\left\{\int_{0}^{t}1_{S}(\xi_{s})ds\right\} = \int_{0}^{t}\int_{S}G_{\mathbf{x}}(y-x)dyds = 0,$$

so that V is unaffected by a change on a set of measure 0.

Finally, we consider the action of T_v^t on the various \mathscr{L}_p spaces over \mathscr{K} (taken with Lebesgue measure, normalized via the inner product in \mathscr{K}), and also on the space \mathscr{B} of bounded Borel functions on \mathscr{K} . By $\|\cdot\|_p$ we will mean the norms in $\mathscr{L}_p = \mathscr{L}_p(\mathscr{K})$, $1 \le p \le \infty$, and by just plain $\|\cdot\|$ the norm in \mathscr{B} .

THEOREM 3.3. T_V^t is a contraction on \mathcal{L}_p $(1 \le p \le \infty)$ and on \mathcal{B} . Furthermore, if $f \in \mathcal{L}_p$ and $g \in \mathcal{L}_q$, with 1/p + 1/q = 1, then $\int T_V^t f(x) g(x) dx = \int f(x) T_V^t g(x) dx$.

Proof. Since $T_V^t f(x) \leq T_0^t f(x)$ for each nonnegative f in \mathcal{M} , the first sentence will follow once we have it for the case V = 0. But this case is well known for p = 1 and $p = \infty$, while for other p it follows from the Riesz convexity theorem.

As for the self-adjointness: Consider $\Omega \times \Omega$. If we denote by $\tilde{\Omega}$ the subset of pairs (ω,ω') such that $\xi_0(\omega)=\xi_0(\omega')$, then $\tilde{\Omega}$ can be identified with the space of all continuous functions $\tilde{\omega}$ from the real line to \mathscr{K} , by letting

$$\tilde{\omega}(t) = \begin{cases} \omega(-t) & \text{if} \quad t \leq 0 \\ \omega'(t) & \text{if} \quad t \geq 0. \end{cases}$$

The measure $\Pr_x \times \Pr_x$ has its support on $\tilde{\Omega}$. We set $\Pr_x \{\tilde{\Lambda}\} = \int \Pr_x \times \Pr_x \{\tilde{\Lambda}\} dx$, for $\tilde{\Lambda}$ a measurable set in $\tilde{\Omega}$. \Pr_x is, of course, an infinite measure. Define $\tilde{\xi}_t(\tilde{\omega}) = \tilde{\omega}(t)$. Then it is easy to see that the joint distributions of $\tilde{\xi}_{t_1}, \dots, \tilde{\xi}_{t_n}$ are the same as those of $\tilde{\xi}_{t_1+h}, \dots, \tilde{\xi}_{t_n+h}$, and of $\tilde{\xi}_{-t_1}, \dots, \tilde{\xi}_{-t_n}$. Thus,

$$(T_{V}^{t}f,g) = \int E_{x} \left\{ \exp\left[-\int_{0}^{t} V(\xi_{s})ds\right] f(\xi_{t}) \right\} g(x)dx$$

$$= \tilde{E} \left\{ \exp\left[-\int_{0}^{t} V(\xi_{s})ds\right] f(\xi_{t}) g(\xi_{0}) \right\} = \tilde{E} \left\{ \exp\left[-\int_{0}^{t} V(\xi_{t-s})ds\right] f(\xi_{0}) g(\xi_{t}) \right\}$$

$$= E \left\{ \exp\left[-\int_{0}^{t} V(\xi_{u})du\right] f(\xi_{0}) g(\xi_{t}) \right\} = \int E_{x} \left\{ \exp\left[-\int_{0}^{t} V(\xi_{u})du\right] g(\xi_{t}) \right\} f(x)dx$$

$$= (f, T_{V}^{t}g).$$

REMARK. The self-adjointness has been proved by Getoor for \mathcal{L}_2 , in [8], and could be shown generally by approximation.

THEOREM 3.4. If f is in \mathcal{L}_p and 1/q + 1/p = 1, then $||T_V^t f|| < C(q)t^{l(q)}||f||_p$, where $C(q) = \pi^{l(q)} q^{-k/2q}$ and l(q) = (1/q - 1)k/2. Furthermore, if S_N is the

N-sphere, then $||I_{S_N^{\perp}}T_V^t f|| \to 0$ as $N \to \infty$, uniformly in V and in t restricted to an interval $0 < t_0 < t < t_1 < \infty$.

NOTATION. S^{\perp} is the complement of the set S.

Proof. $|T_v^t f(x)| \le |G_t * f(x)| \le |G_t|_q ||f||_p$. Evaluating $||G_t||_q$ gives the first part.

Choose $\varepsilon > 0$. Choose M so big that $\|I_{S_M^{\perp}}f\|_p < \varepsilon(2\|G_{t_0}\|_q)^{-1}$. Then $\|T_V^tI_{S_M^{\perp}}f\| < \varepsilon/2$. Now, if $\|y\| \le M$ and $\|x\| \ge N$, then $\|y-x\| \ge N-M$, and $|G_t(y-x)| \le (\pi t_0)^{-k/2}e^{-(N-M)^2/t_1}$ provided $t_0 \le t \le t_1$. Now, $I_{S_M}f$ is an \mathscr{L}_p function with support of finite measure, hence an \mathscr{L}_1 function. Choose N so large that $|G_t(y-x)| < \varepsilon(2\|I_{S_M}f\|_1)^{-1}$ if $\|y\| \le M$, $\|x\| \ge N$, and $t_0 \le t \le t_1$. Then $|T_V^tf(x)| < \varepsilon$ if $\|x\| \ge N$ and $t_0 \le t \le t_1$.

LEMMA. If V_0 is in \mathcal{L}_p for some p > k/2, then

$$E_{x}\left\{\int_{0}^{r}V_{0}(\xi_{u})du\right\} \leq c(p) \left\|V_{0}\right\|_{p} \cdot r^{k/2+1}.$$

Proof.

$$\left| E_{x} \left\{ \int_{0}^{r} V_{0}(\xi_{u}) du \right\} \right| = \int_{0}^{r} V_{0}(x+y) G_{u}(y) dy du
\leq \int_{0}^{r} \|V_{0}\|_{p} \|G_{u}\|_{q} du = \|V_{0}\|_{p} \int_{0}^{r} C(q) u^{l(q)} du$$

(using the notation in the proof of the previous theorem)

$$= c(p) \| V_0 \|_p r^{k/2+1},$$

where
$$c(p) = C((1 - 1/p)^{-1})(1 - k/2p)^{-1}$$
.

THEOREM 3.5. If, for some $\bar{p} > k/2$, V is in $\mathcal{L}_{\bar{p}}$ on an open set \mathcal{O} , and f is in any \mathcal{L}_p class, then $T_V^t f$ is continuous in \mathcal{O} . More precisely: for any compact subset C of \mathcal{O} , $\varepsilon > 0$, and $t_1 > 0$, we can choose r_0 such that $T_V^t f(x)$ differs by less than ε from the continuous function $T_0^r T_V^{t-r} f(x) = G_r * T_V^{t-r} f(x)$, for all x in C, $0 < r \le r_0$, and $t \ge t_1$.

Proof. Let $\Lambda_s = \{\omega \mid \xi_r(\omega) \in \mathcal{O} \text{ for } 0 \leq r \leq s\}$. This is in \mathscr{F} , as is also the set $\Gamma_{s,\alpha} = \{\omega \mid \int_0^s V(\xi_r) dr < \alpha\}$. Write Φ_r^s for the function $\exp[-\int_r^s V(\xi_u) du]$ on Ω . Then

$$\begin{split} T_{V}^{t}f(x) &= E_{x}\{\Phi_{0}^{t}f(\xi_{t})\} = E_{x}\{\Lambda_{s}^{\perp} \cup \Gamma_{r, \alpha}^{\perp}, (\Phi_{0}^{r} - 1)\Phi_{r}^{t}f(\xi_{t})\} \\ &+ E_{x}\{\Lambda_{s} \cap \Gamma_{r, \alpha}, (\Phi_{0}^{r} - 1)\Phi_{r}^{t}f(\xi_{t})\} + T_{0}^{r}T_{V}^{t-r}f(x). \end{split}$$

We estimate the first two terms.

Let C be a compact subset of \mathcal{O} , d its distance from \mathcal{O}^{\perp} , and x any point in C. Then $\Pr_x\{\Lambda_s^{\perp}\} \leq \Pr_0\{\|\xi_u\| \geq d \text{ for some } u \text{ in } [0,s]\}$. This is known to go to 0 as $s \downarrow 0$. Thus, we can choose s so small that $\Pr_x\{\Lambda_s^{\perp}\}C(q)(t_1/2)^{l(q)} < \varepsilon/3$ (l(q) defined as in Theorem 3.4). We can also require that $s < t_1/2$.

Next, denote by V_0 the function I_0V . Then if $r \leq s$,

$$\Pr_{\mathbf{x}}\{\Lambda_{\mathbf{s}}\cap\Gamma_{\alpha,\ \mathbf{r}}^{\perp}\} = \Pr_{\mathbf{x}}\left\{\Lambda_{\mathbf{s}}, \int_{0}^{\mathbf{r}} V_{0}(\xi_{\mathbf{u}}) du \geq \alpha\right\} \leq \Pr_{\mathbf{x}}\left\{\int_{0}^{\mathbf{r}} V_{0}(\xi_{\mathbf{u}}) du \geq \alpha\right\}.$$

From the previous lemma, this is dominated by $c(\bar{p})/\alpha \|V_0\|_{p^r}^{-k/2+1}$. If α is preassigned, then by choosing r sufficiently small (and in particular, smaller than s and $t_1/2$), we can thus guarantee that

$$\Pr_{\mathbf{x}}\{\Lambda_{\mathbf{s}}\cap\Gamma_{\sigma,\mathbf{r}}^{\perp}\}C(q)(t_1/2)^{l(q)}<\varepsilon/3.$$

 α was at our disposal. We choose it so small that $(1 - e^{-\alpha})C(q)(t_1/2)^{l(q)} < \varepsilon/3$. Then

$$\begin{aligned} \left| E_x \{ \Lambda_s \cap \Gamma_{r,\alpha}, (\Phi_0^r - 1) \Phi_r^t f(\xi_t) \} \right| &\leq (1 - e^{-\alpha}) E_x \{ \Phi_r^t | f | (\xi_t) \} \leq (1 - e^{-\alpha}) E_x \{ T_V^{t-r} | f | (\xi_r) \} \\ &\leq (1 - e^{-\alpha}) C(q) (t - r/2)^{l(q)} \| f \|_p \leq \varepsilon/3 \| f \|_p. \end{aligned}$$

Thus, for all $t \ge t_1$ and x in C, $||T_v^t f - T_0^r T_v^{t-r} f||$ is dominated by $\varepsilon ||f||_p$, the choice of r depending on ε , t_1 and $||V_0||_{\overline{p}}$.

Summarizing some of this:

COROLLARY 3.1. T_v^t takes each \mathcal{L}_p class into $\mathcal{L}_p \cap \mathcal{B}_0$ (where \mathcal{B}_0 is $\{f \text{ in } \mathcal{B} \mid f(x) \to 0 \text{ as } \|x\| \to \infty\}$). Furthermore, $T_v^t f$ is continuous on the open set $\{x \mid V \text{ is in } \mathcal{L}_p \text{ in some neighborhood of } x, \text{ for some } p > k/2\}$.

REMARK 3.1. Choosing V to be $+\infty$ on the complement of some set is one way of relativizing the process to that set (see also the method used by Getoor in [9], where everything gets cut down to an open set G).

4. The infinitesimal generator. In [8] Getoor incorrectly said that T_v^t is continuous at 0 as a semigroup on \mathcal{L}_2 (and hence, has a densely defined infinitesimal generator). This statement was, however, corrected in [9], and even in [8] he mentioned a necessary and sufficient condition on V that T_v^t be continuous in this sense. Also, in [9], a rather stringent sufficient condition is given. The contion in [8] is just that $\lim_{t\to 0} \exp\left[-\int_0^t V(\xi_s)ds\right] = 1 \Pr_x$ -a.e., for almost every x in \mathcal{K} . We shall not assume this, but rather investigate for arbitrary V the subspace on which T_v^t is continuous; or, equivalently, the closure of the domain of the infinitesimal generator of T_v^t .

Consider, for fixed x, the condition that $\lim_{t\to 0} \exp\left[-\int_0^t V(\xi_s)ds\right] = 0$ \Pr_{x}^{σ} -a.e. This condition is actually independent of σ . One way of seeing this is the following. Recall the map j_{σ} from Ω to Ω sending ω to the function whose value at

t is $\omega(t\sigma)$. Then j_{σ} is a 1-1 measure-preserving transformation from $(\Omega, \mathcal{F}, \Pr)$ to $(\Omega, \mathcal{F}, \Pr^{\sigma})$, and $\int_{0}^{t\sigma} V(\xi_{s} + x) ds = \sigma \int_{0}^{t} V(\xi_{s} \cdot j_{\sigma} + x) ds$.

Let $\Omega_x = \{\lim_{t\to 0} \exp\left[-\int_0^t V(\xi_s + x) ds\right] = 1\}$. This is exactly

$$\left\{\lim_{t\to 0}\int_0^t V(\xi_s+x)ds=0\right\},\,$$

and also $\{\exists t>0 \text{ such that } \int_0^t V(\xi_s+x)ds < \infty\}$. The set is in \mathscr{F}_t for each t>0. Thus, by the zero-one law, it differs from a set in \mathscr{F}_0 by a set which has \Pr^{σ} -measure 0 for each σ . Then for given x, Ω_x either has \Pr^{σ} -measure 0 for all σ or has \Pr^{σ} -measure 1 for all σ .

V will be called *controllable* at x if $Pr{\Omega_x} = 1$. So if V is not controllable at x, then for each moderate f we have $T_V^t f(x) = 0$ for all t > 0.

DEFINITION. Let C_v be the set of points where V is controllable, and let I_v be the operation of multiplication by the function which is 1 on C_v and 0 elsewhere. Also, let \mathcal{L}_p^V be \mathcal{L}_p with respect to Lebesgue measure cut down to C_v , with corresponding norms $\| \|_p^V$.

THEOREM 4.1. (a) For each moderate f we have

$$I_{\nu} T_{\nu}^{t} I_{\nu} f = T_{\nu}^{t} f \text{ a.e.,}$$

and

$$\lim_{t\downarrow 0} T_V^t f = I_V f \ a.e.$$

- (b) Furthermore, T_v^t is strongly continuous on each \mathcal{L}_p^v , $1 \leq p < \infty$, and is weak * continuous on \mathcal{L}_{∞}^v . Let A_v be the infinitesimal generator (no distinction is necessary for different p, since there is agreement on functions in several different \mathcal{L}_p^v).
 - (c) On \mathcal{L}_2^V , A_V is a nonnegative self-adjoint operator, and $e^{-tA_V} = T_V^t$.

Proof. If x is not in C_V , then $E\{\exp\left[-\int_0^t V(\xi_s+x)ds\right]f(\xi_t+x)\}=0$ for each t>0. So $I_V T_t f = \int_{a.e.}^t T_v^t f$ for moderate f. If f is actually in \mathcal{L}_2 , then self-adjointness of T_V^t tells us that $I_V T_V^t I_V f = \int_{a.e.}^t T_V^t f$. For general moderate f, the last equality still holds, by the Lebesgue convergence theorem. The fact that $\lim_{t\downarrow 0} T_V^t f(x) = f(x)$ for a.e. x in C_V can be shown as follows: first one proves it for continuous f, by applying the Lebesgue convergence theorem; then for arbitrary moderate f by Theorem 3.1.

As for (b): since $T_V^t f$ converges a.e. to $I_V f$ as $t \downarrow 0$, and since $\|T_V^t f\|_p^V \le \|T_V^t f\|_p = \|T_V^t I_V f\|_p \le \|I_V f\|_p = \|f\|_p^V$, we have that $T_V^t f \to f$ in \mathcal{L}_p^V , in the weak topology, or, in the case $p = \infty$ in the weak * topology. Since each T_V^t is a contraction, we get T_V^t weakly continuous at all $t \ge 0$ if $1 \le p < \infty$, or weak * continuous if $p = \infty$. If $1 \le p < \infty$, then \mathcal{L}_p^V is separable, so weak continuity implies strong measurability by [10], Theorem 3.55, and therefore T_V^t is strongly continuous for $t \ge 0$ by [10, Theorem 10.5.5].

(c) Finally, that A_V on \mathcal{L}_2^V is a nonnegative self-adjoint operator can be seen as follows. T_V^t has some representation of the form e^{-tB} for a self-adjoint operator B (easily seen to be positive), by [13, XI,2]. Now, the domain of A_V is the range of $\int_0^\infty T_V^t e^{-\lambda t} dt = 1/(B+\lambda)$, and $(A_V + \lambda)(1/(B+\lambda))f = f$. Thus, A_V is precisely B.

Next, two theorems which cast a little light on the question "what is C_V for given V"?

THEOREM 4.2. C_V is a.e. contained in the set where V is finite.

Proof. Let $R = \{x \mid V(x) = \infty\}$. Then, for a.e. x in R, the set R has density 1 at x. Selecting such an x:

$$E_{x}\left\{\frac{1}{t}\int_{0}^{t}1_{R}(\xi_{s})ds\right\} = \frac{1}{t}\int_{0}^{t}E_{x}\left\{1_{R}(\xi_{s})\right\}ds = \frac{1}{t}\int_{0}^{t}G_{R}*1_{R}(x)ds.$$

Now, $G_s * 1_R(x) \to 1$ as $s \to 0$, since G_s is an approximate identity and R has density 1 at x. Thus

$$\frac{1}{t} \int_0^t G_s * 1_R(x) ds \to 1.$$

As a consequence, $\Pr_{x} \{ \int_{0}^{t} V(\xi_{s}) ds = \infty \} = 1 \text{ for each } t > 0, \text{ and } x \text{ is in } R.$

THEOREM 4.3. If p > k/2 and $V \in \mathcal{L}_p(\mathcal{O})$, \mathcal{O} , open $\subset K$, then $C_V \supset \mathcal{O}$ a.e.

Proof. It is no loss of generality to assume V vanishes outside \mathcal{O} , since each path starting at an x in \mathcal{O} stays there for a while. But then the lemma after Theorem 3.4 tells us that $E_x\{\int_0^t V(\xi_s)ds\} < \infty$, so that $\int_0^t V(\xi_s)ds < \infty \Pr_x$ -a.e., and therefore x is in C_V if it is in \mathcal{O} .

REMARK 4.1. Operators on \mathcal{L}_p^V are in an obvious 1-1 correspondence with operators B on \mathcal{L}_p such that $I_V B I_V = B$. Thus, we will occasionally treat A_V as an operator on \mathcal{L}_p , without further comment.

REMARK 4.2. If V=0, then A_V is just the negative of the usual Laplacian (on \mathcal{L}_2). More generally, it is shown in [8] that if C_V is almost all of \mathcal{K} , and M_V is the operation of multiplication by V on \mathcal{H} , then

$$A_V \supset (-\Delta + M_V) | \mathscr{D}_{\Delta} \cap \mathscr{D}_{M_V}$$
 (where \mathscr{D}_T is the domain of T).

For example, if V is bounded, then A_V is just $-\Delta + M_V$. However, it would be of interest to have the answer to the following question, for instance. Suppose the Laplacian of f exists locally, in some sense, but the function g thereby obtained is no longer in \mathcal{L}_2 . Suppose, however, that -g + Vf is in \mathcal{L}_2 . Is it then the case that f is in \mathcal{D}_{A_V} and $A_V f = -g + Vf$? (The considerations of [9, §4], do not apply, unfortunately, because Δ is not a "local operator" in the sense used there.)

REMARK 4.3. Here is a phenomenon which was surprising at least to me. Recall that

$$T_0^t = e^{-t\Delta} f = G_t * f$$

is actually infinitely differentiable for all moderate f. Recall also that for general V, and f in \mathcal{L}_p , T_V^t is continuous where V is in some $\mathcal{L}_{\overline{P}}$ class (Corollary 3.1). One might therefore expect that if, say, V were bounded then $T_V^t f$ would be infinitely differentiable. However, this is far from true!

EXAMPLE. Let V be a nonnegative bounded measurable function, and let f be in \mathcal{D}_{A_V} . Thus $T_V^t f$ is again in \mathcal{D}_{A_V} , and $A_V T_V^t f = T_V^t A_V f$. But $\mathcal{D}_{A_V} = \mathcal{D}$ and $A_V = -\Delta + M_V$, so $-\Delta T_V^t f + V T_V^t f = A_V T_V^t f = T_V^t A_V f$. Now, $T_V^t f$ is continuous, as is also $T_V^t A_V f$, by Corollary 3.1. If $T_V^t f$ had two continuous derivatives, then a representative for $T_V^t f$ could be chosen which was continuous. But $V T_V^t f$ can be made as irregular as one likes, for example by choosing V to be unequal to any continuous function on any open set. So $T_V^t f$ cannot always be twice continuously differentiable, even if V is bounded and f itself is a C_∞ function with compact support. (However, regularity assumptions on V would presumably result in regularity for $T_V^t f$.)

5. Complexification of the semigroup, and the limiting Feynman integral. Let Λ be the set of complex numbers with positive real part, $\overline{\Lambda}$ its closure. Let A be a fixed nonnegative self-adjoint operator on the Hilbert space \mathscr{H} . For any ζ in $\overline{\Lambda}$, the functional calculus defines a bounded operator $e^{-\zeta A}$. This operator is unitary if ζ is imaginary, nonnegative and self-adjoint if ζ is nonnegative, and has norm ≤ 1 for ζ in $\overline{\Lambda}$. The map $\zeta \to e^{-\zeta A}$ is continuous in the strong operator topology for ζ in $\overline{\Lambda}$, and satisfies $e^{-\zeta A}e^{-\zeta' A} = e^{-(\zeta + \zeta')A}$. For ζ in Λ , it is continuous in the uniform operator topology, and even holomorphic. These facts are all, at worst, straightforward applications of the functional calculus.

EXAMPLE. We can extend T_V^t , as an operator on \mathcal{L}_2^V , to T_V^{ζ} for s in $\overline{\Lambda}$, by setting $A = A_V$.

We quote, for later use, a fact about convergence of analytic functions.

FACT 5.1 (VITALI). Let F_1, F_2, \cdots be a sequence of analytic functions on Λ , with values in a Banach space. Suppose the F_n are uniformly bounded in norm on each compact subset of Λ . Suppose also that they converge in norm at all points of $(0, \infty)$. Then they converge in norm on Λ , uniformly on compact subsets, to an analytic function F_{∞} on Λ .

Proof. [10, p. 104, Theorem 3.14.1].

For the purposes of our first theorem, we will want, for each t > 0, $\Pr_x\{V(\xi_s) \text{ Riemann-integrable on } (0,t)\} = 1$ for a.e. x. This amounts to $\Pr_x\{V(\xi_s) \text{ bounded and a.e. continuous on } (0,t)\} = 1$ for a.e. x. Call such a V Riemann-approximable. Observe that if V is Reimann-approximable then C_V is almost all of E, so that T_V^t is strongly continuous at 0 in \mathcal{L}_p .

Theorem 5.1. Suppose V is Riemann-approximable. Let τ be a finite sequence of positive numbers: $\tau=(\tau_1,\cdots,\tau_{n(\tau)})$, with $\sum \tau_j=1$. Let $|\tau|=\max_j \tau_j$. For ζ in Λ , let $T_{V,\tau}^{\zeta}=\prod_j e^{-\zeta \tau_j V} e^{\zeta \tau_j \Delta}$, everything operating on \mathcal{L}_2 . This is clearly holomorphic on Λ , strongly continuous on $\overline{\Lambda}$. Then $\lim_{|\tau|\to 0} T_{V,\tau}^{\zeta}$ exists in the strong operator topology, and uniformly for ζ in any compact subset of Λ , and equals T_V^{ζ} . Finally: if ϕ is any integrable function on the real line, then

$$\lim_{|\tau|\to 0} \int_{-\infty}^{+\infty} (T_{V,\tau}^{is}f,g)\phi(s)ds = \int_{-\infty}^{+\infty} (T_{V}^{is}f,g)\phi(s)ds,$$

for all f, g in \mathcal{L}_2 (where T_V^{is} is the strongly continuous extension of T_V^{ζ} to the imaginary axis).

REMARK 5.1. The fact of convergence was proved by D. Babbitt [1], under the added assumption that V satisfied a local Lipschitz condition. The proof of the present generalization is just a simplification of Babbitt's proof.

Proof of theorem. Consider the sum $\sum_j V(\xi_{(\tau_1+\ldots+\tau_j)t}(\omega))\tau_j t$. This is a Riemann sum for the integral $\int_0^t V(\xi_s(\omega))ds$, using the partition $(\tau_1 t, \cdots, \tau_{n(\tau)} t)$. Thus, $\sum_j V(\xi_{(\tau_1+\ldots+\tau_j)t}(\omega))\tau_j t$ converges to $\int_0^t V(\xi_s(\omega))ds$ as $|\tau| \to 0$, for \Pr_x -almost every ω . Now let f be in \mathscr{M} . Then, since the functions within $E_x\{\ldots\}$ are all bounded in norm by $|f(\xi_t)|$, and converge \Pr_x -a.e., we have

$$\lim_{|\tau|\to 0} E_x \left\{ \exp \left[-\sum_j V(\xi_{\zeta\tau_1+\ldots+\tau_j)t}) \tau_j t \right] f(\xi_t) \right\} = T_V^t f(x)$$

for each x. Also

$$\left| E_x \left\{ \exp \left[-\sum_{i} V(\xi_{(\tau_1 + \dots + \tau_j)t}) \tau_j t \right] f(\xi_t) \right\} - T_V^t f(x) \right|^2 \leq 2 E_x \{ \left| f(\xi_t) \right| \}^2.$$

Thus, if f is in \mathcal{L}_2 , then $\lim_{|t|\to 0} ||T_{V,\tau}^t f - T_V^t f||_2 = 0$, i.e. $T_{V,\tau}^t$ converges strongly to T_V^t . Now we can apply Fact 4.1 to get the existence of a holomorphic limit T_V^ζ , ζ in Λ , which must agree with $e^{-\zeta AV}$ on $\overline{\Lambda}$ since it agrees for $\zeta > 0$.

The fact that $\lim_{|\tau|\to 0} \int_{-\infty}^{\infty} (T_V^{is}, \tau f, g) \phi(s) ds = \int_{-\infty}^{\infty} (T_V^{is} f, g) \phi(s) ds$ for all ϕ in \mathcal{L}_1 is a consequence of the fact that $(T_V^{\zeta}, \tau f, g)$ and $(T_V^{\zeta} f, g)$ are bounded holomorphic functions and $(T_V^{\zeta}, \tau f, g) \to (T_V^{\zeta} f, g)$ on Λ . This can be seen as follows. Let $P_t(s) = (1/\pi)(t/(t^2 + s^2))$. P_t is an approximate identity, so that $P_t * \phi \to \phi$ in $\mathcal{L}_1(-\infty,\infty)$. If Ψ is any bounded analytic function in the right half plane, then $\Psi(t+is) = \int P_t(s-s') \Psi(is') ds'$. Now let $\Psi_\tau(\zeta) = (T_V^{\zeta}, \tau f, g)$, and $\Psi(\zeta) = (T_V^{\zeta} f, g)$. Notice that $\int P_t * \psi(s) \phi(s) ds = \int \psi(s) P_t * \phi(s) ds$. Thus: $\int (\Psi_\tau(is) - \Psi(is)) \phi(s) ds$ = $\int (\Psi_\tau(t+is) - \Psi(t+is)) \phi(s) ds + \int (\Psi_\tau(is) - \Psi(is)) (\phi(s) - P_t * \phi(s)) ds$. The second term has absolute value $\leq \text{const.} \int |\phi(s) - P_t * \phi(s)| ds$. By choosing t small, this can be made arbitrarily small (for fixed t). The first term can then be made small by choosing t small, since t0 for each t1.

REMARK 5.2. Observe that one point which came out in the proof was that for each x at which V is Riemann-approximable,

$$E_{x}\left\{\exp\left[-\sum_{j}V(\xi_{(\tau_{1}+\ldots+\tau_{j})t})\tau_{j}t\right]f(\xi_{t})\right\}$$

converges to $T_V^t f(x)$, for each f in \mathcal{M} . (Note: Riemann-approximabity at x has not been defined, but it should be obvious what is meant.)

What sort of V are Riemann-approximable? A large class is the following. It permits arbitrarily bad infinities on a set of capacity zero.

THEOREM 5.2. Let D be the closed set of x for which V is essentially unbounded in every neighborhood of x. Suppose D forms a set of capacity 0. Suppose also the points of discontinuity of V form a set of measure 0. Then V is Riemann-approximable.

Proof. By changing V on a set of measure 0 in D^{\perp} , we can assume that V is actually locally bounded in D^{\perp} . Namely, let $C_n \uparrow D$, C_n compact, and replace V on $C_n - C_{n-1}$ by $V \land \|1_{C_n}V\|$. This will not introduce any new discontinuities. Then $\Pr_x\{\xi_s \text{ lies in } D \text{ for some } s\} = 0$, for a set D of capacity 0. See, for example, [4]. Thus, for \Pr_x -a.e. ω , the range of $\xi_s(\omega)$, $0 \le s \le t$, is a compact subset of D^{\perp} , and so $s \to V(\xi_s(\omega))$ is bounded on [0,t]. Also, for \Pr_x -a.e. ω , the set of s for which $\xi_s(\omega)$ lies in the set of discontinities of V has Lebesgue measure 0. Thus, for \Pr_x -a.e. ω , $\xi_s(\omega)$ is Riemann-integrable for $0 < s \le t$.

6. The Green's function. Recall that if $f \in \mathcal{L}_p$ then $||T_v^t f||_{\infty} \leq C(q) t^{(1/q-1)^k/2}$. So, for $1 \leq p < \infty$, $T_v^t f(x) = \int k_x^t(y) f(y) dy$, where k_x is an equivalence class of Lebesgue measurable functions, and $||k_x^t||_q \leq C(q) t^{(1/q-1)^k/2}$. For $f \geq 0$ in \mathcal{L}_∞ choose $f_n \in \mathcal{L}_2$, $f_n \uparrow f$. Then $T_v^t f_n(x) \uparrow T_v^t f(x)$, so that

$$\int k_x^t(y)f(y)dy = \lim_{n \to \infty} \int k_x^t f_n(y)dy = \lim_{n \to \infty} T_V^t f_n(x) = T_V^t f(x),$$

so again we have $\int k_x^t(y)f(y)dy = T_v^tf(x)$, $||k_x^t||_1 \le C(1)$, independent of t. We introduce a canonical version of k_x^t .

LEMMA 6.1. $\int k_x^r(z)k_y^s(z)dz$ is, for each x, equal to $k_x^t(y)$ for almost every y, provided r+s=t. Further, it is independent on the choice of r and s.

Proof. $k_x^s(y)$ can be chosen a jointly Borel measurable function of x and y, since the map $x \to k_x^s$ is a measurable map from \mathcal{K} to, for example, \mathcal{L}_2 . Furthermore,

$$\int g(x)k_x^s(y)f(y)dy = \int g(x)T_v^sf(x)dx = \int T_v^sg(y)f(y)dy,$$

since T_V^s is self-adjoint. So

$$\iint \left(\int k_x^r(z) k_z^s(y) dz \right) f(y) dy = \iint k_x^r(z) k_z^s(y) f(y) dy dz = \int k_x^r(z) T_v^s f(z) dz = T_v^r T_v^s f(x) dz$$

$$= \int k_x^t(y) f(y) dy.$$

To show independence of r and s, we choose r, s, r', s', with r + s = r' + s'. Assume r < r'. Then, from what has been shown,

$$\int k_{x}^{r'}(z)k_{y}^{s'}(z)dz = \int k_{x}^{r+(r'-r)}(z)k_{y}^{s'}(z)dz$$

$$= \int \int k_{x}^{r}(q)k_{w}^{r'-r}(z)k_{z}^{s'}(y)dwdz$$

$$= \int \int k_{x}^{r}(w)k_{z}^{s-s'}(w)k_{z}^{s'}(y)dwdz$$

$$= \int k_{x}^{r}(w)k_{w}^{s}(y)dw,$$

which completes the proof.

Now it makes sense to define $K_{\nu}^{r}(x,y) = \int k_{\nu}^{r}(z)k_{\nu}^{s}(z)dz$, since it is independent of r and s, provided r + s = t.

Thus we have

REMARK 6.1. (a) There is a function $K_v^t(x,y)$ such that $T_v^t f(x) = \int K_v^t(x,y) f(y) dy$ for f in any \mathcal{L}_p -class. K_v^t is symmetric. Further, $K_v^{s+t}(x,z) = \int K_v(x,y) K_v(y,z) dy$.

(b) The last property, together with the fact that $T_v^t f(x) = \int K_v^t(x,y) f(y) dy$ for enough f, uniquely determine K_v^t . (I use the label "remark" rather than "theorem" in order to avoid being precise about the word "enough".)

Properties of T_{ν}^{t} easily translate into properties of K_{ν}^{t} . For example:

THEOREM 6.1. $x \to K_V^t(x, \cdot)$ is continuous into all \mathcal{L}_p , and K_V^t is jointly continuous in x and y, on the open set where V is locally integrable.

Proof. The first statement is an immediate consequence of the definition and of Theorem 3.5. As for the second part: if $x_n \to x$ and $y_n \to y$, and V is locally integrable at x and y, then

$$\begin{split} \left| \int K_{V}^{r}(x_{n},z)K_{V}^{s}(y_{n},z)dz - \int K_{V}^{r}(x,z)K_{V}^{s}(y,z)dz \right| \\ & \leq \left\| K_{V}^{r}(x_{n},\cdot) - K_{V}^{r}(x,\cdot) \right\|_{2} \left\| K_{V}^{s}(y_{n},\cdot) \right\|_{2} + \left\| K_{V}^{r}(x,\cdot) \right\|_{2} \left\| K_{V}^{s}(y_{n},\cdot) - K_{V}^{s}(y_{n},\cdot) \right\|_{2}. \end{split}$$

But $||K_{\nu}^{s}(y_{n},\cdot)||_{2}$ and $||K_{\nu}^{r}(x_{n},\cdot)||_{2}$ stay bounded, while the other factors go to zero.

REFERENCES

- 1. D. G. Babbitt, A summation procedure for certain Feynman integrals, Doctoral dissertation, Univ. of Michigan, 1962. See also Abstract 62T-298, Notices Amer. Math. Soc. 9 (1962), 402.
- 2. S. G. Brush, Functional integrals and statistical physics, U.S. Atomic Energy Comm., Tech. Rep. No. UCRL-5694-T, (1959).
- 3. R. H. Cameron, A family of integrals serving to connect the Wiener and Feynman integrals J. Math. and Phys. 39 (1960), 126-140.

- 4. J. L. Doob, Semimartingales and subharmonic functions, Trans. Amer. Math. Soc. 77 (1954), 86-121.
- 5. E. B. Dynkin, On some transformations of Markoff processes, Dokl. Akad. Nauk. SSSR 133 (1960), 269-272.
- 6. R. J. Feynman, Space-time approach to nonrelativistic quantum mechanics, Rev. Modern Phys. 20 (1948), 367-387.
- 7. I. M. Gel'fand and A. M. Yaglom, Integration in function space and its applications in quantum physics, J. Mathematical Phys. 1 (1960), 48-69.
 - 8. R. Getoor, Additive functionals of a Markov process, Pacific J. Math. 7 (1957), 1577-1591.
- 9. ——, Markov operators and their associated semi-groups, Pacific J. Math. 9 (1959), 449-472.
- 10. E. Hille and R. S. Phillips, Functional analysis and semigroups, Amer. Math. Soc. Colloq. Publ. Vol. 31, rev. ed., Amer. Math. Soc., Providence, R.I., 1957.
- 11. M. Kac, On some connections between probability theory and differential and integral equations, Proc. 2nd Berkeley Symposium on Math. Statist. and Prob., Univ. of California Press, Berkeley, Calif., 1951.
- 12. E. W. Montroll, Markov chains, Wiener integrals and quantum theory, Comm. Pure Appl. Math. 5 (1952), 415-453.
- 13. B. Sz.-Nagy, Spektraldarstellung linearer Transformationen des Hilbertischen Raumes, Springer-Verlag, Berlin, 1942.
 - 14. E. Nelson, N. R. S. Colloques sur les équations aux dérivees partielles, Paris, 1962.
- 15. D. Ray, On the spectra of second order differential operators, Trans. Amer. Math. Soc. 77 (1954), 299-321.
- 16. M. Rosenblatt, On a class of Markov processes, Trans. Amer. Math. Soc. 71 (1951), 120-135.
- 17. V. A. Volkonskii, Additive functionals of Markov processes, Trudy Moskov. Mat. Obšč. 9 (1960), 143-189. (Russian)

University of California, Berkeley, California