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1. Introduction and acknowledgment. In 1948 Professor E. Kolchin initiated

the study of the Galois theory of differential fields with his papers on the Picard-

Vessiot theory [3; 4]. In a recent paper Bialynicki-Birula developed a Galois

theory, more general than is given here, but which will not handle the cases of

interest in difference algebra^). The purpose of this paper is to develop a "Picard-

Vessiot" theory for difference algebra.

It is a pleasure to acknowledge the advice received from Professor Richard

Cohn of Rutgers University during the period in which this was written.

2. Summary. A solution field M/ K is a field obtained from K by adjoining a

fundamental system for a linear homogeneous difference polynomial. (All fields

are inversive difference fields of characteristic zero.) If the field of constants of K

is algebraically closed and equal to the field of constants of M, then Misa Picard-

Vessiot extension (PVE) of K. The transformal Galois group G of a PVE is an

algebraic matrix group over the field of constants of K. The Galois correspondence

is one-to-one between relatively algebraically closed subfields of M and sub-

groups of G which are connected in the Zariski topology. A generalized Liouvil-

lian extension (GLE) of K is a difference overfield of K which can be obtained

from K by a chain of adjunctions of solutions to algebraic equations and equations

of the form yx= Ay ox yy= y + B. A PVE is contained in a GLE if and only if

the component of the identity of G is solvable. If C(x) denotes the difference field

of rational functions of x over the field of complex numbers with the transforming

operation defined by xx = x + 1, then certain second order difference equations

over C(x) have the following property. Each solution is contained in a PVE of

C(x), but no solution is contained in a GLE of C(x).

In [3] it is shown that if the corresponding definitions are made for differential

equations then it is sufficient to restrict one's attention to the case of solution

fields which are PVE. This is not the case in difference algebra since for some

difference equations every fundamental system introduces new constants. For

solution fields which are not PVE, a preliminary Galois theory and a theory of

solvability analogous to the above are given. In order to apply either of these it is

necessary to know that certain matrix groups are dense in varieties containing
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them. Examples are given to illustrate the difficulties involved. Certain nontrivial

second order equations over C(x) are shown to have the following property. No

solution field is a PVE of C(x) and no solution is contained in a GLE of C(x).

The transcendence degree of a solution field over its constant field is an invariant

of the equation. Compatible PVE are isomorphic, and a PVE is a specialization

of any solution field compatible with it. Since any two solution fields over C(x)

are shown to be compatible, this is sufficient to establish the unicity of PVE

(when they exist) over C(x).

3. Notation and terminology. In general, the notation and terminology will

be as in [1].

If L is a subfield of M then the transcedence degree of M over L is denoted by

"t.d.(M,L)" and the algebraic closure of L in M by "L". If L = L then L will be

said to be "relatively closed." CL is the field of constants of L, that is, the subset

of L of elements satisfying yx = y. All fields will be inversive difference fields of

characteristic zero. The ordinary difference field obtained from K by adjoining a

solution of a linear difference equation is inversive. An "algebraic extension" will

mean the inversive closure of a difference field extension by an algebraic element,

and "K<a>" will denote the inversive difference field generated by K and a.

Since all fields are assumed to be inversive the concepts of order and effective

order coincide.

The Casorati of a vector b = (6(1), ■••, bw) is defined as the determinant

b(1)        .»       bw

by - b[n)

°n-\ " °/l-l

and denoted by "C*(b)".

All topological statements will refer to the Zariski topology.

C(x) will denote the rational functions of x over the field of complex numbers

with the transforming operation defined by Xy = x + 1.

4. Galois theory.   M is a solution field over K for

f(y) = yn + A^-1)yn_y + - + Awy,       Aw*0,     Au> e K

if M = K(b} where f(bu>) = 0, and C*(b) 5= 0. Any such vector b is a basis

of MIK. If, in addition, CK is algebraically closed and CM = CK then M is a

Picard-Vessiot extension (PVE) of K.
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If C*(b) t¿ 0 then the elements b(i),---,bw are linearly independent over the

constant field of any difference field containing them [1, Chapter 8, Lemma 3].

The following proposition contains several results which will be needed in

succeeding sections.

Proposition 1. Assume that M is a difference overfield of K and R c: CM.

(1) A subset of R linearly dependent over K is linearly dependent over CK.

(2) A subset of R algebraically dependent over K is algebraically dependent

over CK.

(3) // N is a difference overfield of K with CN = CK then N and K(R) are

linearly disjoint over K.

(4) CK(R)=.CK(R).

Proof. Assume that (1) is false and w is a minimal linearly dependent set over K

which is linearly independent over CK. If w(1)= Zfc0)w0) for k(i)eK, then,

transforming and subtracting shows that kU) e CK.

If w is an algebraically dependent set over K with/(w) = 0 and v is a vector

space basis of K over CK then/can be written/(x) = Zn0)(x)t;(j) for h(l)eCK\x~\.

Since v is linearly independent over CK, v is linearly independent over CK(w). The-

refore nO)(w) = 0.

A vector space basis v of K\R~]/K can be chosen with vij) a power product of

elements of R, hence, constant. Then by (1), v is linearly independent over N.

Therefore K(R) and N axe linearly disjoint over K [5, p. 50].

If (4) is false it is false for a finite set. By induction it is sufficient to consider

the case where R consists of a single element d. If d is algebraic over K then each

element of K(d) can be written uniquely in the form Za(i)d(i). Transforming

and subtracting shows that a(0 e CM. If d is transcendental over M then a new

constant can be written uniquely as a quotient of relatively prime polynomials

in d. Transforming shows that the coefficients are in CM.

If M is a solution field for/ over K with basis b and b' is any solution off in a

difference overfield N of M, then b' = Zc0)b0) for some c0) eCN [1, Chapter

8, Theorem 13]. Therefore a homomorphism of K{b}/K into a difference overfield

N of M determines an n x n matrix c(j in CN by the equations h(b(i))= Zc,j£>0).

The matrix so determined is unique as the 6(l) are linearly independent over CN.

A homomorphism will be identified with its matrix. The* following theorem and

corollary show that the matrices corresponding to homomorphisms satisfy a set

of algebraic equations over CM, and, in the case of a PVE, form an algebraic

matrix group.

Theorem 1. // M/ K is a solution field with basis b then there is a set Sb in

CM\xtf\ (i,j = 1, ...,n) so that ifN is a difference overfield of M then the following

hold.



494 C. H. FRANKE [September

(1) A difference homomorphism of K{b}/K to N/K determines a matrix in

CN satisfying Sb.

(2) A matrix in CN satisfying Sb defines a difference homomorphism of

K{b)/K to N/K.

(3) // CM = CK then a difference homomorphism of K{b}/K to N/K deter-

mines a difference isomorphism if and only if its matrix is nonsingular.

Proof. Define B to be the reflexive prime difference ideal in K{y} with generic

zero b. Define F from K{y} to M[x] by F(yw) = l,xubu\ and J by J = F(B).

Each polynomial in J can be written as // = ZG<k)u(k) where G(k) e CM[x] and v

is a vector space basis of M over CM. Define Sb to be the set of all such G.

(1) If h is a difference homomorphism of K{b}/K to N/K with matrix c,¡ then

the mappings y{i) -> b{i) -* h(b(i)) and y(i) -* Zxy&ü) -► Zcyoü) are identical.

Therefore the latter sends ß to zero, and each polynomial in J vanishes for

x,j = cu. Since the linear independence of v over CM carries over to CN, all the

polynomials of Sb vanish at c,,.

(2) If cu is a matrix in CN satisfying Sb then the mapping

is a difference homomorphism of /?{^}/X whose kernel contains B. It therefore

induces a homomorphism of/£{£>}//£ to JV/K.

(3) The proof for the case CM = CK can now be completed exactly as in [2, p. 35].

The proof of the following corollary follows easily from part (3).

Corollary. // M/K is a PVE then the transformal Galois group is an

algebraic matrix group over CK.

In the case of a PVE the Galois group corresponds to a variety T less its singular

matrices. The singular matrices form a subvariety of lower dimension in the

component of the identity of T, and cannot be dense in T. The following example

shows that if CM # CK then the variety T can be irreducible and have Zariski

dense subsets of automorphisms, isomorphisms "into," and homomorphisms

with nonzero kernel.

Example 1. If M = K(c), where cx = c, then M is a solution field for y y - y =0.

If c is transcendental then the set of equations determined as in Theorem 1 is {0}.

h(c) = fee defines a difference homomorphism of X[c] to M for each fe e CM. If

k 7¿ 0, k e CK or k = t/ c2 for t # 0, t e CK, then h extends to a difference auto-

morphism of M. If fe is a polynomial of positive degree in c, n extends to an

isomorphism of M into M. For k = t/c, where t e CK, h is a homomorphism of

X[c] with nonzero kernel.

If M/K is a solution field and b a basis of M/K then "Sb" will denote the set

of polynomials in Theorem 1, and "T6" its variety in the algebraic closure of CM.

If there is no danger of confusion they will be denoted by "S" and "T." The
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following example shows that a matrix in T may not correspond to a difference

homomorphism of K{b}.

Example 2. Taking d as a solution to vt + y = 0 which is transcendental

over K, the constant field of K(b) contains CK(b2). The set S is {0} and T contains

the algebraic closure of CK(b2). Since no difference overfield of K<[ b} contains b

in its constant field, Theorem 1 does not apply to the matrix (b). The algebraic

isomorphism of K{b} to K{b} defined by h(b) = b2, is not a difference homo-

morphism.

If M is a difference overfield of K then Misa normal extension of K if for each

element x of M — K there is an automorphism s of M/ K with s(x) # x.

The existence of proper monadic algebraic extensions suggests the existence of

solution fields which are not normal extensions. Whether or not Ml K is always

a normal extension is not known at present. The following theorem is a weaker

result.

Theorem 2. // M/ K is a solution field and K is relatively closed then T is

irreducible and dim T = t.d. (M/K).

Proof. Assume that M/ K is a solution field for/ with basis b. Define F, B, J

and S as in Theorem 1 and S as the ideal generated by S in CM[x]. If B' is the

perfect ideal generated by B in M{y}, then B' is prime and consists of linear

combinations of elements of B with coefficients in M [1, Chapter 8, Corollary to

Theorem 5]. Define J' = F(B') and S' as the set of GeCM[x] which appear

when each HeJ'is written as H = Y.Gik)vik) for a vector space basis v of M/ CM.

F maps M{y} onto M[x] since the equations F(yk(l)) = ¿Zx¡jbkj) can be solved

for the Xy, showing that each xu is in the range of F.

If b' is a generic zero of B' then/vanishes at b' so there are constants fey in a

difference overfield N of M with b'(i) = lk',jb(j). If heM[x\ and n = F(g) then

«(xy) = F(g(y(i))) = g( IxubU)) so h(k¡j) = g(b'(i)). Therefore h(k'u) = 0 if and
only if geB' and J' is a prime ideal in M[x] with generic zero fey. Since v is

linearly independent over CN, S' is a prime ideal in CM[x] with generic zero fey.

If PeB' then P = ZP^m0'* for P0) e B and m0) e M. Therefore any element

in J' can be written F(P) = I1F(Pu))mU) for F(PU))eJ. If H e S' there is an

L e J' with L = //t>(1) + Z//0V-°. Also

L = ¿ZLU)mU) = lGM)v(i)m(J) for G(iJ)eS.

Therefore L = ZG^ d {iJ'k> v(iJ'k)fox d iiJ'k) e CM. By the unicity of expression

in terms of a vector space basis H = ¿Zd(l'J,k)G(,'J) where the sum is for all i,j, k

with vUJ-k)= p(1). Therefore He£ Since Sis contained in S',S = S'. Since S'

is prime, T is irreducible.

Since M is compatible with a generic zero of B, ordB = ordß' [1, Chapter 8,

Theorem 9]. Therefore
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t.d.(M,K) = ordß = ordß' = t.d.(M< b'y,M)

= t.d. (M(k¡j), M) = t.d. (CM(k/j), CM) = dim S' = dim T.

The Galois correspondence for relatively closed intermediate fields in a PVE is

given by the following theorem. Primes will be used in the usual way to denote

the Galois correspondence.

Theorem 3. Assume that M/K is a PVE with transformal Galois group G,

L is an intermediate field and H is an algebraic subgroup of G.

(1) L' is an algebraic matrix group.

(2) H is Galois closed.

(3) IfL is relatively closed, then M is normal over L and L is Galois closed.

(4) There is a one-to-one correspondence between relatively closed inter-

mediate fields and connected algebraic subgroups.

(5) If H is connected and normal in G, then G/H is the full group of H' over

K and H' is normal over R.

(6) // L is relatively closed and normal over K, then L is normal in G and

G/L' is the full group of L over K.

Proof. Since M/L is a PVE, the first assertion follows from Theorem 1.

Since H is Zariski closed by hypothesis, to show // = //" it is sufficient to show

that H is dense in H", or that a polynomial vanishing on H vanishes on H". Iff

vanishes on H but not on H" define F by F(y) =f(WyWb~1) where Wy and Wb

are the Casorati matrices of y and b. If s e G and the matrix of s is S then

F(s(b))=f(Ws(b)Wb~1)=f(SWbWb~1)=f(S). Therefore there are polynomials

F e M {y} with F(s(b)) = 0 for all s e H but not for all s e H". Choose such a poly-

nomial E of minimal length as a sum of monomials and with some coefficient 1.

If for teH, "£t" denotes the result of applying t to the coefficients of E,

then Et(s(b)) = t(E((t~1s)b)) = 0 for seH. Since E - Et is shorter than E, it

vanishes at s(b) for all seH". If E — E, were not identically zero there would be

a k e M with E-k(E- Et) shorter than E. Since E - k(E - Et) is zero at s(b) for

all s e H but not all s e //", this contradicts the choice of E. Therefore E — Et is

identically zero, and the coefficients of E are left fixed by each teH. Therefore

they are in //' and are left fixed by H". Therefore E(t(b)) = t(E(b)) = 0 for all

t e H", contradicting the choice of E. This completes the proof of (2).

If H is connected and z is algebraic over H' with conjugates z(1), ••-,z(n) then

the equations F(z) = z(l) partition H into a finite number of closed, disjoint, hence

open subsets. Since H is connected it is contained in one of them. Since H contains

the identity, all of H leaves z fixed. Therefore zeH' and H' is relatively closed.

If L is relatively closed then M/ L is a PVE whose variety T is irreducible by

Theorem 2. By Theorem 1, T = L'UR where R is the set of singular matrices



1963] PICARD-VESSIOT THEORY 497

of T. Since T contains the identity, R is of lower dimension than T. Therefore

L' is dense in T. If L' were not connected there would be closed sets E and F with

L' contained in their union but not contained in either E or F. Since L' is dense

in T and E U F is closed, T cE\JF. Since T is irreducible, T and therefore L'

is contained in either £ or F contradicting the choice of £ and F. To show that

M is normal over L and L =L" it is sufficient to show that each element z of

M-L is not in L". If this is not the case, since L is connected, L" is relatively

closed and L leaves L<z> fixed. If T and T(z) are the varieties determined by L

and L<z> then dim T > dim T(z). As above T = L' U R. Since L' c T (2> Tis

contained in the union of two varieties of lower dimension than T. This contra-

diction completes the proof of (3) and (4).

Assume that H is normal in G and connected. If xeH', seG and teH then

s~x tse H so t(s(x)) = s(x) and s(x) e H'. Since s~1 also maps H' into itself, s maps

//' onto itself. Therefore the restriction mapping of G to the group D of //' over

K is a homomorphism. Its kernel is H and its range is the subgroup of D of elements

having extensions to elements of G. We wish to show that this is all of D. Assume

that seD. Each z in //' can be written as P/ Q for P and Q in /c{i>}. A difference

isomorphism s' of M will map z to s(z) if and only if it satisfies s'(P) = s(z)s'(Q).

Therefore s' maps z to s(z) if and only if its matrix satisfies

p(Z*ybW) = s(z)ß(ZV>Ü)).

These equations for the Xy can be combined with S to give a set of equations in

CK[x] whose nonsingular solutions in difference overfields of M are difference

isomorphisms extending s. Since H is relatively closed, there is an extension of s to

a difference isomorphism of M [1, Chapter 9, Corollary to Theorem 1]. Therefore

the set of equations has a nonsingular solution in CN for some difference over-

field N of M. Since CK is algebraically closed there is a nonsingular solution in CK,

and s has an extension to an element s' of G. Finally, since M is normal over K

and //' is stable under G, //' is normal over K.

If L is normal over K and relatively closed in M then, as above, every auto-

morphism s of L over K extends to an s' e G. Since L is stable under s', if t e L'

and x e L then i(s'(x)) = s'(x), so s' _1is' e L'. Therefore each such s'e N, where

N is the normalizer of L. Since L is normal overX, N'C\L=K. Since L'cN, JV'

cLsoJV'=K. The normalizer of an algebraic matrix group is an algebraic matrix

group [2, p. 29], so N = G. Therefore L' is normal in G. G/L' is the full group of

L over K by (5).

In general the full transformal Galois group is not naturally isomorphic to a

matrix group. The matrix of the composite of g and h is the matrix of g times the

matrix obtained by applying g to the entries of the matrix of h. However, by

adjoining the field CM to K, and considering M as a solution field over K(CM),

one obtains a group D which is naturally isomorphic to a group of matrices
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contained in an algebraic variety T. Theorem 1 implies that T consists only of

isomorphisms and singular matrices. The Galois correspondence given in Theorem

4 below for D and fields between K(CM) and M depends in part on whether a

subgroup of D is dense in a variety containing it. Examples where this is not the

case are not known.

Theorem 4. Assume that M/K is a solution field with basis b and H is any

group of automorphisms of M/K which is naturally isomorphic to the set of

matrices in Tb corresponding to H.

(1) Algebraic subgroups of H are Galois closed in H.

(2) Connected subgroups of H correspond to relatively closed intermediate

fields.
(3) Assume that L is a relatively closed intermediate field, V is the subset

of H leaving L fixed, and Tb is the variety obtained by considering M as a

solution field over L with basis b. IfV is dense in Tb then L is Galois closed with

respect to H and L' is connected.

Proof. The first two assertions can be proved as in Theorem 3. If L is relatively

closed then Tb is irreducible. L' is dense in an irreducible variety so V is connec-

ted. Assume that z is not in L but L' leaves z fixed. Since L' is connected, V

leaves L(zy fixed. However, by Theorem 2 the variety of L<z> is of lower

dimension than TbL and cannot contain a dense subset of TbL. This contradiction

shows that L = L".

A crucial step in the study of the solvability of differential equations is the

theorem that a solvable connected matrix group over an algebraically closed

field is triangularable.To imitate the approach used in differential algebra, it is

necessary to obtain a group of automorphisms whose matrix entries, with respect

to some basis, are in an algebraically closed field, and whose fixed field has simple

structure over K. If M/K is a solution field with basis b then the subsets of Tb

and D consisting of nonsingular matrices with entries in CK are automorphism

groups. The following propositions and examples investigate these groups.

Proposition 2. // M/K is a solution field with basis b and T is a subfield of

CM then there is a set Sb' <= r[xy] so that thefollowing hold.

(1) A solution to S'b is a solution to Sb.

(2) A solution to Sb in T is a solution to S'b.

(3) //T is algebraically closed and contained in K, then the variety of S'b over

F is an algebraic matrix group of automorphisms of M/K plus singular matrices.

Proof. Write the polynomials F of Sb as F = Z/(k)u(i) where v is a vector basis

of CM over T and/^elTxy]. Take S'b as the set of all suchfw. The first two

statements are now clear and the third can be proved using [2, Lemma 5.3].

Theorem  4  applies  to any   group Gb^ obtained by deleting the singular
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matrices from a variety Tb(1) determined as in Proposition 2 by a basis b and a

subfield T. In ail applications T will be the constants of the original ground field.

That is, even if M is being considered as a solution field over K(CM), Gb{1) will be

the group of automorphisms of M/K(CM) with matrix entries with respect to b

in CK. To be useful in the study of solvability it is necessary for each element in

the fixed field of such a group to be algebraic over K(CM).

Proposition 3. Assume that M/K is a solution field with basis b, T is an

algebraically closed field of constants of K, G^1' is the group determined as in

Proposition 2, Cib1) the component of the identity of GbX) and Cb the irreducible

subvariety of Tb determined by R. The following are equivalent and imply that

R is Galois closed with respect to C£X).

(a) C¿1} is dense in Cb.

(b) dimC6=dimC¿1).

(c) There is a basis for the ideal of Cb in C[x].

Proof. If C6(1) is dense in Cb then R is Galois closed with respect to c£1} by

Theorem 4. (Special case of (3) with R=L,Cb1) = L and Cb = Tb .)

a -* b. The ideal of C£X) generates a prime ideal over CM whose variety V has

dimension dimC^1'. If dimC¡,(1)< dimCfc there is a polynomial in CM[x] which

vanishes on V but not on Cb. Therefore there is a closed set containing C¿1} but

not containing Cb. This contradicts (a).

b -+ c. If/ is in the ideal of Cb write/ = Z/¡(í° v(k) where h we T[x] and v is a

vector space basis of CM/T. If A is the set of all such h(k) then a solution to A is in

Cb. Since the variety of A over CM contains C£1} it has dimension dimC,,. Since

Cb is irreducible, Cb is the variety of A.

c-»a. If Sb is the set of polynomials determined as in Theorem 1 by considering

M as a solution field over R then Cb is the variety of Sb. If S,,(1)is the set of poly-

nomials determined as in Proposition 2 by M/R, b and T then C^1} is the variety of

S^K S£J) consists of all /i^'eTfx] which appear when each/eSb is written

/= Y,hwv "''for a vector space basis of CM/T. If R is a basis for Sb in T[x] then

each / in Sb can be written/= Z^(,)P(,) for g(,) e CM[x]. To express/ in the form

Zn(*V°it is sufficient to express the g(,) in that form. Therefore R is also a basis

for SbA) and a polynomial vanishing on Cb(1)vanishes on Cb.

A solution field M/K is a generalized Picard-Vessiot extension (GPVE) if

there is a basis b and an algebraically closed subfield T of CK with Cb(1) dense in Cb.

A solution field M/ K for an equation/ of order n will be called a generic solution

field for f provided t.d. (M,K) = n2.

Proposition 4. Every linear homogeneous difference equation has a generic

solution field M/K. Therefore if CK contains an algebraically closed subfield

every linear homogeneous difference equation over K has a solution field which

is a GPVE.
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Proof. If b is a basis for some solution field, choose «2 algebraically

independent constants cu, and set dM= Zcyfcw). Then d(,) is a solution to/, and

C*(d) = det cuC*(b) ^ 0. To determine the equations Sd it is sufficient by the

proof of Theorem 1, to take all polynomials F in K{y} with F(d) = 0, and write

the equations F(ZxiJd0),...,Zx„Jd(j)) = 0 in terms of a basis of M over CM.

However, since the cl} are algebraically independent over K<[ b} the equation

F(d) = F(T,cljbiJ\-,¿ZcnjbU)) = 0

is an identity for constants ctj. Therefore

f(s(Sx1;,,)^,.,S (sv^(j=o

for all Xij. Therefore Sd is {0} and Td is the full set of n x n matrices.

The following example shows that if b and d axe two different bases for the

same solution field then C(b1) may be dense while Cdl) is not.

Example 3. If CK is algebraically closed, z and zt axe algebraically independent

over K, and z2 = z then /C< z> is a solution field over K for y2 — y = 0. Among

the bases are b = (l,z) and d = (z,z + zzt). By the dimension theorem a generic

zero of Cb and of C^ is

1     0

x     y

where x and y are algebraically independent over CM.

By direct computation and the dimension theorem a generic zero of Cd is

(    X      ")\ x + y — w     w /

where x and y are algebraically independent over CM and

w = y + (x + y)2 + y2zzi + y(x + y)(z -(- zt).

Therefore a generic zero of Cdl) is

x 0

x — x2 x2

which shows that C(d1) is not dense in Cd.

5. Unicity of compatible Picard-Vessiot extensions. If L and M axe compatible

difference overfields then there are fields of the form L(M'} where M' is isomor-
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phic to M.   If K is algebraically closed in L then L is compatible with any

difference overfield of K [1, Chapter 7, Corollary to Lemma 1].

The following theorem indicates the relation between the various solution

fields for a given equation.

Theorem 5. If L = K(a} and M = K<[ b} are solution fields over K for f

then t.d. (L,K(CL)) = t.d.(M,K(CM)). If L and M are compatible the following

hold.

(1) There is an isomorph M' of M and a set of constants R with L(R) = M'(R).

(2) If L is a PVE, then there is a specialization b-+b* with L = K<[ b*}.

(3) // L and M are PVE of K, then L and M are transformally isomorphic

over K.

Proof. Choose a generic solution field N = K<[ d}. Kis algebraically closed in

N so N and L are compatible. Choose N(L'} with II = X< a'} isomorphic to L

and set D = CN<L.>. Since there are f^g^eD with d(l)= Z/,/i'0) and

a'(i) = lgijdU), N(D) = N(L') = L'(D).

Since K(D) is linearly disjoint from N over K(CN) and L over K(C'L),

t.d. (N,K(CN)) = t.d. (N(D),K(D)) = t.d. (L(D),K(D)) = t.d. (L',K(C'L))

=   t.d. (L,K(CL)). Therefore t.d. (L,K(CL)) = t.d. (M,K(CM)).

If L and M are compatible then there is a field L(M') with M' = K(b')

isomorphic to M. If R = CL<M,> then L(R) = L(M'} = M\R} as above. If L

is a PVE of K and b'(i)= Zcy-aw) with c^e/î then there is a specialization

k->k* of the generators of R into Cx not annulling detc0-. Since L and X(.R) are

linearly disjoint over K, (a,k)->(a,k*) is a specialization of L(R) into L. Since

M'(-R) = L(R), it restricts to a specialization of M' into L. Since detc^O,

the specialization is onto L. If M is also a PVE then t.d.(M,K) = t.d.(L,K)

and the specialization is generic.

If K = C(x) then K is algebraically closed in any solution field M. (If Z e M

is an algebraic function then l.d.(K<[Z},K) = 1. Therefore there is a j with

Z;e/C(Z, ••-,ZJ-_1) and the branch points of Z¡ are among those of Z,---,ZJ^l.

Then Z¡ has no branch points and Z is rational.) Therefore any two solution

fields over K are compatible and Theorem 5 applies to equations over C(x).

If K is the inversive closure of the rational functions of x over C where x1 = x3

then a and b, defined by a2 = b2 = x, c^ = xa, and b1 = — xb, axe solutions

to y2 = xy. If d is a solution with t.d.(ZC< d>,ZC) = 2 then X< a, d> and K<[ b, d)

axe solution fields for y2 = xy which are not compatible.

Example 7 shows that even if K is algebraically closed in solution fields L

and M which are minimal in the sense that their only specializations are generic,

L and M need not be transformally isomorphic over K.

6. Solvability of difference equations in generalized Liouvillian extensions. In

order to study the solvability of linear homogeneous difference equations three
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types of extensions will be used for constructing solution fields. They are solution

fields for equations of the form y y = Ay or y y — y = B, and algebraic extensions.

Equations of the form y y — y = B have especially simple solution fields.

Proposition 5. // B is in K, B ^ 0, and a is a solution to yy—y = B then

M = K(a) is a solution field over K with basis b = (a,\). If there is no solution

to yL — y = B in K then a is transcendental, K(a) has no new constants, and

there are no intermediate difference fields different from K and K(a). If there

is a solution feK then K(a) is an extension of K by a constant, which may be

either transcendental or algebraic over K. If a is transcendental then Th is the

set of all matrices

V o   i '

for c in the algebraic closure of CM. If CM = CK then the full Galois group of

M/K is isomorphic to the additive group of CK.

Proof. C*(a,l) = -B^O so K<a> is a solution field over K for

y2-((B + By)/B)yy + (By/B)y.
If there is no solution to y y — y = B in K, then a is transcendental as an algebraic

relation a "+ Aan~x +•••+£ = 0 transforms to

(a + B)n + Ay(a + B)"~1+ - +Et = 0.

Equating coefficients, A = Ay + nB, and — (A/ n) satisfies y y - y = B, a contra-

diction.

If for C # 0 the rational fonction of a,

P/Q = (Ca"+Aa"-1+-+D)/(am+Eam-1+-+F)

is constant, then PQy = QPy so

P((a+B)m + Ey(a + B)m-1 + - + Fy) = Q(Cy(a + B)n + A1(a + B)n-1+ - + Dy).

Therefore C1fl"+m = Ca"+m and Cx = C. Equating coefficients of a"+m_1 gives

mBC + EyC + A= CyE + Ay + nBCy. Then, since Cv = C, (A/ C) - E satis-

fies y y — y = (m — n)B and m = n. If there were constants not in K, then there

would be a rational function F of a whose numerator had minimal positive degree.

By the above, F is of the form

F(a) = (Can +f(a))/(an + g(a)) = C + (f(a) - Cg(a))/\(a" + g(a)).

Since C is constant,/(a) — Cg(a) = 0, and F(a) = C, a contradiction.

Now suppose L is an intermediate difference field, L ^ K. L is not algebraic

over K as K(a) is just the ordinary rational functions over K. Therefore a is

algebraic over L. Then, as in the first step of the proof, there is an element E in L
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satisfying y y — y = B. Then a - Eis constant and in CK, so a eL and L = K(a).

If there is a solution feK to yt-y = B, then a-f is constant and

K(a) = K(a —f) is an extension of K by a constant.

To obtain the matrices with respect to (a, 1), clearly 1->1. If a-* xa + y then

the equation ax - a = B gives x = 1. Therefore, the eligible matrices are at most

all the matrices

By the dimension theorem, if a is transcendental, the matrices are all of the

above. The last assertion is obvious.

It is not always possible to solve equations of the form yx = Ay in a PVE.

The following example shows that the existence of a PVE depends essentially on

the ground field and not on A.

Example 4. If CK is algebraically closed and there is no solution to yt = A"y

in K then Proposition 6 (below) shows that adjoining a solution b to y¡ = — Ay

preserves the constants of K. If a is a solution to y, = Ay over K<[ b} then a2/b2

is constant. It cannot be specialized to a constant in CK as a/ b is not constant

and CK is algebraically closed.

Proposition 6. // a is a nonzero solution to yt — /4y=0 over K and there is

no nonzero solution in K to y, — ̂ 4"y = Ofor positive integral n, then a is tran-

scendental and K(a) has no new constants. If L is an intermediate difference

field then L = K(a") for some integer n. If there is such a solution in K then

K(a) is obtained from K by an extension by a constant, which may be either

transcendental or algebraic, followed by an algebraic extension. If a is tran-

scendental the variety Ta is the full set of all constants. IfCK(a) = CK then the full

Galois group of K(a)/ K is a multiplicative subgroup of CK.

Proof. If there is no nonzero solution to yy = A"y in K then a is transcendental

as an algebraic equation a" + •••+£ = 0 transforms to A"a" + ■■■ + £t = 0.

Then Et = A"E, and £ = 0 contradicts the minimality of n.

If P/Q = (Ca" + ■■■ + B)/(am+ - +F) is constant with C =¿ 0, then by

by inverting if necessary we can assume m^n. Since PyQ = PQU

Q(CyA"an + ». 4- Bt) =» P(Amam +- + £t).

Equating coefficients of an+m gives C^A" = CAm. Therefore Cj = Am~"C, and

C =£ 0 gives m = n, Ct = C. The proof that there are no new constants can now

be completed as in Proposition 5.

If Lis an intermediate difference field and L=£K, then a is algebraic over L.

As above there is a nonzero solution £in Lto y1 = A"y, for some positive integer n.
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Since a" is also a solution to y y = A"y,a"= CE for  some  C in  CK and

K(a") c L. Then L = K(a'") for some positive integer m.\

If there is anfeK with/i = A"f then K(a) may be obtained from K by the

chain X <zz K(a"/f) = K~(a") c K(a). The first step is an extension by a constant

and the last algebraic.

The final assertion is obvious.

The following definition is motivated by Propositions 5 and 6. N/K is a

Liouvillian extension (LE) if there is a chain

(1) KcKyczK2-czKt = N, KJ+1 = K,<aü)>

where a0) is one of the following.

(a) A solution to an equation y y — y = B, where B e Kj and there is no solution

in Kj to yt — y = B.

(b) A solution to an equation y y =Ay where AeK¡ and there is no nonzero

solution in K¡ to any equation y y = A" y, n a positive integer.

(c) Algebraic over Kj.

More generally N is a generalized Liouvillian extension (GLE) of K if there is a

chain (1) with aU) one of the following.

(a) A solution to y y — y = B, B eK}.

(b) A solution to y y = Ay, AeKj.

(c) Algebraic over K}.

Theorem 6 is an immediate consequence of the definition of LE.

Theorem 6. If M/ K is a solution field with CK algebraically closed, and M is

contained in a LE N/K then M is a PVE of K.

Proof. It is sufficient to show that CN = CK. By the preceding propositions

it is sufficient to show that an algebraic step in the chain (1) does not introduce

new constants. The first such constant introduced would be algebraic over CK.

Since CK is algebraically closed this is impossible.

Detection of the solvability of an equation from the solvability of a matrix

group is based on the following proposition.

Proposition 7. If M = K( a(1), ■••, a(n) ) and S is a set of isomorphisms of M

with the property that for he S there are constants C,j e M, with

h(au)) = CjjaU)+- + Cjnaw,

then M is a GLE of the fixed field L of S.
If each Cjj = 1 then M can be obtained from L by solving equations of the

type yy-y = B.

If C¡j = ôijCij then M can be obtained from L by solving equations of the type

y y = Ay.



1963] PICARD-VESSIOT THEORY 505

Proof. The proof will be made by induction on the number of nonzero aU).

Since h(ain)) = Cma(n) for each h, a[n)/a™ e L and aw may be adjoined to L

by solving y«. - (af/a(n))y = 0.   Set bU) =(a(J)/aw), cU) = b[J) - bU)   and

Cjk = Cjki C„„.

h(bU)) = Cjjb(J) +- + Cj^^-» + Cnn

h(éJ))=  CJjc^ + - + Cjtn_1c^»

The cU) may be adjoined by the inductive assumption, and then the f>(j) by

solving yi~ y == cU).

If Cy = 8UCU then for each n, h(aU)) = CnaU) so (a[j)/a(J))eL.

The proof for the case Cu = 1 will be made by induction. Since n(a(n)) = a(n),

a(n) is already in L. In the above Cy = 1 so the c0) can be adjoined by the induc-

tive assumption, and the bU) as above.

Theorem 7. Assume that M/ K is a solution field and H is a connected group

of automorphisms of M/ K with matrix entries with respect to some basis b in an

algebraically closed subfield of CM. (It need not be isomorphic to the set of

matrices corresponding to H.)

(a)  If H is solvable M/ H'is a GLE.

(h) If H is reducible to diagonal form, M/H' can be obtained by solving

equations of the type yt = Ay.

(c) If H is reducible to special triangular form, M/H' can be obtained by

solving equations of the type y1 — y = B.

Proof. By the previous proposition it is sufficient to apply the theorem that a

solvable connected matrix group over an algebraically closed field admits trian-

gular form.

Corollary. IfM/K or M/K(CM) is a GPVE with C^ dense and solvable

then M/ K is a GLE.

For PVE the situation is as in differential algebra.

Theorem 8. If M/ K is a PVE then M/K is a GLE if and only if the component

of the identity of the Galois group is solvable.

Proof. If the component of the identity is solvable then M is a GLE of its fixed

field by Theorem 7. Therefore by Theorem 3 M is a GLE of K and hence of

K [1, Chapter 5, Theorem 18]. The converse is a special case of Theorem 9 below.

The group of M/K will be denoted by "G(M,/C)" and its component of the

identity by "C(M,X)." If G and H are groups of automorphisms having matrix

representations with respect to a vector b then "// < G" will mean that each

matrix of an automorphism in H is the matrix of an automorphism in G. (It is not

necessary that H and G be isomorphic to their matrices.)



506 C. H. FRANKE [September

The following proposition will be used to extend the theory to solution fields

contained in GLE.

Proposition 8. Assume that M/K is a solution field for f, My = M</?>

andKy=K(Ry.

(1) If Ky and M are linearly disjoint over K then G(M,K) < G(My,Ky).

(2) If CM = CK and R consists of constants then G(M,K) < G(My,Ky).

(3) If R is an algebraically independent set over M and X<P) = K(R) then

G(M,K)<G(My,Ky).

(4) If R consists of elements algebraic over K then G(M, R) < G(My, R(Ry).

Proof. An automorphism s of M/K extends uniquely to an s' of My/Ky

[1, Chapter 8, Lemma 1]. The mapping of s to s' is the identity on matrices so

G(M,K)<G(My,Ky).

If R consists of constants, Proposition 1 (3) applies.

If R is an algebraically independent set over M then K(R) and M are linearly

disjoint over K [5, Chapter 3, Proposition 3].

If R consists of elements algebraic over K then R(Ry and M are linearly

disjoint over R [5, Chapter 3, Theorem 2].

Theorem 9. // M/K is a solution field contained in a GLE N/K then

C(M,K(CM)) is solvable.

Proof. By Proposition 8 (2) C(M,K(CM)) < C(M(CN),K(CN)). Therefore it is

sufficient to consider the case C^ = CK. If the chain from K to N is

Kcz /v<a> c • • • cz N then by induction on the length of the chain C(M( a y/K < a »

is solvable. If a is transcendental over M then, since a satisfies ay = a + B or

ay =Aa over K, X~< a> = K(a). By Proposition 8 (3) G(M,K) < G(M(ay,K(ay)

and C(M,K) is solvable. If a is algebraic over K then by Proposition 8 (4)

C(M,K)<G(M,R)<G(M(ay,R(ay)<G(M(ay,K(ay) so C(M,K) is solv-
able.

If a is transcendental over K but algebraic over M there are two cases. If a

satisfies y y — y = B over K then aeM, K(a) is stable under G(M,K) and

G(K(a),K) is commutative (Proposition 5). Therefore G(M,K(a)) is normal in

G(M, K) with commutative factor group and C(M, K) is solvable [2, Lemma 4.9].

If a satisfies y y = Ay over K then a" is in M for some positive integer n,

K(a") is stable under G(M,K) and G(K(a"), K) is commutative (Proposition 6).

C(M,K(a")) < G(M,K(any) < G(M(ay,K(ay) (by Proposition 8 (4)) so

C(M,K(a")) is solvable. Since G(M,K(a")) is normal in G(M,K) with commu-

tative factor group C(M,K) is solvable [2, Lemma 4.9].

Corollary. // M/K is a solution field contained in a GLE N/K and

MjK(CM) is a GPVE then M/K is a GLE.
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The following theorem is useful in the study of the solvability of particular

difference equations in GLE (e.g. Theorem 13 below).

Theorem 10. Assume that K is a difference field and L and M are solution

fields for f over K. If L is contained in a GLE N of K and M is compatible with

N then M is contained in a GLE of K.

Proof. Since M and N are compatible there is a field M(N'y with JV' iso-

morphic to N. Then M< N'y = JV'< CM<¡v->> is a GLE of K containing M.

Corollary 1. If N is a generic solution field for f and some solution field

forf is contained in a GLE of K then N is contained in a GLE of K.

Proof. K is algebraically closed in JV.

Corollary 2. // K = C(x) and a solution field for f is contained in a GLE

of K then every solution field for f is contained in a GLE of K.

Proof. K is algebraically closed in any solution field.

7. Application to second order equations. Throughout this section L will be the

difference polynomial y2 — Ay y — By over a difference field K with CK algebrai-

cally closed, and a will be a solution to L with t.d. (K( oc>,/Q = 2. The following

theorem may be used to show that PVE suffice for the study of the solution fields

of a particular difference equation.

Theorem 11. // the only nonzero solutions to y y = B"y in /C<a) are n = 0,

ye CK then any solution b of L is contained in a PVE M of K. If b is contained

in a GLE of K then M is a GLE of K.

Proof. Assume that b is contained in a GLE JV of K and choose a solution <x of

L with t.d.(JV<a>,N)= 2. If W = C*(a,b) then Wy = - BW so N(W) is a GLE

of K. Over N(W) oc/b satisfies yy-y = W/bby so JV<<x> is a GLE of K. To

complete the proof it is sufficient to define a PVE M/K with be M and

Jv/cJV<a>.

By Proposition 6,K~<a, W> has constant field CK and t.d. (/C<a, Wy,K) = 3.

If b is algebraic over K{ a, wy then K<[ a, by is a PVE of K. If b is transcendental

over K(a,wy then t.d.(K{by,K) = 2 and K(b,Wy has constant field CK.

Since cc/b satisfies yt -y = W/bby over K< b, Wy, either K<[ ¿>,<x> is a PVE or

there is an element d of K( b, Wy with d = a + cb for some constant c.

C*(b, d) = C*(b, a) # 0, and X< fe, d> = K < fc, W> is a PVE of /C for L.

The following lemma will be used to prove the existence of PVE for certain

equations over C(x).

Lemma. If K = C(x) and there is a solution in X< a > not in K to y y — Dy for

some DeK then there exist E, FeCTx], GeK and a positive integer n with

(Eoty + Fa)„ = G(E«y + Fa) # 0.



508 C. H. FRANKE [September

Proof. If z1 = Dz then z may be written as s/t for s and t relatively prime

in K[cc,a1~\. Since stt = Dstu there is a TeK with Sj = Ts, Tt = Dt1. Therefore

there is a solution in K\_a,a{\ — K to an equation of the form y t = Dy.

Since transforming preserves total degree in a and al5 such a solution can be

taken homogeneous of positive degree in K[ct,a1]. Then

(Awa1 +■••+ A(n)an )x = D(A(0)a[ + - + A(n)a")

or

A[0)a"2 + ■•• +A[n)al = D(yl(0)a; + ••• + X("V).

If Z> = at/a then &! = (Ab + B)/b and oc2/a = be«,. Dividing by a" gives

&Vi%" + - + A[n)) = £>04((V + - + A(B)).

Define/in JK[f] by/(i) = A(0)in + - 4- ¿(n), and denote 40)f "4- •- + A^hyf^t).

Choose an extension of the transform to the algebraic closure R of K and

define    ti = t.   Factor /  in   K\t]   to /(f) = H(t - s(1)) •■•(;- s(m)).     Then

/i(0 = (/(0)i = Hi(t - s[»)-(t - s[m)) and since &"/i(*i) = Df(b),

= D//(b-s(1))-(ft-s(m)).

Assume that some s(j) is not in K. Then there is an i with s*0 = 04s(l) + B)/s(J)-

s(i) is not rational as B ^ 0 and for some k, s¿k)= (As(i) + B)/sc'\

s(k) = ((AAi + B«J su) + AlB)/(AsU) + B). Continuing in this way one obtains a

chain s°\ s(,), s(k), ■■■ in which each term is not rational and so that each term has

a transform which can be expressed rationally in terms of any preceding term.

Such a chain must have a repetition so some sp<4), p > 0, can be expressed rationally

in terms of s<q). Since s(9) is not rational, s(q) and spq) have different branch points.

This contradiction shows that each s0) is rational.

Replacing s0) by £0)/F0) and b by oq/a one obtains

a\-m(F(1\ + E(i)a\ - (Fim\ + Elm)a)i

= G(0)an-m(F(1)ai 4- £(1)a) ••• (F(m\ + £(m)a).

This can be rewritten as

(F(l\ + £(1)a)i .» (F(n\ + EWj)!

= Gw(Fwat + £(1)a) - (F(n)ai 4- £(n)a).

Any (FU)ax + Eü)a)í divides the right side of the equation in X[a,at] so there

is a chain p'1^ + £(1)a, F ^ + £(l)a, ••■ in which any two different elements
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satisfy a relation of the form (E(i)<Xy + F(i)a)k = G(EU)ay + FU)a) and no term is

zero. An eventual repetition in this chain gives a relation of the desired form.

Theorem 12. // K = C(x) and B is monic and of degree one in C[x] then

every solution to L(y) = y2 — y y — By is contained in a PVE of K. No solution

of L is contained in a GLE of K.

Proof. Assume that M is a PVE of K for L contained in a GLE of K. By

Theorem 9 the group G of M/K has a solvable component of the identity H.

Therefore H is triangularable and some solution a of Lis such that ay/a is left

fixed by H. Therefore ay/a is an algebraic function b. Since by — 1 +(B/b),

b and by have the same branch points. Therefore b is a rational function. If

b = P/Q for P, QeC[x] then PPy = PQy + BQQy. However, if dP > dQ then
PPy has greater degree than PQy + BQQy. If dQ k dP then

d(BQQy) > d(PPy - PQy).

Therefore no such relation is possible and no PVE of K for L is contained in a

GLE of K.

To complete the proof it is sufficient by Theorem 11 and Proposition 9 to show

that if Zy =jB"ZforZ=i:0andZinZ<:<a> then n = 0andZeCK. If ZeK then

n = 0 and Z e CK. If Z is not in K then the lemma applies and there are poly-

nomials E, F not both zero and a rational function G with (£ax + Fu)j

= G(£a1+Fa) for some j>0. To complete the proof it is sufficient to show that

no such relation can exist.

If either £ or F is zero the relation has the form a,- = Ha for some H in K. This is

clearly impossible for j = 1. To show that it is impossible for j > 1 we will show

that for each such j there exist unique polynomials R and S with positive leading

coefficients so that a,- = Rdy + Sa. The unicity is immediate since t.d. (K(ay,K) = 2

and the existence will be proved by induction. For 7 = 2, a2 = a1 + /3a. If

ak = R<Xy + Soc where R and S have positive leading coefficients then

ak+y=(Ry+Sy)Cty+RyBa

so ak+1 is of the same form.

If neither £ nor F is zero we may assume that either £ or F is monic. We may

also assume that; is even. If EU)oty + F0)a = (Eocy + Fa); then

£(0) = E        E(2i+2) = (1 + Bi)E(2j) + Foni

F(o) = p        F(2i+2) = b(E2) + F(22J)).

Since a relation as above gives £(2j) = G£ and F(2j) = GF the following must

hold.

(1) dE(2J)-dE = dFi2j)-dF.

(2) el2J) = e if and only iff W)=f.
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(Lower case letters denote leading coefficients.) In each of the possible cases

a contradiction to (1) or (2) will be obtained.

Case I. dF > dE + 1. Assume e = 1. A contradiction to (1) can be obtained

by proving by induction that

dE(2J) = dF + (j-l)       ei2j) = jf

dF(2J) = dF+j fi2j) =/.

Case II. dF = dE + 1. Assume /= 1.

A. If e is not a negative integer, a contradiction to (2) is obtained by proving

the following:

(a) dE(2J) = dE+j eW)  = e+j,

(b) dF(2ñ = dF+j fW)  = 1.

B. If e = — k for a positive integer k then (b) holds, (a) holds for j # k and

dE(2k) <dE + k. The proof can be made in three steps, by induction for; < k, the

special case j — k with subcases k ?= 1, k = 1, and by induction for j > k. This

contradicts (2) for j # k and (1) for; = k.

Case III. dF = dE. Assume e = 1.

A. Iff is not a negative integer, a contradiction to (2) follows from

(a) dEW) = dE+j eW)  = 1,

(b) dFi2J)=dF + d f<2»=f + j.

B. If/= — k for a positive integer k then (a) holds, (b) holds for j ^ k and

dF(2k) <dF + k. This can be proved and the proof completed as in Case II part B.

Case IV. dF < dE. Assume e = 1. A contradiction to (1) follows from the

following relations :

dEl2J) = dE+j e(2j)   = 1,

dFi2J) = dE+j f(2i)  = j.

The following example shows that neither part of Theorem 12 can be general-

ized without some restriction on the polynomial B.

Example 5. If D is any rational function then the equation

yi-yi- (DiD -D)y = 0

is satisfied by a solution a to yx = Dy. Any solution field K( a, b} is a GLE of K

as W = C(a,b) can be adjoined to X<a> by solving yt = (D - D^y and b/a

can be adjoined to K( a, W) by solving y^ — y = ir/aa«: •

Taking D = x the equation y2 - yi — x2y = 0 is therefore solvable in a GLE.

If ¿» is solution with C(a,b) # 0 and Z = (i)1-xb)/a then Z # 0 and Z«, = - Z.

Therefore is a Z2 constant not in CK, and no PVE of K contains a.
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If ft is a solution with t.d.(K~< by,K) = 2 then a linear polynomial as described

in the lemma is by — xb, since (by — xb)y = — x(by — xb).

By trivial modifications of the proof of Theorem 12 one may show that equations

of various types do not have solution fields which are PVE contained in GLE

of C(x). The difficulty is in showing that PVE suffice for the study of the solution

fields of such equations.

The following lemmas will be used to prove that equations exist which do not

have solution fields M/K with M/K(CM) a GPVE.

Lemma 1. // M/K is a solution field for y2 — By, then the group of

M/K(CM) is commutative. A matrix representation of the group consists of

matrices of the form

ix        -ye \

W    x-yf'

where e and fare fixed constants not both inCK, and x and y are in CM.

Proof. If (a,b) is a basis setj = a/ b. Thenj2 —j so e =jjy andf = j +jy are

constants. Since C*(a,b) # 0, jt #/ Since ; is algebraic over CK(e,f) and CK is

algebraically closed CK(e,f) # CK.

An automorphism with matrix

IE    F\

\G   HJ

leaving K(CM) fixed, leaves j fixed and satisfies

(Ea + Fb)b = (Ga + Hb)a.

Since ab = jb2 and a2 = j2b2, (E - H)j + F - Gj2 = 0. Since j2 = jf'- e, (E-H

— Gf)j + (F + Ge) = 0. Since 1 and j are linearly independent over CM, H = E

- G/and F = - Ge.

Lemma 2. Assume that B has the following properties.

(1) If B" = PPy for P in K then n = 0.

(2) IfB" = Py/Pfor PinK then n = 0.

// a is a nonzero solution to L(y) = y2 — By, then /v<a> has constant field

CK and t.d.(K(ay,K) = 2.

Proof. If a were algebraic over K with minimal equation a" + ■■■ + P = 0

then B"a" + ■•• +P2 = 0 and P2 = B"P contradicts (1),  since

P2IP = (Py/P)(P2/Py).

If t.d.(K(ay,K) = 1 and c is a constant in X<a> but not in CK then a is
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algebraic over K(c). Therefore there is a P in K(c) with P2 = B 'P. P can be written

in the form

c"+ -■ + QcJ/Rcm+--+Sci

where SQ # 0.

Transforming twice gives Q2S = B'QS2 and Q/S contradicts (1). Therefore

X<a> has constant field CK. If the minimal equation of a over /C(ax) is

a" + Qa"~1+ ••• + P = 0 then P2 = BnP. Since a" also satisfies y2 = B"y, a"/P is

periodic and therefore in CK. Since the equation Qa "~l+ ■■■ + (P + a") = 0 has

coefficients in/^(aj), n = l andaeK(ai). Similarly if the equation of a,_ over K(a)

is a\ + ••• +P = 0 then P2 = B[P, (a"/P) e CK, and at e K(a). Therefore a can be

written in the form a = (Pöj + Q)/(Ra1 + S) where Q = 1 or S = 1. If Q = 1,

transforming twice and comparing ratios of coefficients gives P = B1P2 and

S = BS2. Therefore P =S= 0 and aat = T. Then B = TJT contradicting (2).

If S = 1, proceeding as above gives R = 0 and ß = 0. Therefore ax = Ta and

B = TFj contradicting (1). Therefore t.d.(/C<a>,X) = 2.

Since transforming preserves total degree in a and ay, a constant in K(a} not

in X can be taken as a quotient of homogeneous polynominals in K\_a,a{\. If Fis

such a quotient then, by inverting if necessary, F can be written in the form

(Sa\ + - + P«3")/(RaT +••• + Qam)

with R =£ 0 or ß # 0. Since F«. is

(Piflï + - + SíBnan)/(Qíamí + - + R1Bmflm)

RQ ■£ 0 and P = 0 if and only if S = 0. Therefore F can be written as

F = a'a^Sal + -+ Pa")/(Ra1+ - + Qam )

with PQRS 5¿ 0.

Ft = BVaíf/VÍ + - + S1B"fln)/(ß1ar+ - + RiBV).

Therefore BiRP1 = SQ1 and Bn+iQS1=BmPR1 and Bm=Bn(QS1/PR1)(SÖi/RPi).

Therefore Bm-"=(QS/PR)(Q1S1/P1R1) and m = n by (1). Further Bi=SQJRPi

and B' = PR1/QS1 so B2i = (SP/RÔXRQ/SP),. and i = 0 by (2).

Therefore a constant must be of the form

F = (Sal + ». + Pa")/(aî + ••• + ßa")

for SPß 7^ 0. Transforming twice gives SB" = S2B1   so   S   is   constant.   Long

division shows that F — S = 0, and each constant in X< a> is in CK.

Example 6. The following examples indicate that hypotheses (1) and (2) of

Lemma 2 are necessary. The equation y2 = PPty has a solution defined by
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ay = Pa with t.d.(X<a>,X) = l. If b is a solution with t.d.(X<fc>,X) = 2

then (Pb + by)2/Pbby is a constant not in CK.

The equation y2 = (Pi/P)y has a solution defined by Oy — P/a with

t.d.(X<a>,X) = 1. If b is a solution with t.d.(X<b>,X) = 2 then bby/P is a

constant not in CK.

If K = C(x) then hypothesis (2) of Lemma 3 is satisfied by any rational function

B of nonzero degree. If B has a zero or pole c with c + n neither a zero nor pole

for n ^ 0 then B will satisfy (1).

Proposition 9. If B is as in Lemma 2 and M/K is a solution field for L then

M/K(CM)   is not a GPVE.

Proof. If (a,b) is any basis then by Lemma 2 K and X<a> have the same

constant field. By Proposition 1, X<a> and K(CM) are linearly disjoint over K.

Therefore t.d. (X<a,CM), X< CM» = t.d.(X<a),X) = 2. Therefore by

Lemma 1, t.d. (M,K(CM)) = 2, and the group of M/K(CM) is the full set of

matrices of Lemma 1. The subgroups of matrices with entries in CK is the set of

scalar matrices which is not dense.

Example 7. Assume that B is as in Lemma 2 and a is any solution to L. Choose

g and h transcendental over X<a> and set gy = — g, hy = 1/h, M = X<a,g>

and N = K(ot,hy. M and JV are solution fields for L with bases (a, go) and

(a, ha). M and JV are minimal solution fields in the sense that their only specializa-

tions are generic. If M and JV were transformally isomorphic over K there would be

A, B, C, DeCN so that a-*Aa + Bah, ga-*Ca + Dah, and therefore

g-*(A + Bh)/(C + Dh). By direct computation from gy = — g one obtains the

contradiction h = — 1.

The following theorem establishes a second class of equations solvable in PVE

but not in GLE. In addition the concept of GPVE is shown to be nonvacuous.

Theorem 13. Assume that X = C(x), L(y) = y2 — Ayy — ey where A is a

polynomial of positive degree and e a complex number, and M is a solution

field for L.
(1) No solution of L is contained in a GLE of K.

(2) M is a GPVE of M(K(CMj).

(3) // e is not a root of unity then M is generic and a PVE.

(4) If e is a root of unity but e^ — 1 then M is not a PVE.

Proof. If a solution of L is contained in a GLE of K then a generic solution

field N = X<a,/?> is contained in a GLE and the group D of JV/ K(CN) is sol-

vable. A contradiction will be obtained by showing that D is the full group of

2x2 matrices if e is not a root of unity and the full unimodular group if e is a

root of unity. The complete proof will use the following three lemmas whose

proofs are below.
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(1) If zeK<a> and z¡ = cz for ce C then c = 1 and zeC.

(2) lfzeK^ay-KandheKthenz^hz.

(3) If z e K{ a, W) where W = C*(a,ß) then zx - z ¿ W/ aat.

Assume that e is not a root of unity. By (1), K<[a, W} has constant field C.

Since ß/ a satisfies yY- y = W / aa^ over K(a, W} by (3) N = K(a,ß} is a PVE.

Since t.d. (N,K) = 4, D is the full group of 2 x 2 matrices. If M is any solution

field for L then t.d.(M,K(CM)) = 4 so M is a generic solution field and a PVE.

Ife" = l then CK<CC> = C by (1). Since Wi = - eW, W is periodic. By (3)

C«v = CK<xW). Therefore K(CN) = K(W), and D is the full unimodular group.

If M = K<ja,by is any solution field and W = C*(a,b) then t.d.(M,K(CM)) = 3

and W eK(CM). Therefore the group G of M/K(CM) is a three-dimensional

unimodular group, and consequently the full unimodular group. The full uni-

modular group over C is dense in G and M / K(CM) is a GPVE.

If e" = 1 but e # — 1 then If' is periodic but not constant so M is not a PVE

of K.

Proof of lemmas.

(1) If z e K then z can be written uniquely as a quotient of relatively prime

polynomials with the numerator monic zt is of the same form so c — 1 and

zeC. For z$K, (1) is a special case of (2).

(2) By the lemma preceding Theorem 12 there are E,F e C[x], G e C(x) and

j > 0 with (£aj + Fa)j = G(£at + Fa) ^ 0. If £F = 0 then there is a relation of

the form a} = Ga for some j > 0. This is clearly impossible for j — 1. For j > 1

we will show by induction that if ak = Raj + Sa is the (necessarily unique) repre-

sentation of ak with R,SeK then R,Se C[x] and dR > dS. a2 = Aat + ea and,

if ak =Ral + Sa then at+1 = (ARt + S^aj + eR«_a.

If EF ï 0 then £ and F can be taken with (E,F) = 1. If (£ax + Fa)k = E(k\+F wa

then £"+1)=<)+ff) and F(t+1) = e£« If (£W,FW)=1 then

(£j4),Ff) = 1 so (£(*+1),F(*+1)) = 1. Therefore (£(J'))F0)) = 1 and since

EU)/FU) = £/F> dE = dEU) By the relations above £(*+1) =AE[k) + e£2*-1).

Since d£w«>0, there is an n with d£ (n)+ dA > d£(n_1). By induction

dEin+k) = d£(n) + fedA. Therefore there is an m with dEm > dE for fe > m.

However, (£ax + Fa)tj. = (GGX ••• Gk^í)(Eaí + Fa) and dEm=dE for all fe.

This contradiction proves (2).

(3) If z1-z = W/aal and z = P/Q where (P,ß) = l, P,ßeü:(W0l>.«i]

then (aa1/ßß1)(P1ß-ß1P) = If. If a|ß set ß = aS, R = P. K a^ß set

R = aP, S = ß. Since (aSRi - a^S^/SS«. = W and (S,R) = 1, Sja^ and

Sj | aS. If wS = aiSi and vSx = aS then wv = aa,, and there are four possibilities

each of which will be shown to lead to a contradiction.

(a) weK(W). wS = a1S1 is not possible since a monomial of S of degree n

transforms to a sum of monomials of degree n.

(b) ¡v e .K(IF). tfSi = aS is impossible as in (a).
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(c) w/aeK(W). Then there is a solution, Sa in X^D*,^] - K(W) to an

equation y y = ky for fe e K(W). A common denominator shows that there is such

a solution, z in K\_a,ay,W~\-K\_W~\. If z = Z^i)Ifi with g(i) eX[a,ai]

then g[,)( — e)lW' = kgU)W' and there is a solution geK\_a,ay] to y± = hy for

some heK(W). Since h = gy/g, heK. Therefore by (2) geC. This contradicts

z$K\W~\.

(d) w/ay eK(W). Then Sy/SeK(W) so as in (c) S e K(W). Setting

a = at = 0 in (aSRy - XyRS)/ SSy = W gives the contradiction W = 0.

Bibliography

1. R. Cohn, Difference algebra, Interscience Tracts in Pure and Applied Mathematics,

New York (in preparation).

2. I. Kaplansky, An introduction to differential algebra, Actualités.  Sei. Ind.  No.   1251

= Publ. Inst. Math. Univ. Nancago No. 5, Hermann, Paris, 1957.

3. E. Kolchin, Existence theorems connected with the Picard-Vessiot theory of homogeneous

linear ordinary differential equations, Bull. Amer. Math. Soc. 54 (1948), 927-932.

4. -, Algebraic matric groups and the Picard-Vessiot theory of homogeneous linear

ordinary differential equations, Ann. of Math. (2) 49 (1948), 1-42.

5. S. Lang. Introduction to algebraic geometry, Interscience Tracts in Pure and Applied

Mathematics, New York, 1958.

Bell Telephone Laboratories,

Whippany, New Jersey


