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1. Introduction. A bordered Riemann surface whose double is parabolic

will be called semi-parabolic. Denote the class of semi-parabolic surfaces by

SO?.As usual, a compact bordered surface will be called a finite surface. In a

sense, the interiors of semi-parabolic surfaces are the simplest hyperbolic surfaces

since their hyperbolicity results entirely from the border which is given in their

definition.

On finite surfaces, the class of harmonic functions which are constant on each

contour is a finite-dimensional vector space of functions with finite Dirichlet norm.

This paper considers the corresponding class of functions on bordered surfaces

of class SOg and generalizes some of the properties of harmonic measures on

finite surfaces. In particular, for generalized harmonic measures, we investigate

the level curves and their orthogonal trajectories. The principal results, Theorems

4.1 and 4.4, state, in a sense made precise, that almost all of the level curves of a

generalized harmonic measure are analytic Jordan curves and almost all of their

orthogonal trajectories begin and end on the border given in the definition of the

surface. These results have application to the level curves of a Green's function

via a theorem of Kuramochi. We also consider the question on a parabolic

surface as to when a harmonic differential with finite norm and integral periods

is a weak limit of period reproducing differentials.

2. Definitions and notation. If FF is a Riemann surface, let F(W) stand

for the Hubert space of square integrable differentials on W (2).For co,aer(W),

let \\a\\w denote the norm of a, and (a, co)w the inner product(3). Let Tc and

Te denote the closed and exact forms in T. Let Teo be the closure in Te of differ-

entials of functions which vanish outside of compact sets. Define Tc0 = T*x'

r* = Tc r\T*  rh0 = r„ nTC0 and rhe = rh nTe(4). rk is the Hubert space of
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(4) Tp is the set of differentials whose conjugates lie in rp.
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square integrable harmonie differentials on W. We then have the following

orthogonal decompositions:

r = Th + Teo + Teo,

t  = r -i- rx c        ± h   '   l eo>

r   = r   4- r
* co        x ho ^ l eo'

Let Thse stand for the differentials in Th which have zero periods on all dividing

cycles(5). Define r„m = r*¿(6). Define Theo =Thec\Tho. Then Thm cz Theo with

equality holding if Wis the interior of a finite surface. Note that if W c W and

oeTC0(W), then if we extend o to W to be identically zero in W — Wit follows

that creTC0(W). In sucha situation we will automatically assume the definition

of a so extended.

If c is a cycle we denote by <r(c) the unique element of Th such that for

coeTh, \cco = (co,o(c)*). <t(c) is known to be real, of class Tho, to possess only

integral periods and to depend only on the homology class of c. We will call o(c)

the period reproducer for the cycle c, even though the conjugate of o(c) actually

reproduces.

If o is a harmonic differential given locally by adx + bdy, we denote by p(o) the

linear density (|a|2 + | fc|2)1/2 |tiz|(7). If p is any linear density then

Aw(P) = j   [ p2dxdy(8).

w'

Note that Aw(p(o)) = || a \2W.

We will use the notation IV for a bordered Riemann surface; W = WUôW

where Wis the surface which is the interior of Jl^and ¿Wis the border, a countable

union of compact and /or noncompact contours. In this context W will stand

for the double of W. On a bordered surface W we will call a curve c a cross-cut

if c is a rectifiable path with end points lying in dW. If a is a differential in If that

can be extended continuously to W then J"c<x is well defined, and we will call

this the cross-cut period of <r over c. For finite surfaces, differentials of class Theo

axe determined by their cross-cut periods.

If W is a bordered surface, oeTh(W), and c can be extended to be harmonic

on W, then we will write <r s Th(W). If u is a harmonic function on W, the sub-

surface where u takes values between a and b will be denoted by {a < u < b}.

(5) Ahlfors and Sario [1, p. 66].

(6) In Ahlfors and Sario [1], rhm is called the set of harmonic measures. In this paper the

term "harmonic measure" will be reserved for harmonic functions which take the value zero or

one on the boundary of a finite surface. Also all harmonic functions will be considered real-

valued, contrary to the usage in Ahlfors and Sario [1, Chapter V].

(7) Ahlfors and Sario [1, p. 220].

(8) We will drop the subscript W if no ambiguity arises.
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If W is a bordered surface we will call a collection {Q„} of connected finite

subsurfaces an exhaustion of W if Sln — Q.'„ n W, where {&'„} is an exhaustion

of \V in the usual sense. Thus, the collection {fi„} doubled across dQn C\dW

gives a symmetric exhaustion of W.

3. Preliminary results. We now quote several results which will be neces-

sary for this paper.

Theorem 3.1 (Kuramochi)(9). Suppose Wcz W' where W' is parabolic and

dW is a union of piecewise analytic curves in W'. Then We SOg.

Theorem 3.2. Suppose W is a bordered surface such that W e 0HD. Then

aeTho(W) if and only if a can be extended to be harmonic on W and a = 0

along dW(10).

A simple consequence of this theorem is that if WeSOg (W e OliD will do)

and du e Theo(W),then du is uniquely determined by its cross-cut periods.

Theorem 3.3. Suppose p is a linear density on Wsuch that A(p) is finite and

We SOg. Then there exists an exhaustion {Q„} of W, such that Jgfinr>W~*0

as   n -* oo.

Proof. We extend p to be a linear density on W by redefining it to be zero on

d W and defining it to be zero on W — W. The result follows by the now standard

methods of Nevanlinna(u).

4. The0 for semi-parabolic surfaces.

Definition. If u is a harmonic function on a Riemann surface W, let£(u, W)

be the set of all numbers, t, such that some component of the level curves {u =t}

is noncompact.

If du e The( W) where FF is a finite surface, then E(u, W) is a subset of the

values that u assumes on ôW.

Theorem 4.1. Suppose We SOg and du e Tho(W). Then the measure of

E(u, W) is zero.

Proof. Let {Q„} be an exhaustion of W such that ¡ga„nw p(du) = e„ -* 0 as

n -* oo. For technical reasons assume that ZZ £„< co. Let En be the values that u

assumes on oíln. Since u assumes only a finite number of values on 3C2„ r\dW,

the measure of E„, m(En), satisfies:

(9) Kuramochi [1 ]. A fairly simple proof of this can be derived from the method of orthogonal

decomposition, Chapter V, Ahlfors and Sario [1].

(io) Accola [2].

(ii) Nevanlinna [1].
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m(En)S Í \du\ ^ f p(du) = en.

For each t0eE(u,W), there exists an n0 such that t0eE„ for n 5; n0, since for

each such t0, there is a noncompact component of {u = í0}. Therefore,

E(u, W) c lJr=A for all ». Thus for all n: m(£(«, WO) ̂ Ifc°lnm(£t) ̂  I^A-
q.e.d.

Defining £(m, IF) in an analogous way, it is clear that E(u, W) — E(u, W) is a

countable set if du e Tho(W). Thus m(E(u, W)) equals zero if W is of class SOg.

Kuramochi proved that if g is a Green's function on a surface with pole fixed,

then the bordered surface {g g: A}, for X > 0, is of class SOj(12). From this and

Theorem 1 we obtain the following corollary.

Corollary. If g is a Green's function on a surface with given pole, then the

set of X, such that the level curves {g = X} contain a noncompact component,

has measure zero.

Proof. For a > 0, Kuramochi's result, Theorem 3.1, shows that {a ^ g ^ ß)

is of class SOg. By Theorem 3.2 dg restricted to {a < g < ß} is of class Theo. The

result now follows easily from Theorem 4.1. q.e.d.

It seems natural to ask whether the property, m(E(u, W)) = 0 characterizes

the fact that du e The is also in Tho. Theorem 4.1 together with Theorem 3.2 show

this to be the case if W can be smoothly embedded in a parabolic surface. In a

later paper we will show the characterization to hold if W can be smoothly em-

bedded in a surface where The is finite-dimensional. A surface will also be exhibited

to show that the property does not, in general, characterize. One half of the

desired characterization is true, however.

Theorem 4.2. Let Wbe an arbitrary Riemann surface. Suppose dueThe(W)

and the measure of E(u,W) is zero. Then du e Tho(W).

Proof. Define an equivalence relation on the connected components of the

level curves of u as follows. If a component is noncompact or has a point where

the gradient of « vanishes, it will be equivalent to itself only. Call such com-

ponents irregular. All other components, which we call regular, are analytic

Jordan curves. Two such components will be equivalent if they bound an annulus

in W. It is readily seen that this is an equivalence relation. Moreover, if a com-

ponent is regular, it follows by an easy compactness argument that there are

many other components equivalent to it. Let i be a generic notation for the

union of all regular level curves in an equivalence class. Let An, n = 1,2, •••, be

an enumeration of the ^4's. Each A„ is seen to be an annulus.

If {Q„} is an exhaustion of W we see that

(12) Kuramochi [2].
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||du\\ln =   f    dk f du*
J -co J {u=fc}niin

where the level curves {u = fe} are oriented so that du* is positive. Letting n -* oo,

it follows that ||du||£= /-"„dfc ¡{u=k}du*. If we let P = (-00,00)-

(E(u, W) U S) where S is the set of all t such that {« = (} contains a branched

level curve, then ||du|2f.= ¡Fdk \{u=k}du* since the complementary set is of

measure zero. But every point in the set over which this last double integral is

evaluated is on a regular level curve. Thus || du || & ¿ E" = 1|]dw ̂ A and so

1 du I2 - £- 4 du ft
If du„ denotes the restriction of du to A„ then dw„ e Tfim(/4„) and so dun, suitably

extended, is of class TC0(W). Since du = Hdu„ the result now follows, q.e.d.

Since each A„ is an annulus, it follows that we can find a sequence {Q„} where

(1) each Q„ is a finite union of relatively compact annuli;

(2) n„c:Qn+1;

(3) if AJ„, j = 1,2, —,rn is an enumeration of the annuli in Q„, and

u3„ denotes u restricted to A{, then duJ„eThm(AJ„);

r"

(4) || du„ — du I -» 0    where    du„ =   Z duJ„.
; = i

Thus, in a certain sense, any du e The with E(u, W) = 0 can be approximated by

harmonic measures on unions of finite subsurfaces. This is unsatisfactory,

however, since the £2„'s above are neither connected nor do they exhaust W.

If W is the interior of a semi-parabolic surface, we can make a stronger ap-

proximation statement. We need several lemmas preliminary to Theorem 4.3.

Lemma 1. Let u be a harmonic function such that du e The(W). Let s be the

function such that s = a on {u ^ a}, s = u on {a 1% u ;= b} and s = b on {u 5: b),

where a<b.  Then dseTe(W).

Proof.   Omitted.

Lemma 2. Suppose dueThe(W) where W is a finite surface. Define a so that

a = du for points p such that u(p) <£ E(u, W) and a = 0 for points p such that

u(p)eE(u,W). Then oeTco DTe(W).

Proof, a is a finite union of differentials of the type ds considered in Lemma 1

since the range of u minus E(u, W) is the union of a finite number of open intervals.

aeTC0(W) since it vanishes along dW.

Lemma 3. Let W be a bordered surface. Suppose dW= B0\JBy where

B0 r\By = 0 and each B, is homeomorphic to an open interval. Suppose p^eB,

and let c be a cross-cut joining p0 to pt. Suppose coeTc(W) so that co = 0 along

dW, and assume co is harmonic in a neighborhood of dW. Let a be the projection

of co on Th(W). Then a e Th(W), a = 0 along dW and  ¡ca = ¡cco.
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Proof. Let co be the anti-symmetric extension of co to W(13). Let co = a + x,

SeTh(rV), xeTeo(rV), be the orthogonal decomposition of coeTc(W). By the

uniqueness of the decomposition it follows that à and ? are anti-symmetric If

o and t are the restrictions of ö and f to W then it follows that xeTeo(W)(1A).

Thus co = a + x is the orthogonal decomposition of co in TC(W). The first two

parts of the conclusion now follow. If c is the path c - jc, where j is the natural

reflection in W, then  \~co = /-<?. But  JV¿5 = 2 \cco and J-ff = 2 fc<x. q.e.d.

Theorem 4.3. Suppose lFeSOg and tiuer^^W). Tnen i/iere exists an

exhaustion {Q„} o/ W and dun e Theo(Q„) such that || dun — du || ->• 0 as n -* oo.

Proof. Choose {fi„}, an exhaustion of W, so that e„ = $gnnnwP(du) -» 0 as

n -> co. On Q„ define the differential (t„ as follows. For each p e fi„ let <r„ = du

if u(p)(££(«,Qn) and let an = 0 if u(p)eE(u,£ln). Then by Lemma 2, o„eTC0

O re(n„) c rco(W). Moreover, || <t„ || < || du ||. Now let dun be the projection

of a„ on r,,(Q„). It follows that öu„e Theo(Qn) a TC0(W). By Lemma 3, on and ciu„

have the same cross-cut periods and \\dun\\ < \\o„\\ < \\du\\. As n-> co the

cross-cut periods of tx„ over a fixed cross-cut approach that of du because <s„ -» 0.

Since the «/«„'s are uniformly bounded in norm, a subsequence converges in

rco(W) to an exact harmonic differential with the same cross-cut periods as du.

Thus du„ -> du weakly in rc0. Moreover, lim sup || du„ || ̂  || du || ^ lim inf || du„ || ;

that is, \\du„\\ -> \\du || and so the convergence is strong, q.e.d.

We now raise the question as to the nature of the trajectories orthogonal to the

level curves of a function u where du e rfton The. We first give a definition.

Definition. Let u be harmonic on W (or W). Define two points p and q to be

equivalent if they can be joined by a piecewise analytic curve over any subarc

of which du* has zero integral. The equivalence classes will be defined as the

orthogonal trajectories of u.

Let y be a compact connected subset of ôW where WeSOg. Suppose w is

harmonic on WUy, u positive on If and u = 0 on y. Parametrize y by a function

/ defined on an interval [0, a] so that s = J/lôV»* and a= ¡ydu* where y is

oriented so that a is positive. Let l(s) be the orthogonal trajectory of u passing

through f(s). Since there are a countable number of points in W where the gradient

of u is zero, l(s) O IT will be homeomorphic to a line except for at most a countable

number of values of s. Call a value of s regular if l(s) is unbranched and l(s) is

relatively compact in W. Call other values of s irregular.

Theorem 4.4. Under the hypotheses of the preceding paragraph, the set

of irregular s has measure zero if either (a) u is bounded or (h) u is Dirichlet

bounded.

t") Ahlfors and Sario [1, p. 290].

(14) Ibid., p. 288. This follows from Lemma 13b.
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Proof. Let F be the set of irregular s. F is measurable since the set of regular s

is open. Let F' be the set of s in F such that l(s) is unbranched. Assuming the

measure, b, of F' is positive, we will show that the extremal distance from y to the

ideal boundary, co, in Wis finite, contradicting the characterization of Ohtsuka(x 5)

which states that this distance is infinite if We Og.

(a) Assume first that uáMon W. Let p be any linear density on W. Then

L(p)2 i%\ J((S)p|2 for any seF' where L(p) is the minimum p-length of a curve

going from y to oo in W. l(s) still denotes the orthogonal trajectory ofuinWczW.

By the Schwarz inequality

L(p)2z%   f    p2[    du^M f    p2.
J l(s)      J '(s) J '(s)

Integrating this inequality over F' with respect to du* yields

bL(p)2i%   f   (m(    p2\du*^MA(p).

Thus L(p)2/^4(p) ;£ M/ 6 for all p. Thus í> > 0 leads to the desired contradiction

since F — F' is countable.

(b) In case u is unbounded, the result follows by exhausting W by the sub-

surfaces {0 ^ u S n} as n -* oo . Since the norm of du is assumed to be bounded,

the set of s such that u is unbounded on l(s) must have measure zero. The result

now  follows,   q.e.d.

The example of v on {y ^ 0} shows that, in general, either assumption (a) or (b)

must hold for the conclusion to follow.

Definition (Heins). If u is harmonic and the greatest harmonic minorant

of u and 1 — u is zero, then u will be called a generalized harmonic measure.

Suppose We SOg, 8W= B0 u By, where B0r\By = 0, and each B, is a union

of contours. Suppose, moreover, that u is harmonic on W, u = 0 on B0, u = 1

on Bj and 0 g a ^ 1 on FF. Then u is a generalized harmonic measure on W.

Let {aj be an enumeration of the components of B0. If a¡ is compact, parametrize

it by a function /, defined on an interval, I¡, [0,a¡] so that for sei,,

s = jfi(0)du* and ai — (x.du*. If a., is noncompact, parametrize it by a function

/, defined on an open interval I„ (0,a¡), (0, oo), ( — oo,0) or (-00,00) so

that s2 — Sy= Sfll^du* for sx, s2el¡. If there is an I, of the type ( - 00, 00),

(0, 00), or ( — co,0) then   \Bodu* = 00. Otherwise,  \Bodu* = Z a¡ ^ 00.

Corollary 4.4.1. Under the hypotheses of the preceding paragraph, the set

of irregular s in all parametric intervals has measure zero.

Proof. Each parametric interval can be divided into a countable number

of compact intervals of the type considered in Theorem 4.4.

(is) Ohtsuka[l].
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Corollary 4.4.2. Assuming the hypotheses of the paragraph preceding

Corollary 4.4.1, let k be any number between zero and one. Then

Ji-U=t}iiu*= $Bodu* where {u = k} is parametrized in the same manner as

above.

Proof. It suffices to prove this for k = 1. Let j( be an enumeration of the

disjoint open intervals of I¡ whose union is the set of regular values in /¡. We

assert that the end points in By of all l(s) such that s lies in //, for fixed i and j,

lie in the same component of Bt. For if s0 is in Jf, let J' he the set of all s e J\

such that the end points of l(s) and l(s0) lie in the same component of Bx. J' and

j{ — J' are seen to be open and so the assertion is proven. In fact, \^SBj[l(s) is

conformally equivalent to a rectangle of dimension a{ by one where a\ is the

length of j{. The parameter z = $po du + idu* effects the conformai map.

Since points of Bx which are end points of regular orthogonal trajectories,

l(s), for seJf axe end points of no other l(s) we see that \{u = i}du* |> \Badu*.

Arguing with 1 — u instead of u gives the desired equality,   q.e.d.

Concerning generalized harmonic measures on bordered surfaces of class

SOf, Theorems 4.1 and 4.4 together with the latter's corollaries seem to be satis-

factory generalizations of the standard facts about level curves and their orthogo-

nal trajectories for harmonic measures on finite surfaces.

5. Period reproducers. Differentials of harmonic measures on finite surfaces

are period reproducers for dividing cycles. We now investigate how this fact

generalizes to bordered surfaces of class SOg.

Theorem 5.1. Suppose WeSOg. anr=B0UB1, where BonB1=0 and

each B¡ is a union of contours. Suppose du e The(W), u = 0 on B0 and u = 1 on

B«_. For any k between zero and one, orient the components of {u = k] so that

du* is positive. Then

(1) ${u=k}du*=\\du\\2for allk;

(2) if aeTh(W) then l{u=k}P(o) converges for almost all k, and for these k;

(3) ¡{u = k]o = (o,du*).

Proof. We first prove that ¡^u=k^du* is a finite constant independent of k by

methods which seem simpler than those used in Corollary 4.4.2. As in the proof

of Theorem 4.2 we see that

(*) \\du\\2 =  fdk  f       du*.
JO        J {u=k}

Thus for almost all k we have: j^u=k^du* < co. Let {£!„} be an exhaustion of W

such that ¡gn„nw P(du) -» 0 as n->co. Suppose ${u=x}du* is finite and ß i= a.

Since du* is closed we have  Jg({as„s/3}nnM) du* = 0. Thus
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0 = -   f du* + \ du* + ! du*.

As n->oo, the third term approaches zero and so   J{u=p-¡du* converges to

/{!!=«} du*. Thus  f{u=t) du* converges for all k to the same limit. That the limit

is  || du ||2 follows immediately from (*).

For part (2) we proceed as in the proof of Theorem 4.2 to obtain

\\a\\2 = A(p(a)) = f dk    f p(a)2du*.
JO J {u = k}

Thus for almost all k,   ${u=k}p(o)2du* converges. But

ap(a)du*Y Ú   ( f        du*\ ( f      p(a)2du*\.
{u=k} 1 \ J{u=k] !    \ J{u=k} !

Thus j{u=k}p(o)du* converges for almost all k, and, therefore, for the same k

]{u=a}a converges.

For part (3) we see in exactly the same way as in the proof of part (1) that if

J{u=«}<7 ana" J{«=ß}0' converge then the limits are the same. Call this limit L. By

Green's formula we have

(a,du*\a<u<ß]niln =_a a + ß\ v+ ua~-
J{u=ot}nO„ J {u=ß}r\il„ J QCi„n{xSuiß}

Choosing an exhaustion {Qn} so that Jgnn nWp(a) -* 0 as n -* oo, and observing

that 0 < « < 1, we see that the third term of the right hand side of the last equation

approaches zero as n -* oo. Assuming that the integrals of a over {u = a} and

{« = ß) converge we see that (a, du*)^<u<^ = (ß- a)L. Letting a -»• 0 and ß -* 1

proves  part  (3).   q.e.d.

If FF is a finite surface then {u = k} is compact. In case there is a value of k so

that {u = k} is compact in the general situation of Theorem 5.1, then it is easy

to show that in fact du is the reproducer for this cycle. In general, however, {u = k}

will be noncompact for every k. We have been unable to prove in this general

situation that one value of k will serve for all a e Fh in part (3) of the statement of

the last theorem. If this were the case, and if {u = k} were a union of compact

components, Ay, A2,---,then there would exist a sequence of cycles, c„ = Hl = yAk

such that a(c„) -> du weakly in Th(W). One might hope for the weaker result,

that there exists some sequence of cycles c„ so that a(c„) -► du weakly. Although

we have no counter-example, we believe this is not in general true. In the presence

of some metric and/or topological restrictions on the surface, the theorem is

true. The following strong restriction does cover the example exhibited in Accola

[2, p. 159]. We have no doubt that there are other such restrictions which insure

the result of Theorem 5.2.

Definition.   Let FF be a Riemann surface, fi0 a fixed finite subsurface. Let AN
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be the set of all dd such that: (1) Q0 <= £2; (2) Í2 is a finite surface in W; and

(3) dQ. has N or less components. If the extremal length of the family AN is

zero for some N < co, we will say that W satisfies condition X.

Note that the definition implies that IF is a parabolic surface and has JV or

less ideal boundary points. The property is independent of Q0 choosen for pur-

poses of the definition.

Theorem 5.2. Let W (eSOg) be a bordered surface which can be embedded

in a parabolic surface, W which satisfies condition X so that dW is piecewise

analytic. Let dW= B0U B1( where B0r~\ Bt = 0 and B0 and Bx are unions of

contours. Let u be harmonic on W, u = i on B¡, 0 ^ u ^ 1, and || du || < co. Then

there exists a sequence of cycles c„ such that o(c„)-+du weakly.

Proof. Extend p(du) to be zero on W — W. Then there exists an exhaustion

{Ci'n} of W such that dQ.'„ has N or less components and as n -* co we have:

«,-   Í   ,p(du)^{   ,     p(du)-0.
J dxi„ J en„ nw

Assume e„ :§ 1/2. Let Q„ = Q.'„ c~\W and let fi„ be the finite set of finite surfaces

of which the components of Q„ axe the interiors.

The range of u restricted to «9Q„ is a finite set of closed intervals, some possibly

degenerate, lying in the unit interval. We show that there are at most N + 2

such closed intervals. If the image under u of a contour, a, of dQ„ lies in (0,1)

then a lies in W and is a contour of diY„. Therefore, there are at most JV such

a's. The other contours of dQ„ intersect B0 or B«, and so their images contain

zero or one. Thus there are at most JV + 2 such intervals. The total length of the

image of <3C2„ under u, which is less than the variation of u on «3Q„, is less than or

equal to e„ since on B0 or Bu u takes the value zero or one. Thus the image of

<3Q„ under u is at most JV + 2 closed intervals of total length at most e„.

The complementary set in [0,1] is at most JV + 1 open intervals of total length

greater than or equal to 1 — e„. Thus there exists a complementary open interval

of length greater than or equal to (1 — e„)/(N + 1). We can, therefore, divide

«3C2„ into two sets a„ and ß„ so that a„ and ß„ axe unions of contours of «3Q„ and

for pea,, ^nd qeß„ u(p) - u(q) ^ (I - e„)/(l + TV) ̂ 1/(2(1 + JV)) since

£„ < 1/2. In Q„ define a harmonic function u„ so that u„ = 1 on a„ and u„ = 0 on

ß„. Since Q„ is a union of finite surfaces, dun is a period reproducer in Q„ for some

cycle c„; in fact, c„ is homologous to a„ if the contours of an axe suitably oriented.

We now obtain a bound on || du„ ||. || du„ | ~ 2 is the extremal distance in fi„ between

a„ and ßn(16). From the manner in which oc„ and ß„ were chosen it follows that

the minimum p(du) distance between a„ and ß„ is ^ 1/(2(1 + JV)). Thus:

1 dun ||-2 ^ (2(JV 4- 1) || du \\nX2 è (2(JV+ 1) || du |)-a.

(ifi) Ahlfors and Sario [1]. This is still true for i}„ disconnected.
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Thus \\dun\\ £2(rV + l)||d«||.
Since {||d«B||} is a bounded sequence of numbers, du„ converges weakly in

rco(FF) to an exact harmonic differential with the same cross-cut periods as

du; i.e., dun converges weakly to du. But for aeTh(W), (a,du*)= ¡cna

= (a,a(cn)*) where a-(c„)er„0(FF). Thus o(c„)-*du weakly,     q.e.d.

We now discuss differentials with integral periods on parabolic surfaces. If

a = a(c) for some cycle then a has integral periods. Also if a has integral periods

and FF is a closed surface then a is a reproducer for some cycle.

Suppose FF is parabolic and aeTk(W) has integral periods. By the methods

outlined in Accola [1] we can divide W into a countable number of bordered

subsurfaces Wl, such that: (1) the FF''s are mutually disjoint ; (2) a restrivted to

W' is exact; call it du1, and u' can be chosen so that 0 ^ u' ^ 1 ; (3) dW' = afu ß \

where a' and ß' are unions of contours and u'= 1 on a'and m' = 0 on ß'(11). By

the result of Kuramochi each FF1 is semi-parabolic. Thus du' on FF" is a differential

of the type considered in Theorem 5.1 and is, therefore, in the sense of that

theorem a period reproducer for a family of infinite cycles. If FF is a surface

which satisfies condition X then a stronger statement is possible.

Theorem 5.3. Let W (e Og) be a surface which satisfies condition X. If

aeTh(W) has integral periods then there exists a sequence of cycles c„, such

that a(c^-*a weakly.

Proof. Divide FF into subsurfaces FF1 and let a — du1 in each FF1 as described

above. Let {Q„} be an exhaustion of FF such that e„ = Jg^pO -* 0 as n -> oo,

£„ < 1/2, and dQn has N or less components. Fixing the index i and letting

FF', FFand Q„ play the roles of FF", IF', and Q'„ in Theorem 5.2, we obtain a sequence

of differentials dul„eTC0(Wl) and cycles c'n such that: (1) dul„^>du' weakly in

rco(FF'); (2) the cross-cut periods of dul„ are eventually those of du1; (3) for

t€Ta(FFí),(t,í/u,;*)= }c;z; and

(4) || du\ I«, g 4(iV + l)2 || du'||2, = 4(N + i)21| a ¡^

If Q„ n FF' = 0 set dul„ = 0 and choose cl„ to be a curve homologous to zero.

Let c„ = Itœ=1c„ and let con = 1,1^ (18).Then

oo

I con ||2 g 4(N + l)2   I || a I2,« = 4(N + 1)2|| a ||2.
¡ = i

Also, for rerA(FF), (x,co*) = ¡Cnt. For a fixed cycle y and n so large that the

support of y is included in Q„, it follows that Jyco„ = jyo since jyo is determined

by the manner in which y intersects the W\   Since  co„6rco(FF)  reproduces  for

(17) The proof in Accola [1], was for closed surfaces but it works equally well for para-

bolic or semi-parabolic surfaces with the obvious modifications.

( !&) There may be only a finite number of IV,, in which case this is to be taken as a finite sum.
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c„, cr(cn) is the projection of co„ on Tk(W), and so o(cn) has the same periods as

co„. It follows that a(c„) -> <r weakly since the o(c„) axe uniformly bounded in

norm,   q.e.d.
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