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0. Introduction. When a group © acts as a group of complex analytic auto-

morphisms on a complex analytic manifold §>, the group © can also be considered

as acting as a group of linear transformations on the space si of holomorphic

functions on §, by translation of the argument; the action of an element Me©

on a holomorphic function/(z)e ¿a/ is defined to yield the function

(f\M)(z)=f(Mz)esi.

More generally, whenever there is a factor of automorphy p(M, z) for the action

of © on § (that is, a function on © x § which is holomorphic on § and which

satisfies a functional equation analogous to the chain rule for Jacobians, [4; 5]),

it is possible to define another action of © on si by putting

(f\pM)(z) = p(M,z)-1f(Mz).

The invariant elements of si, under this group action, are the automorphic or

modular forms associated to the factor of automorphy p for ©, as in [4; 5]. To

different factors of automorphy p, p there correspond of course different actions

of © on si, and thus different families of automorphic forms. There then arises

the question of the extent to which these group actions on families of automorphic

forms are really distinct. More precisely, one can ask whether there are any

linear mappings 2¡ :si' -> si which commute with these group operations, in the

sense that 3¡(f\pM) = (@f)\¡¡M for all Me© and/esi. When the two factors

of automorphy are equivalent, in the sense which arises naturally in the classi-

fication problem [4], there are trivial such isomorphisms 2. However, more

interestingly, there are cases in which the factors p, p axe inequivalent, but in

which there are such homomorphisms 9i. In these cases, the resulting maps can

lead to quite interesting and nontrivial relations between various classes of

automorphic forms. For one-dimensional complex manifolds §, this problem was

discussed in [5] ; the homomorphisms there led in a natural way to the relations

between the Eichler cohomology groups and automorphic forms. In the present

paper I shall discuss and classify the linear differential operators which provide

such homomorphisms, when © is the symplectic group or a general subgroup

thereof and § is the Siegel generalized upper half-plane.
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In more detail, the plan of this paper is as follows. The first section contains

the basic definitions and establishes the notation to be used in the sequel. It is

almost necessary to consider from the outset families of holomorphic functions

whose values lie in a general finite-dimensional complex vector space, and cor-

respondingly, matrix-valued factors of automorphy. Futhermore, it is more

convenient to consider, as a preliminary, the subgroup © œ c © consisting of

those symplectic matrices which act linearly on the Siegel space §. The second

section is devoted to the determination of those differential operators commuting

with the actions of the subgroup ©œ; these are called © œ-homomorphisms,

and the results are collected in Theorem 1. As an illustration, and to provide the

detailed knowledge of these operators which will be needed for later applications,

all such operators of first and second orders, in the Siegel space of rank two, are

determined explicitly in the third section; the principal results are to be found

in Corollaries 1.1 and 1.2, in that section. Returning to the general case, the

fourth section is devoted to the determination of the differential operators which

actually commute with the actions of the full group ©. The general criterion for

such operators is given in Theorem 2; more detailed and explicit versions of the

criterion, particularly for first and second order differential operators, are given

in the corollaries to Theorem 2, and especially in Corollaries 2.5 and 2.6. These

results are then applied, in the fifth section, to give the complete list of first and

second order operators commuting with the actions of © on the Siegel space of

rank two; the principal results are collected in Theorem 3. Some simple appli-

cations, as illustrations of further applications which will be discussed elsewhere,

are also given in the fifth section.

The selection of the symplectic group acting on the Siegel generalized upper

half-plane for a detailed investigation here was, of course, motivated by the

applications of the automorphic forms in this case to problems in analytic number

theory, in particular to the analytic theory of quadratic forms; see [10; 11].

It is perhaps not out of place to discuss briefly in this introduction, the general

structure of which the rest of this paper treats a special case, albeit a special case

of independent interest ; an equally detailed discussion of the general situation

appears unjustified at present, because of lack of applications. In place of a factor

of automorphy, one can consider its localization: for a discrete group ©, this is a

complex vector bundle over the quotient space §/ © ; and for a transitive group,

this is a homogeneous vector bundle over irj. The general problem posed is that

of determining bundle morphisms, in particular those defined in terms of dif-

ferential operators. For example, when considering the tangent bundle to the

manifold §, or general tensor bundles over §, there are the familiar operations

of covariant derivation; these operators, however, are not generally complex

analytic, although they reduce to complex analytic operators (the usual exterior

derivatives) when restricted to the appropriate bundles of skew-symmetric

tensors. There is, however, a further and yet more interesting aspect of the
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problem. In the special case of the symplectic group acting on the Siegel space,

the coordinate transformations have a very special form. The analogue of this

in the general case is the restriction to a subclass of coordinate systems on the

manifold §>, so that the coordinate transformations lie in some specified infini te

Lie pseudogroup of transformations [3] ; that is to say, the manifolds §> axe re-

stricted so as to have a pseudogroup structure still finer than just the complex

analytic structure. Since this sort of restriction reduces the differentiation

operators to special classes, there are in general more bundle morphisms which

can then be introduced. In the case of one complex variable, this approach is

really in the form given by Bol in [2], before Eichler noticed the applications

to modular forms.

1. Definitions and notation.

(1) Throughout this discussion the usual matrix notations and conventions

will be used freely. Thus for any matrix M, the inverse matrix will be denoted by

M_1, the transposed matrix will be denoted by 'M, and the determinant of the

matrix M will be denoted by det M. As a further notational convenience, the

entries in the matrix M will be denoted by M¡y or mtj; hexe M(J- is the entry in the

ith row and jth column of M. The entries in the matrix M ~1 will be denoted

correspondingly by Mj}1, and the entries of 'M by 'M^; hence 'Mi} = M}i. Unless

otherwise specified, the matrix indices i,j, k, I, ••■ will have the range 1, •••, n for a

fixed but generally arbitrary integer n ; and the indication of this range will be

omitted in summation symbols or other formulas where no confusion can result

thereby.

The Siegel generalized upper half-plane of rank n is the set§ consisting of those

n x n complex symmetric matrices Z = X + iY such that Y= Im Z is positive

definite. The set § is then a complex manifold, indeed an open subset of the space

of \n(n + 1) complex variables Zu = ztj, (i g j); of greater interest though is

the fact that § is a homogeneous complex manifold, under the action of the

symplectic group © = Sp(n, R) of rank n. Recall that the symplectic group is the

subgroup © = Sp(n, R) <= GL(2n, R) consisting of those 2n x 2n matrices

M e GL(2n,R) such that 'MJM = J, where J = (_%), I = /„ is the n x n identity

matrix, and 0 = 0„ is the n x n zero matrix; if a matrix M e GL(2n,R) is decom-

posed into n x n matrix blocks M =(£%), then the condition that M be sym-

plectic has the form:

(1.1) 'AC = 'CA,       *BD = 'DB,       'AD - 'CB = /.

Such a symplectic matrix Me © determines a complex analytic automorphism

of the generalized upper half-plane of the form:

(1.2) M:Z-*M(Z) = (¿Z4-B)(CZ + D)-1.

The group © is then a transitive group of transformations of the space §. The



1963] OPERATORS PRESERVING RELATIONS OF AUTOMORPHY 329

isotropy subgroup of © at the point il e§ is the group Si = [M e © \M(iI) = //} ;

it follows readily that ft consists of those elements M = (% ~p) e ($ such that

Ci + D is a unitary matrix, hence, that R is canonically isomorphic to the unitary

group of rank n. A more detailed discussion of these results can be found in the

fundamental papers of Siegel [10; 11].

A subgroup of the symplectic group which will play an important role in the

subsequent discussion is the subgroup © œ cz © consisting of those symplectic

matrices with C=0; it follows directly from the conditions (1.1) that this subgroup

can be characterized as follows:

(1.3) ©œ = |M = (        r-i) eGL(2n,R)jS symmetric and C nonsingulari.

When acting on the generalized upper half-plane § a matrix M e © x of the form

(1.3) has the effect:

(1.4) M:Z->M(Z) = 'CZC + S;

thus ©<„ consists precisely of those symplectic transformations which act linearly

on the generalized upper half-plane. It is quite easy to verify that the group ©œ

is also transitive on the half-plane §>, yielding another representation of § as a

complex homogeneous space. Actually, the space § is a tube over a domain of

positivity, or generalized half-plane, as introduced by Koecher; and ©œ is the

linear group under which $ is homogenous. Much of the discussion here can be

carried over quite directly to the more general situation; however, the details

vary considerably from case to case, and since it is just these details which are

the most interesting for the applications, only the Siegel half-plane will be treated

here. Further general discussions of domains of positivity and related matters

can be found in the work of Koecher [7] and Rothaus [9].

The subgroup © œ in turn contains two further subgroups, which it is conve-

nient to consider separately. The first of these is the subgoup Xcz ©œ defined as:

(1.5) X = Im = (IqS\   e GL(2n,R) | S symmetric! ;

the elements of % will be called translations for short, since their action on the

generalized upper half-plane §> has the form M(Z) = Z + S. The other is the

subgroup Îîcz©,^ defined as:

(1.6) $R = {m=   ( ^_!)eGL(2n,R)|C nonsingular);

the elements of 9Í will be called, rather incorrectly, rotations, and their action on

the half-plane § is of the form M(Z) = 'CZC. It is an immediate consequence
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of these definitions that every element M e © ̂  can be written as the product of

a rotation and a translation. A similar result holds for the full group ©,except that

it is necessary to consider also the involution J = (_5¿)e(5; more precisely :

Lemma 1. Every element M e© can be written as a finite product of rotations

translations, and involutions.

Proof. Consider any element M = (ç *) e ©. There is a real symmetric matrix

5 such that CS + D is a nonsingular matrix; for if det (CS + D) = 0 for all real

symmetric S, then necessarily det(CZ + D) — 0 for all complex symmetric Z,

contradicting the well-known fact that det(CZ + D) # 0 for Z e£ [10]. Then the

matrix (¿?) is a translation, and is such that Mt = M-(qS¡) = (cl\) where Dt is

nonsingular; and hence

is a rotation and is such that

Since M2 e©, it follows from (1.1) that B2 is a symmetric matrix, and so

(i-f*)--té?)-*
Again, by recalling (1.1), it follows that ¿3 = /, hence, M3 = (¿2 5). Finally,

using the involution Je®, observe that JM3J3 = JM3( — J) = (J~ j2)e© is a

translation, and the lemma is thereby demonstrated.

(2) Let p be a holomorphic, linear representation of the general linear group

GL(n,C), with representation space Vp; that is to say, let p be a complex analytic

homomorphism of GL(n,C)into the complex Lie group of automorphisms of the

finite-dimensional complex vector space Vp. To each symplectic matrix

M = (cd) associate the function

(1.7) p(M,Z) = p(CZ + D),

which is holomorphic on § and has values in the group of automorphisms of Vp.

These functions determine a factor of automorphy for the group © acting on the

space §, as discussed in [4] or [5], for example; for any two symplectic matrices

M,Ne(5, the factors of automorphy satisfy the functional equations

p(MN,Z) = p(M,NZ)p(N,Z). Any such factor of automorphy in turn leads to a

representation of the symplectic group © as a group of linear transformations on

the complex vector space í>p = 3>(§, Vp) of Cx mappings of the space § into the

vector space Vp, as in [5]. This representation is that which associates to any

function F e (¡>p and any symplectic matrix Me© the function F \pM e <I>p defined

by:
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(1.8) (F \PM)(Z) = p(M, ZT1 F(MZ).

Thus <S>P has not only the structure of a complex vector space, but also the structure

of a ©-module, with the action of © as in (1.8); to emphasize the fact that both

of these structures are to be considered, cpp will be called a (5-space. Note that

for any subgroup of ©, such as ©œ, the same vector space Op can be considered

as a © .„-space as well ; this is a weaker structure, in the obvious sense of the

phrase. Note, further, that any subspace of i>p which is preserved under the

action of© can also be considered as a ©-space , or as a ©œ-space. The subspace

which is of particular interest from the beginning is, of course, the space

0p = ©(§, Vp) of holomorphic mappings of § into Vp.

Now consider two representations p, p of GL(n,C), with representation spaces

Vp, Vß and <SP, <bß, respectively, as defined just above. For any function £ e <Dp, the

various partial derivatives 8'lF(z)/dziijl--- dzipjp are functions belonging to the

same space <5p; for C00 functions, the complex differential operator is defined to

be the first order linear differential operator 2 d/ dz,j = d/ dxtj — ̂  — 1 d/ ôy,j,

where ztJ = xu + <J — 1 yy. If ¿¡.^...¡^(Z) are arbitrary C°° mappings from §

into the space of linear maps of Vp into Vß, then the composition

(1.9) (#F)(Z)= Z       I       Ailh.,,ft¡ii(Z)d>'F(Z)/dZ,lh-dZi¡¡j

represents a linear mapping 3>\ <bp -» í>¿, which will be called a linear differential

mapping of order v. In case that the coefficients in (1.9) are actually holomorphic

on §, the restriction of 2> defines a linear mapping í^:0p-> 0^. When saying

that 3> is of order v it will be supposed that not all the coefficients of order v in

(1.9) vanish.

A general holomorphic mapping 2:0p -» 0^ of the form (1.9), with no condition

imposed on the coefficients except that they be holomorphic on §, is a homomor-

phism when 0p and 0^ are considered merely as linear spaces. The question then

arises, when such a mapping is, in addition, a homomorphism between these two

spaces when they are considered as ©-spaces; mappings of the form (1.9) with

these additional properties will be called holomorphic differential ©-nomo-

morphisms, of order v. The condition that the mapping (1.9) be a ©-homomor-

phism is, of course, simply that

(1.10) ®(F\pM) = (®F)\ßM

for all FeC>p and all Me©. The present paper is devoted to the problem of

determining more explicitly all the holomorphic differential ©-homomorphisms.

These are mappings which arise in some investigations of automorphic functions

on the space §, as indicated briefly in [5] ; indeed, the purpose of this classification

is for such applications. In approaching this problem it is convenient first to
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determine the larger class of holomorphic differential © „-homomorphisms, and

then to decide which are also ©-homomorphisms. It should be pointed out, if one

is interested inC" rather than just in holomorphic functions, that there are many

differential ©-homomorphisms ^:i>p->$^ which are not holomorphic, and,

hence, which do not correspond to holomorphic G-homomorphisms S>: 0p-> 0P;

these will not appear in the present classification, therefore. Examples of such

mappings have been given in [5; 6].

2. Holomorphic differential G>„ homomorphisms.

(3) For the purpose of this classification it is convenient to introduce a sugges-

tive and, eventually, simpler notation for the differential operators (1.9). For any

integer p = 0,1,2,— consider the finite dimensional complex vector space of

tensors ^j,.^, in the sense of Weyl [12]; in another terminology, this space is

the tensor product of the complex vector space C" with itself 2/t times. Let Vp

be the subspace consisting of those tensors with the following symmetries :

(2-1) Zhh.-i-h-u = ttiji-jj.¡j'        ai,ya;

(*■•*■) ChU-'xU—ißJß—i.J.,   ~~   *liJi...tßjß—lJx—iKU> any a'l'-

To any such tensor Ce Vp and to any matrix C = (cy)eGL(n,C) associate the

tensor op(C)£, which has coefficients

(2.3) (aß(C)c)ilji...illj   — 2w citkicjiti'"ci.,kucj„l„Çkili.. .;kj„-
»i...fc.,:Ji...I„

It is clear that op(C)^ e Vß, and that the mapping £ -> <rp(C)^ is a linear trans-

formation ap(C) on the vector space Vp; indeed, the mapping C-><7p(C) is a

holomorphic linear representation of GL(n,C), with the representation space Vp.

It should be remarked here that the representation op is generally not irreducible; a

detailed discussion of the decomposition of this representation in a special case

will appear in the following section (Lemma 5).

Now consider an arbitrary function PeOp, which is thus a C°° mapping

F:§) -* Vp; upon choosing a basis for the vector space Vp, the function F can be

described by its components T(Z) = {/„(Z)}. For each fixed point Z e§ the set of

partial derivatives {df^Z)/ dztlJl-~ dz¡ ¡ } can be envisaged as forming a tensor

dßF(Z) eVp®Vp, since the symmetry conditions (2.1) and (2.2) are clear; the tensor

dpF(Z), that is to say, is defined to have the components

(2.4) (W))^,.,.., l = fftft(Z)/dztth-dzi j.

The mapping Z -* dpF(Z) is then aC° mapping dpF:^^ VP®VP; and if F e &p,

the mapping dßF is by the same light a holomorphic mapping. Suppose further

that for each fixed Ze§> there is given a linear mapping sip(Z)'-Vp® Vp-* Vp>

such that the mapping Z -» siß(Z)ls actually a holomorphic mapping from § to
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the space of maps Vp®Vll-+ Vß. Then there is a linear mapping S:0p->0^

defined by

(2.5) 9F = i ^(Z)ÔPF(Z).

If a basis is selected for the space Vß as well, the linear transformation ¿tfß(Z) is

represented by a matrix with coefficients Aß3llJu„t. (Z); and the linear operator

(2.5) then takes the form (1.9). Thus the mapping (2.5) is a holomorphic linear

differential mapping of order v. Conversely, it is clear that the coefficients in (1.9)

can, without loss of generality, be taken to satisfy the symmetry conditions (2.1)

and (2.2); so every holomorphic linear differential mapping can be put into the

form (2.5).

(4) The differential operator (2.5) is now a holomorphic © œ-homomorphism

if and only if its coefficients s/u(Z) are holomorphic, and it satisfies (1.10) for all

F e 0p and all M e © w. However, since every M e © œ is the product of a trans-

lation (1.5) and a rotation (1.6), it suffices to impose condition (1.10) in these

two cases separately.

Lemma 2. A holomorphic linear differential mapping (2.5) satisfies (1.10)

for all Fe0p and all translations MeX if and only if the coefficients are

constants.

Proof. Consider a translation M of the form (1.5), and put W= M(Z) =Z + S.

It is clear from (1.5) and (1.7) that p(M,Z) = / and that ß(M,Z) = /; and it is

likewise clear that dll((F\pM)(Z)) = (dpF)(W). Thus condition (1.10) takes the

form

(2.6) Z ^p(Z)ÔpF(W) =  i ^fl(W)dpF(W).
H = 0 /j = 0

Since (2.6) is required to hold for all F e 0p, it follows that

^(Z) = ^p(W) = s/p(Z + S)

for all real symmetric matrices S; but since the coefficients ¿/p(Z) are also required

to be holomorphic, it follows that they must indeed be constants, as desired.

Remark. It is at just this point that the doors are opened to admit a much

larger class of operators if the coefficients are not required to be holomorphic ;

see [6] in this connection.

Lemma 3. A linear differential operator of the form (2.5) satisfies (1.10)

for all Fe0p and all rotations MeW if and only if (as linear mappings on

vp®v¿
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(2.7) ß(C) •*/„ = */„• [p(C) ® ff„(0]

for all CeGL(n,C) and for p = 1,2, -,v.

Proof. Consider a rotation Me% of the form (1.6) for an arbitrary

CeGL(n,R); and put W= M(Z) = 'CZC. It is clear from (1.6) and (1.7) that

p(M,Z) = p(C~1) = p(Cy1 and that p(M,Z) = p(C_1) = /S(C)_1; thus, for

instance, (F\pM)(Z) = p(C)F(W). Now note that, in terms of the components

which serve as complex coordinates on the space §, the transformation M can be

written :

w¡j =   Z zklckicu = Z   11 - -z-ôk    zkl(ckic,j + CkJCH),
k,l k¿l    \ z       /

where ôk is the familiar Kronecker symbol ; therefore,

■jj1- =    Í 1 - -ytf J (ckicU + Wal

a constant independent of Z e §. Therefore,

3„(F|pM)(Z)  = {p(C)a"F(IF)/ôztlIl-azMJ

- fa ste--^*™*"---*^
=  (p(C)   Zc4lilC/uV"CMAi>ia''F(IF)/awiuV--övvW)i)

= WC)®«t/C)]-^F(^).

Now condition (1.10) takes the form

(2.8) Z ¿/¿Z) ■ [p(0 ® ff„(C)]• dpF(W) = ^(C) Z j/m(HO • duF(W);
f, = 0 n = Q

but since the condition (2.8) is required to hold for all F e 0p, it follows that

j/„(Z) • lp(C) ® (7,/C)] = p(C) • ¿/¿W)

for each u individually. This must now hold for all CeGL(n,R); however, since

both sides are holomorphic functions of the matrix C, the same result actually

holds for all CeGL(n,C), thus completing the proof.

It is a familiar fact, as discussed in [12] for instance, that the tensor product of

two representations of the general linear group can be decomposed into a direct

sum of irreducible components; the notation ß cz p® a will be used to indicate

that the irreducible components of the representation p, counting multiplicities

occur among the components of the decomposition of the representation p ® a.
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Theorem 1. If p and ß are irreducible holomorphic representations of

GL(n,C), then there exists a holomorphic differential (S^-homomorphism

¡8:0p-> 0P of order v if and only if

(2.9) pcp®<rv;

all coefficients sip(Z) °f ® are zero except the leading coefficient siM)> which

is a constant linear mapping such that

(2.10) p(C) -siv = siv- [p(C) ® C7V(C)]

for all CeGL(n,C).

Proof. It follows immediately from Lemmas 2 and 3 that there exists a ho-

lomorphic differential © „-homomorphism ¿$:&p->®ß if and only if there are

constant linear mappings sip, p = 0,1, • • •, v, such that sip \_p(C) ® ap(Cj] = p(C)-sip

for all CeGL(n,C). Schur's lemma shows that if sip¥=0 then ßcp®ap;

conversely, if ßa p ® ap, then there obviously exists a nonzero linear transform-

ation sip with the above property. The representations p and p, being irreducible

are homogeneous rational functions of some fixed degrees [1 ; 12] ; and since op

is a homogeneous rational function of degree 2p, it is clear that ß cz p ® ap for

at most one value of p. The desired theorem is an obvious consequence of these

observations.

Remark. If the representations p and ß axe not assumed to be irreducible,

then (2.9) must be replaced by the condition that

(2.11) pep® (Zo<7p),

and that some component of ß is contained in p® <rv; the second part of the

theorem must also be modified, in the obvious manner.

3. Some examples of ©„-homomorphisms.

(5) The preceding discussion is well illustrated by the special case n = 2,

which is also sufficiently simple that the results can be written out quite explicitly.

First, however, it is necessary to interject a preliminary discussion of the group

representations involved; the general properties of these representations are

discussed in [12; 1], while the notation which will be used here is that of [6].

For the group GL(2, C) the general irreducible holomorphic representation is of

the form AA{/}, where X is an arbitrary integer, and / is a non-negative integer.

Here A is the one-dimensional representation A(C) = det C, for any C e GL(2, C) ;

and {/} is the (/+ l)-dimensional representation which has the form (2.3), but

where the representation space consists of fully symmetric tensors of degree/. To

describe the character <j)p of the representation p = Ax{f] it suffices to consider

diagonal matrices of the form (q?) for eeC; and for such a matrix,
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(3.1) ^(0°)   ^V + e'"1+ •■•+£+!).

Two rather more detailed properties of the representations of GL(2, C) are also

needed for the present discussion: first is the analysis of the irreducible compo-

nents of the Kronecker product of two representations ; second is the analysis of

the irreducible components of the representation av.

Lemma 4.     For representations of the group GL(2,C), withf ^ g:

(3.2) AA{/} ® A»{g} = Ax+p{f + g} + AA+*+1{/ + g - 2} + - + Ax+p+*{f- g}.

Proof. This is rather a standard result, and can be found in [1] or in [8];

however, for completeness, and since it is so easy, another proof will be included

here. It is clearly enough to consider merely the representations p = {/} and

ff = {#}> where, say, f^g. Then for the characters it follows that, from (3.1)

= (sf+g+ - + 1) + (8/+*_1+ - + e) + ■■• + (ef + - + eg)

=    <£(/ + f>(o    l)     +¿A{/ + ,-2}    (0    l)    + - + *A»{/-*}   (0    l);

and this in turn establishes formula (3.2), as desired.

Lemma 5.    For the group GL(2,C),

(3.3) ax = {2v} + A2{2v - 4} + A4{2v - 8} + - .

Proof. The representation space Fv for the representation a, consists of those

tensors £ = {£iui...¡vj-v} with the symmetries (2.1) and (2.2), where 1 :£ i,j ^ 2.

For any non-negative integers a, b, c, with a + b + c = v, let £,(a, b, c) e FT be that

tensor with the following components: £,(a,b,c)ilh„.ivjv = 1 if a of the index

pairs (ijj have the values (1,1), b of the index pairs have the values (1,2) or (2,1),

and c of the index pairs have the values (2,2); and all other components are zero.

In view of the symmetry conditions on Fv it is clear that the tensors £(a, b, c) form

a basis for Fv; hence o"v is an integral rational representation of GL(2,C) of degree

2v and of dimension | (v + l)(v + 2). Now consider a matrix (0 y) e GL(2,C),

and note that

ffv(o 1) •«fl>i>>c) = £2fl+ft-S(«Ac);

hence the character cpv of the representation av is determined by the fact that
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Z       s2a+b= E   zV'+t.
a + b + c = v;a,b,c^O b = 0   a = 0

The latter sum can be rewritten by separating the summation over b into odd

and even terms and then regrouping, as follows :

(„   f\\ [v'2l /v-2m v-2m-l ^

n?      =    I Z   e2tt+2m   +    Z     e2a+2m+1\
U   1/ m=0        I   a=0 a=0 J

[v/2] /2V-4m       ^

=    I e2"      E   fiM
m=0 IA = 0 /

=   ̂ 12*1   (q   J    + </>A2(2v-4,     (q    J    +•■•;

since the representations whose characters appear in the last line above all have

degree 2v, it follows that the representation <xv decomposes in the same way,

which completes the proof of (3.3).

Now consider a representation p = A*{/} of GL(2,C). According to Theorem 1,

there will exist a holomorphic differential © „-homomorphism ¿^:0p->0p of

degree v if and only if the irreducible representation ß is one of the components of

the tensor product AA{/} ®(TV; and, by Lemmas 4 and 5, it follows that the

representation ß must be of the form A*{/+2v}, AA+1{/+2v - 2},

AA+2{/ + 2v — 4}, ■••. The coefficients of the differential operator 3> must be such

as to satisfy (2.10); and hence, the coefficients can be given in the form of gener-

alized Kronecker tensors, of the appropriate symmetry types, as in [6].

(6) The differential operators of lower orders can be written out completely

without much difficulty; the cases of degrees 1 and 2 will be treated here. The

notation and terminology introduced in [6] will be used throughout. In particular,

recall that a function Fe$p, where p = AA{/}, is given by its components

Fit..,,,; and since the components are fully symmetric in their indices, and the

indices in turn take only the values 1 and 2, a component is described fully by

giving the number v of its indices which have the value 1. Thus set Fv = F1^12 .2,

where there are v indices which have the values 1 and/ — v which have the value 2.

Corollary 1.1. For the irreducible holomorphic representation p = Ax{f}

of GL(2, C), there are holomorphic differential G „-homomorphisms S:0p->0P

of order 1 of the following forms, and no others:

(3.4)  for ß = AA{/+2}, /^0, the operator 2)x given by

(BrF\   = v(v-i)ÔFv.2/dz11-v(v-f-2)ÔFv.1/Ôz12

+ (v-f-l)(v-f-2)dFJdz22,

where 0 ^ v ̂ / + 2, and Fv = 0 for v < 0;

Mo Î
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(3.5) for p = A*+1 {/}, f¡£l, the operator 3¡2 given by

(®2F)v=-2VdFv_y/dzyy+(2v-f)dFJdzy2-2(v-f)dFv+y/dz22,

where 0 ^ v ̂ /;

(3.6) for p = AA+2{/- 2}, fit!, the operator 2)3 given by

(2>3F)v=dFJdZyy-dFv+y/dZy2+dFv + 2/dz22,

where 0 ^ v ^/— 2.

Proof. It follows from Theorem 1 that p c p® Oy. However, by Lemma 5,

note that a y = {2} ; hence, by Lemma 4,

p®Oy = A\f+2} + A*+1{f} + Ax+2{f-2},

where the second and third terms appear only for / ^ 1 and / 2: 2 respectively.

The coefficients of the equations are, as noted above, symmetrized Kronecker

symbols of the form of equation (1.20) in [6]; the particular symbols needed

here were, moreover, listed explicitly in equations (2.4), (2.5), (2.6) of [6], and

the lemma follows immediately from these observations.

Corollary 1.2. For the irreducible holomorphic representation p = Ak{f}

o/GL(2,C), there are holomorphic differential ©x-homomorphisms ^:0p->0^

of order 2 of the following forms, and no others:

(3.7) for p = AA{/ + 4}, / ^ 0, the operator S>4 given by

(2>4F)V = v(v - l)(v - 2)(v - 3)d2Fv_Jdz2yy

- 2v(v - l)(v - 2)(v -/- 4)d2Fv_3/dZyydZy2

+ v(v-l)(v-/-3)(v-/-4)[2^Fv_2/3Zll5z22

+ ^Fv_2/3z12]

- 2v(v -/- 2)(v -/- 3)(v -f-4)d*Fv_y/dzy2dz22

+ (v -/- l)(v -/- 2)(v -/- 3)(v -/- 4)d*FJdz222

where 0^ v^/ + 4;

(3.8) for p = Ax+1{f + 2},/^ 1, the operator 2is given by

(^5F)v = 2v(v-l)(v-2)a2Fv_3/ôz21

- v(v-l)(4v-3/-8)a2Fv_2/aZliaz12

+ v(v -/- 2)(2v -/- 2)[2Ô^Fv_1/aZll3z22 + d2F^y/ôz212]

- (v-/-2)(v-/- l)(4v-f)d*FJdzy2dz22

+ 2(v -/- 2)(v -/- l)(v -f)d2Fv+i/dz222
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where 0 _ v 2»/ + 2; 1

(3.9) for ß = AA+2{/}, any linear combination of the operators @6 (defined

forf _ 2) and ^7 (definedforf _ 0) given by:

(3>,F\ =   v(v - Î)d2Fv.2/dzli - v(2v -/- V&Fi-JdZndzu

+  [v(v-/) + -!/(/-1)  ¡2d2Fjdzudz22 + d2FJdz2l2-]

- (v-f)(2v-f+ÍWFv+1/dz12dz22

+ (v-/)(v-/+l)a^Fv+2/5z22,

and

(®7F)V = 4d2FJdzlldz22 - B2Fv/dz22,

where 0 _ v _/;

(3.10) for ß = AA+3{/ - 2}, / = 3, i/ie operator 3a given by

(08F)V =   2v32Fv_1/3z21 -(4v-/+2)<52Fv/3zudz12

+ (2v -/ + 2)[2d2Fv+1/dzn3z22 + d2F^Jdz212-\

- (4v - 3/+ 6)a2Fv+2/3z123z22 + 2(v -/ + 2)d2Fv+3/dz22,

where 0 _ v _/ — 2; and finally

(3.11) forß = AA+4{/-4}, / = 4, fne operator 29 given by

(%F\ =   d2F,/dz2i - 232Fv+1/dz11dz12 + 23*f,+2/3zn3z22

4- 32Fv+2/dz22 - 2d2Fv + 3/dz123z22 + d2Fv + 4/3z22,

where 0 ^ v ̂ /— 4.

Proof.   It follows from Theorem 1 that ß c p ® <x2, and from Lemma 5 that

cr2 = {4} + A2 ; hence, by Lemma 4,

p® o2 = AA{/ + 4} + Ax+i{f+ 2} + 2AA+2{/} + AA+3{/- 2} + A*+4{/-4}.

The factor 2 in the third term is to indicate that the representation A*+2{/}

appears twice in this decomposition, at least iff ^2; the second, fourth, and

fifth terms appear only for/_ l,/_ 3, and/_ 4, respectively. The coefficients

are the generalized Kronecker symbols, as in the preceding corollary; and since

the computations are straightforward and hence uninteresting, further details will

be suppressed. It should be noted that for all the second order operators except ^7

the coefficients are fully symmetric in the indices corresponding to the differen-

tiations, reflecting the fact that the component {4} c o2 is the term to which the
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operator is associated; the exceptional role played by 3i1 arises from the fact that

that operator is associated to the term A2 c <r2. It should also be noted that

these explicit formulas for the second order operators can be derived by iterating

the first order operators of Corollary 1.1; thus, for instance, 9¡y2¡2 = 3>4.

4. Holomorphic differential ©-homomorphisms.

(7) Suppose that p and ß axe irreducible holomorphic representations of

GL(n,C), and that 2:0p-> 0P is a holomorphic differential © ̂ -homomorphism

of degree v > 0. The operator 3) will be written out explicitly as in (1.9). By

Theorem 1, all the coefficients are actually constants, and indeed all are zero

except those of order v; the coefficients of order v will always be supposed to

satisfy the symmetry conditions (2.1) and (2.2). If / = (iu••-, iv), J = (Ju"-,jv),

and the abbreviation Aiijl_ivjv = Au is used, then (1.9) takes the form

(4.1) (¿2>F)(Z) = Z AudvF(Z)/dzuu - dzlvJv.

The problem to which the present section is devoted is that of characterizing

those ©^-homomorphisms, of the above form, which satisfy the more stringent

condition of being ©-homomorphisms.

Theorem 2. The holomorphic differential © x-homomorphism S:0p->0p

is a (5-homomorphism if and only if

Zß(Z)AJJdvF(Z)/dzhjr-dzivJv

(4.2) =   Z    I,AKLzkl¡lztíJíI^--zkvlvzlvjv^d—p(Z)F(Z)
iSJ     k.l 0Ziiji 0ZUU

for all F(Z)e0p and all Ze®.

Proof. In view of Lemma 1, and the relevant definitions, it is clear that 9) is a

©-homomorphism if and only if

(4.3) ®(F\PJ)=(@F)\P3

for all Fe0p, where Je© is the involution introduced in §1. Putting

W= J(Z)= -Z"1, it follows from (1.7) that p(J,Z) = p(W)~i and that

p(J,Z) = ß(W)~1; thus, for instance, (F|pJ)(Z) =p(W)F(W). Note that, further-

more,

dWij/dzkl = Z wriwsjdzj dzkl =   Í1 - —¿M (wkiwl} + wkJwH).

Now on the one hand

((^F)|PJ)(Z) = ß(w) Z AjjÔvF(W)/ôwhjl-ôwivjv;
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and on the other hand

(®(F\pJ))(Z) =   Z AKL8\p(W)F(W))/ôzklh-dzKK

=   Z    Z AKLAÍL     *      .• %*- ^p(W)F(W)
tsi   igj       ozklU   dwilh      dzKl    dww„

= Z   Z^w^^^^.-.w^^^^píw^

Thus, after the obvious change of notation, (4.3) is equivalent to (4.2), and the

theorem is thereby proved.

If the differentiations indicated in the second term of formula (4.2) are carried

out, and the coefficients of the various orders of derivatives of F(Z) are collected

and compared, it becomes evident that (4.2) reduces to v +1 independent equations,

one of which is a trivial identity ; hence (4.2) really amounts to v separate conditions.

The details of this procedure in the general case are, indeed, onerous. At present

the primary interest is in differential operators of first and second degrees;

consequently, explicit calculations will be given only for those two cases. To

simplify the notation, put d¡j = d/ dz,j. Then note that

zdtWj+ *&) + * Jfiitf+tft)

(4.4)

= (2-ôj)   Z zttrzbJirscd,j
r,s

where

(4.5) 2U\j = z,7%Scj tf + zr-j'ofSÎ + zT^ö'j + z^è'ô*,

and hence, Ç„cay is symmetric in i and j.

Corollary 2.1. A holomorphic differential %^-homomorphism 2 of order 1

is a dè-homomorphism if and only if:

(4.6) Z¿i,-p(Z)-%p(Z) = 0.

Proof.   In the case of degree v = 1, equation (4.2) of Theorem 2 has the form

(4.7) Z p(Z)AiJôijF(Z) =    Z Aklzk,zlJÔiJp(Z)F(Z).
iúj iûj&J

By using formula (2.10) of Theorem 1, the right-hand side R of equation (4.7) can

be written as

Vij(zaczbd) - (I-*)
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r = Z p(z)¿ÍJ.P(z)-1aiJ.p(z)F(z)

= ß(z) Z¿¡J[p(z)-1(o¡J.p(z))F(z) + ai,F(z)].

Substituting this back into (4.7), it follows that the condition of Theorem 2 takes

the form

p(Z) Z ¿¡J.p(Z)-1(aijp(Z))F(Z) = 0.

Since ß(Z) is nonsingular and F(Z) is arbitrary, (4.6) follows, and the proof is

completed.

Corollary 2.2. A holomorphic differential © „-homomorphism £¿ of

order 2 is a (S-homomorphism if and only if the following two conditions are

both satisfied:

(4.8)

+        I        Alihi2]2p(Z)-iôhhdi2hP(Z) = 0;

and

(4.9) ^Ahi2hj2z:^+   Z   AiJli2j2p(Z)-%ljlp(Z) = 0,

all i2,j2.

Proof. In the case v = 2, equation (4.2) of Theorem 2 has the form

Z ß(Z)A1Jdiüldi2J2F(Z)

(4.10)
=     S    AKLzkíitzhJld¡¡j¡zk2¡2zl2j2e¡2j2p(Z)F(Z).

iâj;k,i

Recalling (4.4), the right-hand side R of (4.10) can be rewritten:

R =        Z    (2 - SfoArfufi^z^JL. h\h di2j2p(Z)F(Z)
iÉJ; k,l,r,s

+     2 ^KLzkíilZiíjlzk2i1zhhoiijld¡2j2p(Z)F(Z)
iâj:k,l

= Rt + R2.

Applying condition (2.10) of Theorem 1, and rewriting in the obvious manner,

secure that
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Ry =    Z     Z  P(Z)AilUrJirs h\jíp(ZT1d¡2hp(Z)F(Z);
»2SJ2   iljirs

but by (4.5) this reduces to

Ry = 2        Z     p(Z)¿;i¡2J.u.2zr/1p(Z)-1a¡2J.2p(Z)F(Z).
liji-.héJi

By another application of (2.10), observe that

R2 =   Z p(Z)AhhÍ2hp(ZY1dhhdÍ2J2p(Z)F(Z).
i-èj

Substituting these expressions for Ry and R2 back into R, performing the indicated

differentiations, and collecting terms together, secure that

R = p(Z)¡2     Z     A^j^zrj^zy^j^Z))
\   iiji;iiâJ2

+    2 Ahhi2]2p(Z)-\diüldi2J2p(Z))\F(Z)

+ 2P(Z)    Z   \lAhi2hj2zrji+ £   Ailhi2hp(Z)-1(di^P(Z))\dhhF(Z)
¡2éJ2    Ulj'l ilâj'l I

+ p(Z)lAilhi2J2diihdi2j2F(Z).
1SJ

Upon substituting the above expression for R back into (4.10), and recalling that

p(Z) is nonsingular and that £(Z) is an arbitrary function, conditions (4.6) follow

immediately, and the proof is thereby completed.

For some purposes it is useful to rewrite the criterion of Corollary 2.2 in a form

which involves only the first derivatives of the representation function p(Z), and,

indeed, in which these derivatives appear as logarithmic derivations.

Corollary 2.3. A holomorphic differential ©^-homomorphism St of order

2 is a (5-homomorphism if and only if condition (4.9) and the following are

both satisfied:

-y      Z*   (Airffaji + Atii2jij2)Z¡ij1Z,1j2
¿      ¡IJIÍ2J2

(4.11)

+      S     ^lWu-2zrj11(p(Z)"15f2J-2p(Z)) = 0.

Proof. It is of course sufficient to show that (4.8) and (4.9) are together equivalent

to (4.9) and (4.11). Upon differentiating (4.9) with respect to z,2J-2, and summing

over the indices i2 zij2, it follows that
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S     Aiihi2]2p(zyldhhdi2j2p(z)
ÍiájfMSJ2

=      I      Aiijli2J2(p(Zriôilhp(Z))(p(Z)-1di2j2p(Z))
ii¿ji;h¿j2

4-  —   Y1   (A A- A V-1 7_1
9 *■     'tjihjl    ' ililjljl'    iljl    ¡2J2 •

Again applying (4.9), the above expression becomes

=  -Z     Z ^¡li2J-1J-2zi;>(Z)"1ai2;2p(Z)

"r    ~t"    ^     V*¡U1'2J2 "•" Alli2jij2)ZiijiZiiJ2>
^  ¡U1>2J2

and since substituting this into (4.8) yields (4.11), the proof is thereby completed.

Remark. If the coefficients Ahjii2J2 axe symmetric in the indices ii,jui2,j2,

then (4.11) in turn follows from (4.9), so that the latter condition suffices by itself.

The calculations for differential operators of any degree v follow the same

general pattern but with increasing technical complications. To conclude this

section, the results for differential operators of degree 3 will be listed, with

details of the proof suppressed.

Corollary 2.4. A holomorphic differential ©„-homomorphism 2 of order

3 is a (5-homomorphism if and only if the following three conditions are

all satisfied:

6   Z     Z A^j^zjXzrJxzy'd^z)
¡Ul¡2J2    ¡3SÍ3

(4.12) + 6  Z        Z        AhÍ2h¡2hhz7¡iP(ZTxd¡2hdÍ3J1p(Z)
'lji      '2ÚJ2;héJ3

+    £ Kn-nhhiA2) ~\jA2J2dhjAZ) = 0;
til

2 Z AlÍ2Í}jU2J3ZÍljlZÍ2J2
ÍlJlÍ2}2

(4.13) + 2  Z     KAwiWsJa + ̂ w^wXAPÍZÍ'^W^Z)
hji   hSh

+  Z Atlhhj2,sj1piZ)~ldlíjldkJlp(Z) = °     f°r al1 Wi ;

(4.14) 2  Z Atlll¡lhiihzTX +   Z AiJ^j^p&T'd^pV) = 0 for all i2j2i3j3.
itJí ¡1ÉJÍ
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(8) By the use of a more explicit form for the representation p, the preceding

corollaries can be rewritten in a simpler manner, so as to express the criterion for

a mapping to be a ©-homomorphism directly in terms of the coefficients of the

differential operator. Suppose that the representation p is given by the symmetry

scheme p = Ax{fy,---,fr}, and that/=/! + ••■ +/r; the representation space Vp

hence consists of tensors Çjt.„Jf of total degree / which have the appropriate

symmetries in the indices jy,---,jf, as in [12] or [1]. Suppose further that ¿„ is a

set of linear mappings from Fp to some other vector space, for 1 ^ r, s ^ n.

If £ = {£,,...;,} e Vp, then in terms of these components the mappings ATS

can be written: Ars- £ = Zj¿J1...;/rs^j1...J/, where each Aji jfrs is a vector in the

image of Ars.

Lemma 6.   // ¿rs = Asr, then for any Ç e Vp,

Z^sp(Z)-15rsp(Z)) ■€
(.

(4.15)

—   Li    L     I XAki  kfrs +    2w Akuskke   I zrs ft,...*,.
K       r,s       \ e=l 1

Proof. Recall that örsdetZ=(2-5¡)z„1det Z. Then, by a straightforward

calculation,

DArAZ)-%AZ)-t
ris

=  Z   Z  Aíí„AfrsdetZ-"zr1Ji-zr1f-drs(detZ,-Zjlkí-zjfkf)-^ki^f
UK ris

=   Z    Z A,,...</ra det Z -*zljl1 • • • zrj -\x(2- ö^z~» det Z'zJiki ■ ■ ■ zJfk
UK   r¿s [

+   JÉ   y(2 - ¿D(5;.5Ï. + ôlô'Jm) det Z^,*, ...fM.-.zM/) ■ &,...*,,

(where fyt means that that term is to be omitted),

=i  Z    Z \Akl_kfrsXz~1  + Z    Z Akl_u_k nz,~j\ -^-(öjtöka + ôUje)Kki...k,
K r,s  { e=l   ieje ¿ I

which reduces immediately to the right-hand side of (4.15), and thus concludes

the proof.

Now the coefficients Au in the differential operator Si of (4.1) can be considered

as linear maps from Fp to Vß, and can therefore be written as above; an application

of Lemma 6 then leads to the following
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Corollary 2.5. A holomorphic differential © x-homomorphism 2 of order 1

is a (5-homomorphism if and only if

f

(4.16) Mt,...*,y +  2 4t,..j...*/tt.
e=l

is skew-symmetric in (i,j).

Proof. Upon substituting (4.15) into (4.6), the criterion of Corollary 2.1

reduces to the assertion that the expression (4.16), when multiplied by zi~1and

summed over all values 1 Si i, j rg n, yields zero ; since this must hold for an

arbitrary symmetric matrix zj}1, it follows that (4.16) must be skew-symmetric,

as asserted.

Corollary 2.6. A holomorphic differential © x-homomorphism S> of order 2

is a (5-homomorphism if and only if the following two conditions are both

satisfied:

(4.17) J^kl...kfili2jlJ2 + ^kl...kfiijihJ2+    ¿*    ̂ kl...jl...kfiikeÍ2J2î

is skew-symmetric in (ii,Ji)for each fixed (i2,j2); and

(4.18)

~y^Akl...kfiijii2J2   '   ™ki...kfiiiïjiJ2'   '     ■™ki...kfi,i2jiJ2

f

+   Z Aki_j2_kfilhJike
e=l

is sufficiently skew-symmetric to annihilate the representation a2.

Remark. For each fixed set of indices ky-kf the expression (4.18) can be

considered as a linear transformation from the representation space V2 of the

representation o2 to Vp, where V2 consists of the tensors í¡ui¡2j2 with the symmetry

properties (2.1) and (2.2); the second condition above is that this transformation

be the zero mapping. As noted earlier, if Aki kfiijii2J2 is fully symmetric in i1jii2j2

then the first condition of this corollary automatically implies the second condition.

Proof. Once again a direct application of Lemma 6 shows that (4.9) is equivalent

to the vanishing of the product of (4.17) with z¡~^, summed over all 1 S *i>

jiún; and that (4.11) is equivalent to the vanishing of the product of (4.18)

with zj^z'^, summed over all 1 ^ i1J1,i2J2 _ n. Thus the conclusion of

Corollary 2.6 follows directly from that of Corollary 2.3 itself.

5. Some examples of ©-homomorphisms.

(9) Returning once again to the case n = 2, the results obtained in the pre-

ceding section will be applied to determine which of the © ^-homomorphisms
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of §3 are ©-homomorphisms as well. For first order differential operators the

conclusions follow quite directly from Corollary 2.5; since, however, these

operators were discussed in [6], only the results will be listed here for reference.

Thus, the operators 2y,3¡2,3¡3 of Corollary 1.1 are ©-homomorphisms if and

only if the following conditions are fulfilled, respectively:

(5.1)

for 2y.X =  -/;

for 22:X = 1 -y/;

for 23:X = 1.

For the remainder of this section, then, only the second degree operators will be

considered ; the conclusions are as follows :

Theorem 3. For the symplectic group © on the Siegel generalized upper

half-plane of rank 2, and the irreducible holomorphic representations p = Ax{f},

p = A'{ f] o/GL(2,C), there are holomorphic differential ^-homomorphisms

9: &p -* @ß of second order of the following forms, and no others:

(5.2) forf^O, X=-(f+l), andp = Ax{f + 4}, the operator 2\ of'(3.7);

(5.3) forf ^ 4, X = 0, and p = A4 {/ - 4}, the operator 99 o/(3.11).

Proof. It is of course only necessary to consider those differential operators

which are already © «,-homomorphisms, as determined in Corollary 1.2. Using

the explicit forms for the representations p and p, as in §4, the differential operators

can all be written as follows :

=      2 Z Aii...if + 4;ji...jf + ̂ 2Fji...jf/SZjf+tJf + 2dzjf^j/+t-
Ji—Jf jf+ liJf*i:J/*3iJ/-n

The additional requirement that the operator 3 be a ©-homomorphism is then

as in Corollary 2.6; and it is merely necessary to determine which of the operators

of Corollary 1.2 satisfy conditions (4.17) and (4.18).

To begin, consider the representations p = Ax{f + 4}, p = Ax+1{f+ 2),

p = A*+3{/-2}, and p = Ax+4{f- 4}. In each of these cases there is a unique

holomorphic ©„-homomorphism @:Qp->@fi, and the coefficients in (5.4) are,

except for scalar multiples and change of basis, the generalized Kronecker

symbols

(5-5) A¡. j = ô[l\jy ■■■jf\jf+1jf+2jf+3jf+4~] = ôj

introduced in [6]; the indices / in (5.5) are to be arranged in the appropriate
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symmetry scheme, depending on the particular representation p. Since these are

all fully symmetric in the last four indices jf+y, ■ ■ ■, jf+4, only condition (4.17) need

be considered. That condition can be expressed more conveniently by introducing

some additional permutations on the indices jy, •••,j'/+4; thus, for 1 ^ e :£/+ 4,

let Xe be the permutation which interchanges the indices je and jf+1, and to

simplify writing, put Xf+2 = a, Xf+3 = ß, Xf+4 = y. In addition to the Kronecker

symbol 8i of (5.5), let

(5.6) Í¿=Z<5¿,       and       «J-£, + &.
e=l

Condition (4.17) then reduces to the assertion that (1 + X)ô/+ £* be skew-

symmetric injf+l,jf+2; or what is the same thing, that

(5.7) 2(1 + A)áj+¿Í = 0.

To investigate this, introduce the further tensors +£j = Cj + C/j + Cjj + C'j',

^Í-CÍ-C1/; 2CJ=(/-C/j; and 3CÍ = C]-C/j- Recall that the tensor Cj
has the symmetries of {/} ® {1} ® {3} in the indices J; hence the tensor + £/has

the symmetry of {/} ® {4}, while the tensors kÇj (k — 1,2,3) have the symme-

tries of {/}®{3,1}, after suitable permutations. It then follows immediately from

Schur's lemma, as in the argument in Theorem 1 of [6], that these tensors are in

turn scalar multiples of the generalized Kronecker tensors of the appropriate

symmetries. Thus, for instance

(5.8) +Clj = k-ô'j and x C'j = K ■ olXlJ = k, ■ &\I | A -jf \ tf***»+'l

On the other hand, it follows immediately from the preceding definitions that

^/=+CJ-C/J-Cy/y = HC/-i1CÍ + i2CIj + l3CS; consequently, the tensor

£, j can be decomposed into the primitive Kronecker symbols

|j =  Cô'j + CyS^j + c2ol2j + c3ol3j

(5.9)      = coii\j\jf+y-jf+¿ + cyoii\j\jj;:r»'+< ]

+e2ôii\j\l'f++»'+>J'+<} + c3a[j|j|fc:*+*«;i,

for some constants c, ct, c2, c3 depending on X and on {/}. Thus it follows directly

that condition (5.7) reduces to the assertion that 2(l + X) + c = Q, c1 = c2 = c3 = 0;

and it merely remains to compute the numerical values of the coefficients

c,Ci,c2,c3. This can, of course, be done by substituting particular sets of indices

1,3 into (5.9), computing the values of the tensors by recalling the definition of

the generalized  Kronecker tensors (equation (1.20) in  [6]), and solving the
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resulting set of linear equations in c,c1,c2,c3. Since this is a straightforward

calculation, the details will be omitted, except for the following observation.

For the representations ß = Ax{f+ 4} and p = AA+4{/ —4} it is evident, from

Lemma 4, that ß <£ p ® {3,1} = p ® A{2} ; hence in these cases §j = 0, so that

cx = c2 = c3 = 0 without further ado. The results of the calculation can be sum-

marized as follows :

if p = AA{/ + 4}       then    c = 2/, cx   = c2  = c3  = 0;

if ß = A*+1{/+2}   then    c = -4(3/-4), cx   = -if,

C3   — ~7t3 ;

(5.10)

if /) = AA+3{/-2}   then    c = y(/-6),   Cl   = A(/-2),

3
c2  = c3  =  -—(f-2);

\f ß = AA+4{/-4}   then   c =   - 2,    cx   = c2  = c3  = 0.

Thus the first and last lines of (5.10) give the operators (5.2) and (5.3) of Theorem 3 ;

and, since/=1 for ß = AA+1{/+ 2} and/=3 for ^ = AA+3{/-2}, the re-

maining two lines of (5.10) lead to no ©-homomorphisms.

Next consider the representation ß = Ax+2{f}. There are two linearly inde-

pendent © „-homomorphisms 3: 0p ->■ 0p, corresponding to the two components

{4} and {2,2} = A2 of o2 ; thus the coefficients of the general © „-homomorphism

have the form

auj = «5[/;lÄ2lA-"//|//+i-"j/+4]

+ MßÄvlA-^li';^;,*].
for arbitrary complex constants a, b. The first condition that the mapping be a

©-homomorphism, condition (4.17) in Corollary 2.6, has the form:

/

2XAI.j + AI.ßj + AI.yJ+ Z (AI,XeJ + AI.!i<iXj) = 0,
e=l

where oc,/?,?,/^ are the permutations introduced above. It is evident that this

condition applies independently to the two components in (5.11). For the first

component, the argument used in the preceding paragraph of this proof applies,

and a straighforward calculation shows that necessarily a=0. For the second

component, the above condition reduces to the form
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o=(2A-i){á[/|j|//;3y/;4i]+5[/|j|*:^:n}+Cr;J+C/;aJ,

where

/

i{«5[/|/1-//+i-//li;^;+j + ¿[/|/i-//+1-//|^^+3]}-

Upon substituting some explicit values for the indices I,J, a straightforward

calculation shows that necessarily X = \ and / = 0, if b # 0. There are no ad-

missible representations in this case, since X is restricted to assuming only integer

values.

Remark. The suggestion implicit in the last case considered in the above proof,

that it may be possible to introduce nonintegral values of X and thereby to secure

an additional admissible differential operator, can be pursued as follows. Since

the space §> is simply-connected, then for any integer r and any fixed element

Te© there are two well-defined single-valued branches of the function

det (CZ + D)r+1/2. It is possible to verify, by a simple direct calculation using

the methods introduced above, that for suitable choices of these branches it is

true that

31 [det(CZ + D) ~1/2F(TZ)] = det(CZ + /))" 5/2(S7F)(TZ).

Hence for any discrete subgroup T c © there are branches of A(T,Z)1/2 and of

A(T,Z)5/2for which there is a T-homomorphism of the form

(5.12) S>7:0A1/2-> 0A5/2.

(10) There are three of the second order differential ©-homomorphisms of

Theorem 3 which are associated in some manner with one-dimensional represen-

tations, that is to say, with ordinary scalar functions; a slightly more detailed

discussion of these will perhaps illustrate some of the applications possible in the

general case.

The first of these is the operator 3¡A, as in (5.2), for the value/ = 0; this furnishes

a ©-homomorphism

(5.13) #4:0a-i->©a-,4,-

Both the kernel and the image of 3)^ are subspaces which are preserved under the

appropriate actions by the full symplectic group or any of its subgroups ; and the

restrictions to these subspaces lead to additional representations of these groups.

The image, which is a space of vector-valued functions, can, by considering the

appropriate integrability conditions, be characterized as the set of solutions of a

further family of differential operators; but these operators are not ©-homo-

morphisms as considered here, so this topic will not be pursued any further just

at present. The kernel is the subspace of scalar functions satisfying 34(F) = 0;
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referring to (3.7), the functions in the kernel are just the functions which satisfy

the following systems of partial differential equations:

0 =  d2f/dz\y   =   d2f/8ZyyBZy2  =  82f/dZl2dZ22

= s2f/dz¡2 = 2d2f/dzyydz22 + e2f/dzy2.

A trivial calculation shows that such a function must have the form:

(5.14) /(z) = cdetZ + cuzn + cl2z12 +c22z22 +c0,

for arbitrary complex constants c. It is, of course, obvious that the set of functions

of the form (5.14) is indeed preserved under the appropriate action of the symplec-

tic group ©. Letting Jf cz 0A-1 be the kernel of 34, the set of functions of the

form (5.14), and E cz 0A-i|4) be the image of 34, there corresponds to the exact

sequence of ©-spaces 0 -»• Jf -* 0A-, -» s< 5 -> 0 an exact cohomology sequence

generalizing that introduced by Eichler (see [5]), beginning:

o^//°(r,x)^Ho(r,0A-1)^//o(r,s)-+/ï1(r,jf)^-",

where T is any subgroup of the symplectic group ©. In particular, for the symplec-

tic modular group T, as defined by Siegel in [10; 11], the first two terms above are

zero, since there are no automorphic forms associated to the factor of automorphy

A_1;so that the cohomology sequence begins 0-> //°(r,3)->//1(r, Jf)-* •••.

Here Jf is actually a 5-dimensional complex vector space, as is evident from

(5.14); hence, in principle, the group H1^,^) can be calculated purely algebrai-

cally, then giving a bound on the dimension of the space of automorphic forms

//°(r,s).
Next there is the operator @9, as in (5.3), for/ = 4; this furnishes a ©-homo-

morphism

(5.15) ¿2>9:0(4)-+0A4.

The kernel of 39 is again an invariant subspace under the action of © ; this kernel

Jf, as is clear from (3.11), consists of those five-dimensional vector-valued func-

tions {/„(z)} satisfying the partial differential equation

0 = Ô2f0/8z2yy   - 2d2fy/dZyydZy2  + 28^/ ÔZy yÔZ22  +  d^/ÔZ^y

(5-16) - 2<32/3/<?z12<5z22 + d2f4/dz22.

The image of 29 is quite readily seen to be all of 0Ai. Thus in this case the

Eichler cohomology sequence begins

o^//o(r,jo^í/o(r,0(4l)^//°(r,0A4)^//1(r,x)^-,

for any subgroup F <zz ©. The space Jf is too complicated to permit any

simple calculation of its cohomology groups.
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Finally there is the operator 31 as in (5.12), providing a T-homomorphism

(5.17) ^7:0A1/2^0A5/2.

All of the functions involved here are the ordinary scalar-valued functions, and

this case furnishes the closest parallel to the simpler general situation in the case

of one complex variable. The mapping 3-, is seen fairly clearly to be onto the

space indicated in (5.17); and the kernel JT consists of those scalar functions

f(z) which satisfy the partial differential equation

(5.18) Ad2f/dzxldz22 - d2f/dz22 = 0,

as is evident from (3.9). It should be noted that the differential operator (5.18) is

the wave equation ; and that the boundary of the Siegel upper half-plane consists

of characteristics of this equation ; this is a situation which had arisen earlier as

well, in [6]. In this case the associated Eichler cohomology sequence begins:

0->//°(T,¿O-> H°(T,0AI/2) -//°(r,©¿^-//'(T,Jf), for any discrete

subgroup T c ©. For the symplectic modular group, in particular, there are no

automorphic forms associated to the factor of automorphy A1/2, so that the begin-

ning of this cohomology sequence 0 -> H°(T ,@A5/2) -> Z/X(r,¿f) -> ••• is" quite

parallel to the one-dimensional case.
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