
HOMOTOPY ASSOCIATIVITY OF //-SPACES. I

BY

JAMES DILLON STASHEFF(i)

1. Introduction. The concept of an //-space arose as a generalization of that

of a topological group. The essential feature which is retained is a continuous

multiplication with a unit. There is a significant class of spaces which are //-spaces

but not topological groups. Some of the techniques which apply to topological

groups can be applied to //-spaces, but not all. From the point of view of homo-

topy theory, it is not the existence of a continuous inverse which is the important

distinguishing feature [6; 15], but rather the associativity of the multiplication.

For example, if we regard S°, S1, S3 and S7 as the real, complex, quater-

nionic and Cayley numbers of unit norm, these spaces possess continuous multi-

plications, which in the first three cases are associative. Now it is possible to

define real, complex and quaternionic projective spaces of arbitrarily large

dimension, but this is not possible for the Cayley numbers. From the point of

view of homotopy theory, we can investigate the "mechanism" which relates

the associativity of the multiplication to the possible existence of projective spaces.

First we consider the construction of the classical projective space as generalized

by Milnor [8] for an arbitrary topological group (and further generalized by

Dold and Lashof [3] for an arbitrary associative //-space). Given a topological

group G, Milnor constructs fibre bundles p;:£;->B; with fibre G, the total

space £¡ being the t'-fold join of G with itself. If G = Sd_1, d = 1,2,4, this gives

the standard fibring of S"1-1 onto the corresponding projective space of dimen-

sion i — 1. In the case of the Cayley numbers, only the fibrings of S7 onto a

point and of S15 onto S8 can be constructed. It seems reasonable to ask whether

something weaker than associativity might permit more but not all of these

fibrings to be constructed. Sugawara [14] has shown that a variant of Milnor's

construction can be carried one step further than for an arbitrary //-space if the

multiplication is at least homotopy associative ; that is, if m : X x X -* X is the

multiplication then the two maps of X x X x X into X given by the two ways

of associating are homotopic, i.e., the diagram
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XxXx Xm X Kx x X

Í xm     \ \ m
•i?              m      ■*

Xx X   ->X

is homotopy commutative. What should the next step be?

From the work of Sugawara and Dold-Lashof, it is clear that a fibre bundle is

too restrictive a concept. The features of the Milnor construction which it is

important to retain are embodied in the following definition, but first let us

stipulate that all spaces we consider will be of the homotopy type of countable

CW-complexes with base points and all maps and homotopies will respect base

points.

Definition 1. An An-structure on a space X consists of an n-tuple of maps

X     =    Ey

Pi Pi Pn

*   = By <r B2 cz  ...  c B„

such that p¡J|c: nq(E„X)-* nq(B,) is an isomorphism for all q, together with a

contracting homotopy ñ: C £„_j -► E„ such that n(C£;_,) c= E,.

The Milnor or Dold and Lashof construction shows that there are spaces

which admit ^„-structures for all values of n.

(For the purposes of homotopy theory, we can think of X-*E,-1* B, as a

fibring in the light of

Proposition 2. Given X c £ and a map p:(E, X) -> (B, *) such that

p%: nq(E, X)-> nq(B) is an isomorphism for all q, there exists a homotopy

equivalent fibring £-+£->£ such that F has the homotopy type of X.

Proof. Any map is equivalent to a fibring so that we have

£->•£

[11, Lemma 13]. Since p(X) = *, X is mapped into F =p_1(*). From the induced

map of the exact sequences of the pairs (£, X) and (£, £), we conclude that

F has the homotopy type of X, all spaces having the homotopy type of

CW-complexes.)

To study spaces which admit ^„-structures, we can work directly with the maps

pt. In the case of a topological group, this amounts to working only with the

classifying bundle and never mentioning group operations. This would be an

exercise in rectitude of thought of which it would be pointless to countenance

the austerity, for not only would it eliminate a useful perspective on the subject,

but, by disguising its own main point, it would place the reader beneath a cloud
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of unknowing. A similar remark can be made about v4„-spaces. We shall see that

an ^„-structure on a space X is equivalent to an "/1,,-form," that is, a sequence of

maps M2, -,M„ where each M¡:I'~2 x X'-* X is appropriately defined on

dll~2 x X' in terms of M} for j < i. (In particular, as indicated above, an A2-

space is equivalent to an //-space, an ^43-space to a homotopy associative

//-space [15; 14].)

Our study of /ln-spaces depends strongly on the interplay between ^„-structures

and y4„-forms. In particular, using both view points we are able to provide an

example for each prime p of a space which admits Ap_i- but not ^-structures.

(S7 is a good example for p = 3.)

The main theorem, Theorem 5, was strongly suggested by the work of Sugawara.

The ^„-forms we will discuss are a greatly simplified version of the appropriate

part of his conditions for a group-like space [14]. Where our proofs are suggested

by his, we have attempted extensive simplification. The work of Dold and Lashof

[3] also had a deep influence on the development of this subject ; it is particularly

apparent in the proof of Theorem 10. This paper represents in part joint work with

J. F. Adams, whose inspiration has permeated this entire effort, though he should

not be held responsible for the present exposition. The examples of Theorem 17

are entirely due to him, and his comments were most helpful in the treatment of

the complexes K¡ and construction 8.

I would also like to express my gratitude to Professor J. C. Moore for suggesting

a problem which led to the present paper and for his continuing advice and

encouragement while supervising my thesis for Princeton University, from which

much of this material is drawn, to Dr. I. M. James for contributing his work on

"retractile" subsets [6] at a most opportune time and especially to Dr. S. Y.

Husseini, to whom fell the thankless task of reading my preliminary attempts at

exposition of this subject.

2. ^„-forms. Before defining ^4,,-forms explicitly, we introduce for each i _ 2

a special cell complex K¡ which is homeomorphic to V~2. The reader is on

friendly terms with the standard simplices A' and the standard cubes /'. He should

think of the standard cells K¡ as similar objects, also having faces and degeneracies

and suitable for use as models for a singular homology theory. He should also

keep in mind the important differences that

(1) the index i does not refer to the dimension of the cell but rather to the

number of factors of X with which K¡ will be significantly associated later,

(2) Kt has i degeneracy operators su •••,si defined on it, and

(3) Kt has i(i - l)/2 - 1 faces.

We see already that the complexes K¡ are more complicated than simplices or

cubes. Even to index the faces of K¡ is not straightforward ; the following des-

cription of this indexing is the only one we know of which has some intuitive

content. Consider a word with i letters, and all meaningful ways of inserting one
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set of parentheses. To each such insertion except for (xy ■■■ x¡), there corresponds

a cell of L„ the boundary of K¡. If the parentheses enclose xk through xt+s_1;

we regard this cell as the homeomorphic image of Kr x Ks (r + s = i + 1) under

a map which we call dk(r,s). Two such cells intersect only on their boundaries

and the "edges" so formed correspond to inserting two sets of parentheses in the

word. Thus we have the relations

3(a) dj(r,s + t - 1)(1 x dk(s,t)) = dj+k-y(r + s - í,t)(dj(r,s) x 1),

(b) dj+s-y(r + s - l,t)(dk(r,s) x 1) = dk(r + t - l,s)(d/r,t) x 1)(1 x T)

where T:Ksx K,-> Kt x Ks permutes the factors.

This is enough to obtain K, by induction. Start with K2 as a point, *. Given K2

through R;-!, construct L, by fitting together copies of Kr x Ks as indicated by

the above conditions. Take K, to be the cone on Lt.

Proposition 3. K, is homeomorphic to T~2. Degeneracy maps Sj'.K,-* K,_y

for 1 £] ^ i can be defined so that the following relations hold:

3(c) SjSk = sksj+y for k^j,

(d) Sj8k(r,s) = dk-y(r — l,s)(sj x 1) for j < k and r > 2,

(e) Sjdk(r,s) = dk(r,s- 1)(1 x Sj-k+1) for s > 2, k z%j < k + s, Sjdk(i - 1,2)

= 7t! for 1 < j = k < i and l<j = k+l^i, Syd2(2,i — 1) = n2 and

s¡dy(2,i — 1) = n2(where nm for m = 1,2   is projection onto the mth factor),

(f) Sjdk(r,s) = 8k(r - l,s)(sJ_s+1 x 1) for k + s Sj.

We will prove Proposition 3 later in this paper by explicitly constructing the

complexes K, as subsets of V~2.

Remark 4. The above relations are reminiscent of the usual ones between the

face and degeneracy operators of a semi-simplicial complex. Because the semi-

simplicial operators correspond, for example, to iidJ(A9) is the jth face of

A4" rather than "dj imbeds A4-1 as the j'th face of A8," they compose in the

opposite direction. With this change, the semi-simplical operators (call them dj

and Sj) satisfy 3(a)-(f) if we replace dj+1(i — 1,2) by dj and sj+1 by sy.

The complexes R¡ are important because of their role in the following theorem.

Theorem 5. A space X admits an An-structure if and only if there exist maps

M¡: R¡ x Xf-> Xfor 2 S i Un such that

(1) M2(*, e, x) = M2(*, x, e) = x for x e X, * = K2,

(2) for p e Kr, a e Ks, r + s = i + 1, we have

Mi(dk(r,s)(p,o),xi,—,xi) =

Mr(p,Xy,—,xk-y,Ms(a,xk,—,xk+s-y),xk+s,—,x,),

(3) for -zeK, and i > 2, we have

Mi(t,xí,---,xj-í,e,xj+í,—,xu= M¡_1(s/t),x1,-",xj._1,X;+1,-",x¡).
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We call such a set of maps an An-form on X and the pair (X, {M¡}) an A„-space.

[Using conditions 3(a)-(f), the reader may readily check for himself that 5(2) and (3)

are consistent; that is, they give a well-defined map of X¡ x Xt0 uL¡x X1

into X. (Here X[,] is the subset of X' consisting of points with at least one

coordinate being e.j]

Remark 6. Notice that an A2-space is just an //-space. We will often write

xy for M2( * , x, y). Formula 5(2) is a bit opaque, but least so when s = 2 in

which case it reduces to

Mi(dk(i- l,2),(p, *), x1,-..,xi)=Mi_1(p,x1,...,xtx^ + 1,...,xi).

Now for i = 3, K3 is homeomorphic to / and 5(2) says that M3 : / x X3 -> X is a

homotopy between M2(M2 x 1) and M2(l x M2), that is, between (xy)z and

x(yz). Thus M3 is an associating homotopy; M2 is a homotopy associative multi-

plication. For the case i = 4, consider the five ways of associating a product of

four factors. If the multiplication is homotopy associative, these five products

are related by the following string of homotopies :

x(y(zt)) S x((yz)t) s (x(yz))t S ((xy)z)t S (xy)(zt) S x(y(zt)).

Thus we have defined a map of S1 x X4 into X; the map M4 can be regarded

as an extension of this map to I2 x X4.

Of course any associative //-space admits yl„-forms for any n ; we need only

define Mi(x,xí, ■••,x¡) = x±x2 ••• x¡. We call this a trivial v4„-form.

Condition 5(3) is technically very useful, but actually is no restriction; that is,

Lemma 7. Suppose {M¡,i<n} is an An_\-form and that M'n:K„ x X"-* X

satisfies 5(2), then there exists M„:K„ x X "-> X satisfying 5(2) and (3).

This follows from [6] as we shall indicate in more detail in an Appendix.

3. Derived ¿„-structures. We relate .¿„-forms to ¿„-structures by a specific

construction. We are grateful to J. F. Adams for a suggestion which has greatly

simplified the construction we originally developed. Milnor defines the n-fold

join X* n * X by means of certain identifications on A"-1 x X". We will con-

struct ^„-structures ni:Si -> Sdi in which the space Si will also have the homotopy

type of X* i * X but we will use Kt+1 x X' instead of A1-1 x X' and will add

further identifications which correspond to the reduced join.

Construction 8. The An-structure derived from an An-form {Mj\ on X.

Let R = Li+1 x X'v Ki+1 x X x X li~l\ Define spaces é?¡ for 1 ^ i = n by

means of relative homeomorphisms

(Kj+1xX¡,R)^(^/k)

where a¡ | R is defined by
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ai(dk(r,s)(p,o),Xy,---,x,)=ar_y(p,Xy,---,Ms(a,xk,---,xk+s-y),---,xi),

(9)
apJsxi> '">Xj-y,e,Xj+1, •■■, x¡) =a¡_1(sJ(r),x1, •••,xJ-_1,xJ-+1, •■•,x¡),    j > 1,

with the convention that the undefined expression Ms(a,xk, ••-,xi+1) is to be

omitted. \ßy is just X. If we identify K3 with /, then we can regard <x2 as identifying

0 x X2 with X by the map (0,x,y) -* x; 1 x X2 with X by the map (l,x,y) -»

xy; and I x (X\/ X) with X in the obvious way.]

We define spaces â§, for 1 g j i% n similarly in terms of relative homeomor-

phisms

(Ki+1 x T-KS)-^^.,®.^)

where S = Li+1 x Xi~1(JKi+1 x X[i~u. The restriction ß,\S is defined by the

formulas (9) except that we replace a by ß throughout and omit Xy and all terms

Ms(a,Xy,---,xs). \ßy is a point and ¿%2 can be recognized as SX.~\ Notice that

the definition of 3$, uses the maps Mj only for j < i, hence even if X admits only

¿„-forms, 3Sn+i can still be constructed, although «?„+1 cannot.

Letpf:Ri+1 x Xl->K¡+Í x X''1 be defined by omitting xui.e., p,(x,Xy, --jX;)

= (t,x2,---,Xj). We see that p, induces p^S^ÚH,. [Notice that ß,\S can be

defined by ßi(x,x2,---,x^ = pi_yXi(x,e,x2,---,x^. Hence, by induction, p, is

well defined. Of course, in the above discussion we have used implicitly the fact

that a, | R and ß, \ S are well-defined maps. This can be proved in much the same

way that the reader proved M,|R; x ZtllUL¡ x X1 was well defined.]

In order to show that we have in fact constructed an .¿„-structure on X, we need

Theorem 10. // X is arc-connected, p, * : nt(S„ X) -* nq(3S,) is an isomorphism

for all q.

(In fact we will show that p, is a quasifibring [4].)

We also must show that $,-y is contractible in S,; we prove a stronger result.

Theorem 11. If X is arc-connected, then ($„, •••,<^1) has the homotopy type of

(X*n*X,-,X).

Corresponding to this in the base we have

Theorem 12. (^¡+1,^¡) has the homotopy type of(Cê,\J p¡@¡,@¡).

(For any map f:X-*Y, the mapping cone CX(jfY is defined as the space

obtained from the disjoint union of CX and Y by identifying X as the base of

the cone with its image under / in Y.)

The base spaces 0S, will be very useful invariants associated with an ¿„-space;

we give them a special name.

Definition 13.   The X-projective i-space XP(i),  i ^ n, associated with an
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¿„-space is the base space ^i+1 of the derived ¿„-structure. (Jf„+1 can be defined

even when pn+1 cannot; it has the homotopy type of CSn u v„&„-)

The justification of this terminology arises from considering the classical

fibrings of Sd~1 * i * Sd~1 = Sdi~1 by Sd~1 for d = 1,2,4. Sd~1P(i) is respectively

real, complex, or quaternionic projective space of ¿-dimensions, and the fibrings

can be identified with our construction by using the strictly associative multipli-

cation on Sd_1.

Convention. If X admits some ¿„-form, we will refer to the X-projective

i-space XP(i) without emphasizing the particular ¿¡-form to which XP(i) corre-

sponds.

4. Proof of Theorem 5. Theorems 11 and 12 show that the existence of an

¿„-form implies the existence of an ¿„-structure. To prove the converse, we

first observe that it is sufficient to construct an ¿„-form {M¡} on some space F

of the same homotopy type as X, for we can then define an ¿„-form {JVJ on X by

suitable deformations of the maps

K^X'l^K^FiMi+F^X

where ; : X -> F and s : F -» X axe homotopy inverses. Thus, in light of Proposition

2, we might as well assume that X -» Ep^y B¡ is a fibring.

Assume by induction that Mj is defined (and pjiej-^aSj is constructed) for

j < i, and that we have commutative diagrams

dj
€, —¿-> Ej

(14) Vj i [   Pj

bj

such that dj\é'j_l = dj_1, etc. The induction begins with the commutative

diagram

©i  =    X =    X = £j

I       ;
* ■_   *

Let J = interior of d^(2, i)(K2 x K¡). Note that on all of R except for

Jx(X'— Xln), a¡ is defined without using M¡. There is no difficulty in extending from

this subset to y:(Li+1 - J) x I''uJvj+1 x X[i]-+ C«?^. Let k: CE¡_i -v^ be the

contraction. Define j:K¡+1 x Xl~1-+Bi  by

j(t,x2, -...Xj) = koCdi_10y(x,e,x2,---,xi)

so that joPi = plokoCdl_10y over the whole domain of y. Thus j induces

an extension ¿»¡¡^¡-»Bj of bt-v Since Li+1 - J is a deformation retract of Ki+1,

koCd¡-loy can be extended to a map d:Xi+1 x X'-+Et covering j'0p¡. Thus



282 J. D. STASHEFF [August

d(dy(2,i)(K2 x K,) x X') cz X and the desired map M, can be defined by

Mi(z,Xy,---,xi) = d(dy(2,i)(*,z),Xy,---,xi). The space S, can now be constructed,

and we see that d induces a map d¡:S, -» £¡ such that

dt
S, -, E,

Vi   l        i Pi
3tl -» B,.

is commutative.

Notice that Theorem 5 has the following corollaries (which are already known

[15; 14]).

Corollary 15. A space X admits a multiplication if and only if there is a

map p:(X* X,X)-+(SX,*) such that p+ :nq(X* X, X) -» nq(SX) is an iso-

morphism for all q.

Corollary 16. A space X admits a homotopy associative multiplication if

and only if there is a map p : (X * X * X, X * X, X) -> (C(X * X) Up SX, SX, * )

such that p = p | X * X and p* : nq(X * X, X)^nq(SX) is an isomorphism for all

q and p*:nq(X* X* X, X)-* nq(C(X* X) (JpSX) is an isomorphism for all q.

5. Examples. Theorem 5 also shows the relation between the nonexistence of a

homotopy associative multiplication on S7 and the impossibility of fibring S23

by S7 over the Cay ley projective plane. This suggests that the nonexistence of a

homotopy associative multiplication on S7 can be shown using Steenrod oper-

ations. In fact, this approach can be generalized to indicate more fully the non-

trivial distinctions involved in the ¿„-classification.

Theorem 17. For each prime p, there exist spaces which admit Ap_y-struc-

tures but not Ap-structures.

Proof. The examples we give are due to J. F. Adams, as are the techniques

used in the proof. These spaces are constructed quite explicitly in [1], where

further details of the assertions below also can be found. (The above theorem is

the part of our joint work referred to there.)

Let p be an odd prime and Qp, the group of all those fractions which, in

lowest terms, have denominators prime to p. Let X be a Moore space with one

nonvanishing homology group Qp in dimension 2n — 1. Since Qphas no p-torsion

and is infinitely divisible by all other primes, H%(X;Zq) = 0 if q is prime to p and

H,(X;ZP) = 0 except for i = 0 or 2n - 1, while H2„_1(Z;Zp) = Zp. [This can be

seen by mapping Qp onto Zp by a/b -» ab'(p) where bb' = 1 mod p.]We can use

"^-theory [12] to deduce that for i > 2n — 1, n¡(X) is isomorphic to the p-primary

component ofn^S2"-1).
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Let us imbed X in the space Z = Q2S2X in the usual way. Since Z is a loop

space, it admits an ¿„-structure for any n; call the corresponding maps N¡:K¡

x Z'->Z and let M-:X¡ x X'->Z denote the restrictions. We would like to

deform the maps Mi into X so as to obtain ¿p^-forms on X. By induction,

assume the image of Mj lies in X for j < i. Let T = L; x X1 u K¡ x Xm. M't is

defined on T in terms of M¡ for j < 1, so M¿(T) c X. The obstructions to de-

forming Mi into X rel T appear as classes in H9(K¡ x X', T; nq(Z, X)) which,

since (/£,-, L¡) is isomorphic to (/i_2,7i_2), is isomorphic toHq+2~'(X(i); nq(Z,X)).

Since the p-primary component of nq(Si2S2n+1,S2n~1) = 0, for q < 2pn - 2 [10],

we can conclude that nq(Z, X) = 0 for q < 2pn — 2. Since X has nontrivial coho-

mology only in dimension 2n - 1, /T^X*0 ; G) = 0 for any coefficient group G if

q j= i(2n — 1). Thus the obstructions we have considered lie in trivial groups

unless i(2n — 1) + i — 2 ^ 2pn - 2, i.e., i = p. There are no obstructions to

obtaining Ap_1 -forms on X.i

Now suppose X did admit an ¿p-form (equivalently, an ¿p-structure). Consider

the corresponding maps p¡ : «?¡ -+ Sè^. According to Proposition 2, we can replace

p¡ by a homotopy equivalent map p; which is a fibring in the sense of Serre.

Therefore in the argument below we can assume without loss of generality that p¡

is a fibring. Thus we know that the Thom-Grysin sequence [2, Exposé 8] applies

to the "Thom Space" C^¡u aS¡ = XP(i). This sequence can be used to compute

the cohomology ring of real or complex projective space [9, Theorem 23]. In

exactly the same way, since H*(X;ZP) xH*(S2n~l ; Zp), we find that H*(XP(i);Zp)

is a truncated polynomial algebra on a generator ueH2n(XP(i);Zp) with

u' # 0. But if we choose n prime to p(p — 1), the Adem relations on the Steenrod

operations modp imply that up must vanish; therefore X cannot admit Ap-

structures.

(For X = S7, the above argument shows that S7 admits no homotopy associa-

tive multiplication [5, Theorem (1.4)].)

Finally, we remark that if the ¿„-form is trivial, our construction 8 reduces to

that of Dold and Lashof.

In that case and more generally whenever X admits a structure {p¡; i = 1,2, •••}

satisfying the usual conditions but for all positive integers i, then X has the

homotopy type of i2Bœ where BM is the limit of the base spaces B¡ [15, Lemma

10]. We will investigate this relationship more fully in Homotopy associativity

of H-spaces. II, a sequel to the present paper.

6. Complexes K¡.

Proof of Proposition 3. We exhibit particular representatives of the complexes

K¡ as subsets of T~2. Figure 18 pictures the cases i = 2,3,4,5; K¡ being heavily

outlined as a subset of I'~2.

Let K¡ be the subset of Il~' consisting of points (tu ••-,íí_2) such that

2-'i1 ••• tj _ 1 for 1 ^j = i — 2. £;, the boundary of K¡, consists of the point of
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dy R3       d2
-•

11/2

?3(3,2)

Figure 18
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R; such that for some j either 2Jty ••• tj = 1 or tj = 1. We give the face operators

as follows :

k = l:dy(r,s)(Kr x Ks) is to be the subset of K, such that 2s_1f1 •■• is_j = 1.

Let  p = (ty,---,tr_2)eKr  and  a = (u„ ■•■,us_2)eRs  then

ô1(r,s)(p,(j) = (u1,---,Ms_2,u,i1,-",i,_2)

with « = l/2"~1uy •••ws-2.

bl:3,(r,s)(K,xXJ is the subset of the "face" ifc_j = 1 such that

(tk,-, tk+s-3)eKsand(ty,---,tk-2,2s-1tk-tk+s-2,tk+s-1,-,t,-2)eKF.Forp,a

as above we have

dk(r>s)(P>°~) = (ti>-,tk-2,l,Uy,—,us-2,tk_1,tk,—,tr-2)

where   f^ = i»_1/2s_1ti1-u,_2.

Relations 3(a) and (b) can be verified directly from the definitions. For example

with k, j > 1 and

p = (í1,---,ír_2),   o- = (u1,---,us_2),   T = (!>!,—,V,-2)

we have

3/>,s + t - 1)(1 x c\(s,i))(p,ff,T)

= ('l> "•> iy-2> 1ju1j '"> ut-2> 1> ül> "'J vt-2>uk-l>uk' '">M$-2»'j-l> tjt '"> 'r-2)

with

ö»-i = «t-i/2'"1»1-»f_2 and i,-.! = 0-i/2S_1"i •••",-2-

On the other hand

dJ+k-y(r + s - 1, t)(ôj(r,s) x ï)(p,a,x)

~(h' '">f/-2> Lul> '"»ui-2> l>"l» '">vt-2>uk-l>uk> '"'Us-2> f/-l»f/i '"tK-2)

where

tj_y  = tj_y/2S + ,~2Uy - Uk-2Vy ■ •• »,-2^- XM4 - «s_2.

Expanding w^j we see that relation 3(a) holds.

The degeneracy maps Sj:Ki+y-+ K, can be defined on Li+1 using 3(d)-(f),

since the latter are compatible with 3(a) and (b). It also follows easily that 3(c)

will be satisfied on Li+1. The map Sj on all of Ri+1 can now be obtained "by

taking the cone." That is, represent Ri+1 as pairs (t,z) with teLi+1 and

similarly for K¡. If s/t) = (s,x'), %' eL, then define Sj(t,t) as (ís,t'). With this

definition it is easy to verify 3(c) on all of Ki+1, while Sj was constructed so as to

satisfy 3(d)-(f). The relations are important in that they make the conditions of

Theorem 5 consistent.
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7. Proof of Theorem 10.   This will follow from:

Theorem 19. Toi:Si-*3Si is a quasifibring (with fibre X).

Proof. (Cf. [3].) For i = 1, pt is trivially a quasifibring since 0&x is a point. By

induction assume p;_x is a quasifibring. We will decompose p; as the union of

two sub-quasifibrings.

Let U = £t- £,_! and P = p[\U) = <?,- - ét.v

Lemma  20. p¡\P is a quasifibring.

Proof. Since af_1 is a well-defined homeomorphism on P and /?,-1 is a well-

defined homeomorphism on U, we see that p¡ | P is equivalent to the map

XxU -*U which is projection onto the second factor, trivially a quasifibring.

Now recall that R denotes the set Li+1 x X'uKi+1 x X x X[i_1] and S de-

notes the set Li+1 x Xi_1UXi+1 x X(i_1].

Lemma 21. There exists a neighborhood 3t in Ki+i x X'ofR of which R is a

strong deformation retract.

Proof. Take a "tubular" neighborhood N' of Li+1 in Ki+1, i.e., there is a

homeomorphism of JV' onto Li+1 x (0,1] which maps L¡+1 identically onto

Li+1 x 1. Let JV be the inverse image of Li+1 x (1/2,1]. There exists a defor-

mation hs:Kl+1 -> Ki+l relL1+1 such that ht is the identity, h0(N) c Li+1 and hs

is constant outside JV'.

Since X has the homotopy type of a CW-complex, there exists an open neigh-

borhood Ne of e and a deformation fes: X -» X such that kt is the identity, k0(Ne)

= e [16, (M), p. 230]; also cf. [7, Theorem (8.3)].

Take 3t as the union of JV x X' and all sets of the form Xi+1 x X x X x •••

x Ne x ••• x X except Ki+1 x JVe x X x ••• x X. Define D'¡:Kl+l x X'->.fv¡+1

x X1 by A, x 1 x (fc,)'"1. We have D'[ as the identity, £>¿'(^) c /? and £>;'(/?) c R.

Therefore D" can be deformed to give a strong deformation retraction D't of ^

onto R.

Now let £" be obtained from 31 by omitting the first X factor, so that if is an

open neighborhood of S. A strong deformation retraction d't of £f onto S is

given by d't(x,x2, -,x^ = piD't(x,e,x2,---,xi).

Let Q = a¡(á?) and V = /i,(^), so that gi is covered by P U ß and S'i_1czQ

while ^¡ is covered by Í7 U V and J^ cz K Notice that Q = pj\V). We will

prove

Lemma  22. p¡ | Q is a quasifibring.

From this and the fact that p¡ is a quasifibring over U and U n F, it will follow

that p¡ is a quasifibring [4, (2.2)].

To prove Lemma 22 we will need the following criterion :
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Lemma 23 [4, (2.10)]. p:E^>B is a quasifibring if for some B' <=.B and

E' = p~1(B'), p | £' is a quasifibring and there exist deformations

D,:E-*E, dt:B-*B
with

Di =  1,       D,(E') c £',       O0(£) <= £',

dx  =  1,        dt(B') c B',        d0(B) c B',        pDy = dxp

and

Z)0* \nfo~ \x)) « nl(p-1(d0(x)))        for all xeB, i = 0.

Proof of Lemma 22. We will deform ß onto Sl_y = a,(K). Define £>t: ß -► ß

by D,a<x¡ = a¡D't on ß—<?;_! and as the identity on &¡-i. Similarly define

dt: F-> F by dtoßi = ßidjon F- J^ and as the identity on J^. Both D,

and d, axe well defined since D't and df' are strong deformation retractions, i.e.,

constant on R and S respectively. Clearly pß, = d(p¡. We have Dt = 1,

D,|'i-i = 1, D0(Q) = *,_, and dj = 1, </,!«,_! = 1, d0(F) c ^i_1.

Finally, we must consider gz - D0 | p71(z):pf1(z) -* pj1(d0(z)) for any zeV.

If z e^j_!, d0(z) = z and gz is the identity, trivially a homotopy equivalence. If

zeV — 3¡i-u then z can be written uniquely as ßt(x,x2, ■■•,x¡) and for d0(z),

there exists an r such that d0(z) can be written uniquely as /L(/í,y2, --^y,.). Define

a homeomorphism/z: X-> p¡-1(z) by /z(x) = a¡(x,x,x2, •■•,xi) and hz: X -+

Pi~\d0(z)) by n2(x) = <*,(>, x,y2, -, JV)-

Now recall the definition of d't. We see that d0 is homotopic rel ^¡_! to

d0ßi(x,x2, —,xj)-> ßi(h0(x),k0(x2), ■■■, k0(x¡j). We are concerned with (t,x2,.-.,x,)

if h0(x)eL¡+1 ox if k0(xj) = e. Thus d0(z) can be represented as ßr(p, y2, ■■■,yr)

where each y¡ is some xk except that at most one y¡ may have the form

Ms(a,xk+l, ■■■,xk+s). Now by means of/; and hz, gz can be identified with a map of

X into X given either by x -> x (trivially a homotopy equivalence) or by x ->

Ms(cr,x,xk+1,---,xk+s)foxsome fixed o-,xk+l,---,xk+s.The latter is homotopic to

x->x(xk+1(-.-(xt+s)-..)), again a homotopy equivalence since Xis arc-connected

(right translation is a homotopy equivalence). Since p¡_x = p¡| <?,-_! is a quasi-

fibring by the inductive assumption, by Lemma 23 we conclude that p¡ | ß is a

quasifibring. This completes the proof of Theorem 10.

8. The homotopy type of t% and 3)t. Consider the space, call it 2it defined by

a relative homeomorphism

(Ki^xX'-^S) yM9**t-J,

where y£t,x2,—,xj) = a¡(x,e,x2,---,Xi).

Proposition 24. ^i,é'i_1 has the homotopy type of C^i_í,é'¡_1.

In order to prove this, we need an auxiliary map.
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Proposition 25. There exist homeomorphisms n¡:I x K,->Ki+1 such that

(1) ni(0,x) = d2(2,i)(*,x), and

(2) n,(t, 8k(r, s)(p, a)) = dk+l(r + l,s) (nr(t, p), a).

Proof. Assume the proposition true for j < i. It is easy to verify that equation

(2) yields a homeomorphism r¡¡ of I x L, into Ki+1. The image J, consists of all

faces dk(r,s)(Kr x Ks) with k> 1, r > 1. We can regard R¡+1 as formed from

J x J, by identifying (0,h,'(í,t)) with (0,n-(i,T')) for any x,x'eL¡. In this way,

the face <32(2, i) (K2 x K¡) is identified with CL¡ which in turn we regard as K¡.

Looking at things this way, we obtain n¡ satisfying (1) and (2) by setting

fli(t, (s, t)) = (s, n'lt, %)) for x e L„ (s, x) e CL, = K,.

Corollary 26. sJ+yn,(t, x) = n,-y(t,Sj(x)).

The verification is straightforward.

Proof of Proposition 24. Define cb^C^^y -*&, by cbi(t,aLi^y(x,x)) = yi(ni(t,x),x)

where x — (x2, •••,'x¡). To obtain an inverse for cb¡ define \f/,: Ki+1 x X1'1

-^CS,_y by $i(x,x) = (t,x¡-i(T:',x)) where nt(t,x') = x. Now part of ¡//¡l S lies in

CS,_2 <zz CS,_y, instead of in ê,_y as it should to induce a map of 2, into Cê,_y.

However Cât_2cCêi_i is homotopic to <j>i-y(C£,-2)cz@i-.yCzgi_1 by the

following argument: It is straightforward to verify that cb^cf^y is homotopic in

$,-y to the identity. It involves showing, by an inductive argument, that

si("i(L *)): Ki,L, -» Ki,L, is homotopic to the identity in a way which is compat-

ible with y¡. We conclude that C(cpi-y\£i-2):CSi_2,êi_2-+C£i_2,£i_2 is

homotopic to the identity. Next C(c6,_1|<?¡-2) is homotopic in CS,_y to cb¡ by:

Lemma 27. Let f:Y ->Z extend to F:CY->Z then Cf:CY-+CZ is homotopic

rel F to F.

Proof. Define a homotopy Fr: CY -* CZ for 0 ^ r ^ 2 by

Fr(t,F(rt+l-r,y)), O^r^l,

Fr+1(t(l-r) + r,F(t,y)), Oargl.

Thus i//¡ can be deformed to a map i¡/¡:Ki+y x Xl~1^CSi_i such that ^,\S

= fi\S. It is clear that i/r¡:¿£¡,<?¡_1-*C<ft_1,<£'í_1, the map induced by \¡/„ is

a homotopy inverse for cb, as a map of pairs.

Proof of Theorem 12. Recall the definition of ß, : (Ri+ y x Xl~ \ S) -» (â§„ SS,-y).

We see directly that ß, can be factored as aioyiv/herea,:(@i,(ai-y)^>(@„@li_y)

is also a relative homeomorphism and o-i[^i_1 = p,_±. Since (3>i,£,-y) has

the homotopy type of (CS,_y,^,_y), this shows that (^„SS^y) has the homotopy

type of (Cét^ííJ9t_iai.uat.O-
Proof of Theorem 11.  We can map X x S>, into «?¡ in the obvious way (cor-
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responding to X x Ki+i x X1 1 ->■ Ki+l x X x X1 '). We can regard Si as

obtained from X x 9il by identifying

(x,y¡(d1(r,s)(p,o),x2, —,x¡))

with

xr-i(p,Ma((r,x,x2,—,xs),xs+1,—,x¡).

The subset on which these identifications are carried out is just X x §¡($¡-1).

Thus (<f;,(?;_!) has the homotopy type of X x CS'¡_1 u^j-i where p: X x é'¡_1

-+<?i-i is obtained by

1x0,1
X X *,_! —-^X X @t -> #,.

Note that p\e x ^¡_x is just ¡pil^-j and hence homotopic to the identity.

To prove that XxCei_í\jp¡Si_1,Si_í has the homotopy type of X*<?¡_!,«?,_!,

we use the Meyer-Vietoris sequence in the obvious way [13, Lemma 3.41^

[X is arc-connected and hence X x CS-^y \J¡¡£l-í and X*S¡_X are simply

connected, so that a homology argument is sufficient.] Thus it is sufficient to show

Lemma 28. The map of X x S^^ into X x S¡_x given by q(x,z) = (x,p(x,zj)

is a homotopy equivalence.

When i=2, this is a familiar fact about //-spaces. We mimic the proof used in

that special case, cf. [15, Lemma 6].

Proof. By checking the formulas, we find that p applied to X x X c X x Si_i

goes into X and is in fact just M2, the multiplication on X. The induced map

p^.:n„(X) + 7T„(«?¡-i) = 7t„(X x (S'¡-i)-*nn(é'i_1) can be seen by the usual argu-

ments for //-spaces to coincide with the usual addition in the homotopy groups,

mapping n„(X) into a subgroup of n„(^i-i) in the obvious way. Thus q^.:nn(X)

+ n„(êi_.j) -> 7t„(X) + njß^i) can be seen to be given by q*(a,ß) = (a,a 4- ß)

which is obviously an isomorphism for all n. Since in our category all spaces

have the homotopy type of a CW-complex, q is a homotopy equivalence.

9. Reduction to the Dold-Lashof construction. We now make more precise our

remark that construction 8 reduces to that given by Dold and Lashof [3] if the

¿„-form is trivial. (It is necessary not only that M2 be strictly associative, but also

that M¡ be given by Mi(x,x1, ---jX;) = xt --x^)

Recall that Dold and Lashof defined quasifibrings p¡:£¡ -*B¡ by the following

inductive procedure. Let M:X x X->X be an associative multiplication. Let

£\ = X, Bj = *. Assume by induction that p¡ : Et -> B¡ is defined as well as an

associative action M:X x £¡-> E¡. Using the unreduced cone, define £i+1 as

X x CËjUjtf^i and Bi+1 as CEt\jp{Bt. Define pi+1 by pi+1(x,r,z) = (t,z) for

zeE{, p£+il3=P¡ and M':X x Ei+1 ->£¡+1 by M'(x,(y,t,z)) = (xy,t,z)

x,y eX, zeE¡. It is easy to verify that the inductive hypotheses are satisfied.
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Dold and Lashof sho that pi+i is a quasifibring ; they have constructed an

¿„-structure on X for arbitrary n.

We have seen in the last section that £, can be regarded as X x Cê,_y\jlté,^l.

The use of the reduced versus the unreduced cone is irrelevant to the question of

homotopy type ; let us assume the Dold-Lashof construction reworked using the

reduced cone.

By reversing the process used to show that S, has the homotopy type of

X x CS,_y u pfii-\, we can show that, up to homotopy type, E, can be defined

in terms of a relative homeomorphism

(Ai-1xXi,R)a4(Ei,El_y)

where R = ¿W-1 x I'uA'"1 x X x Xli~u and a¡|R is given as follows: Let

x = (ty, -, t¡) e A'"1, x = (xy,-,x,) e X1.

ai(T,x) = ai-y(ty,---,tj,---,ty,Xy,---,XjXj+y,---,xi),        Íftj = 0,j<Í,

ai(ty,-,ti-y,0,x) = ai-y(ty,—,ti-y,Xy,-,Xi_y),

a,(x,x) = ai_y(ty,---,tj_y + tj,---,ti,Xy,---,Xj,---,xl),if Xj = eforj> 1.

Thus to map i, into £¡, we need only a suitably defined homeomorphism

^i+y : Rj+i -+ A1-1. &j is canonical (!). We take 5"3 to be the linear map deter-

mined by sending 1/2 to (0,1) and 1 to (1,0). Define ^,:L,^ <3A'-2 as follows:

Let 3Tr(p) = (ty, ■■■,tr_y)eAr~2 for peKr then

^iSk(p,a) = (ty,-,tk-i,0,-,0,tk> -,tr^y)

[s — 2 coordinates are set equal to zero]. This gives a well-defined map of L, onto

A'-2. It can be described as collapsing each face which is homeomorphic to

Kr x Ks onto the image of one of its axes Kr. Hence it is possible to extend to a

relative homeomorphism ^~¡:K¡,L¡ -» A'~2,cW~2.

Now map S, into £¡ by a.,(x,Xy, ■•-,x^ -» a,(¿?~l+y(x),Xy, --^x,). Although ^¡+\

is not uniquely defined, it is easy to construct an inverse to the above map, using

the fact that the ¿„-form is trivial, and hence ot,(dk(r,s)(p,a), Xy,---,x¡) is inde-

pendent of a.

A similar analysis shows that B¡ has the homotopy type of &, and that p, is

equivalent to p¡.

Appendix

Retractile subspaces. In [6], I. M. James has studied a property of pairs of

complexes for which we find many uses. We rework his Lemma 3.2 as a definition.

Definition A.l. A subcomplex L is retractile in a complex K if given any

null-homotopic map f:K^> X such that /|L is constant then / is null-homotopic

relL.
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Proposition A.2 [6, Corollary 4.4]. Let (X, m) be an H-space. If L is retrac-

tile in K, and we are given homotopic maps /0,/i : K-*X which agree on L, then

/o -/i reí L.

We are more interested in nontrivial homotopies on L.

Proposition A.3. Lis retractile in K if and only if given any null-homotopic

map f:K-> X and a null-homotopy gt:L->X such that gt =/|L then gt ex-

tends to a null-homotopy f, :K -» X such that /x =/.

Proof. By the homotopy extension theorem, g, extends to //: K -> X such that

// = /. Since /Ó is null-homotopic and constant on L, f¿ is null-homotopic reí L.

Thus there is a null-homotopy ft:K-+ X with 0 _ t _ 2 which restricted to L is

g, for 0 ^ í ^ 1 and constant for 1 ^ t g 2. It is easy to alter /, to obtain /, as

desired again using the homotopy extension theorem.

Proposition A.4. Let (X, m) be an H-space. If L is retractile in K then given

homotopic maps fçJ^.K^X and a homotopy gt:L-> X such that g¡ =f¡\Lfor

i = 0,1 then gt extends to a homotopy ft:K -* X.

This is proved by reducing to the previous case, just as James did in proving

his Corollary 4.4. [It is necessary to note that his Lemma 3.4 can be generalized to

Lemma A.5. Let p:X^Y induce isomorphisms of all homotopy groups.

Let h0,hi'.K-*X and gt :L-> X such that g¡ = h¡\L for i = 0,1. Suppose there

exists j,:K-* Y such that j¡ = ph¡ for i = 0,1 and j, | L = pgt. Then gt extends to

n,:/i->X.]

Proof of Lemma 7. Corresponding to M„'|L„ x X"-> X we have a map of X"

into XL". The extension to K„ x X" corresponds to a homotopy between this

map /o and the one given by fi(xu-,x^(x) = *i(x2(—(x»-iX«))). Since XLn

is an //-space (because X is) and X[,]is retractile in X'[6, Lemma 3.1], Proposition

A.4 says that there is a homotopy between f0 and /x which corresponds to a map

M„:K„ x X"-> X satisfying 5(2) and (3) as desired.
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