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1. Introduction. An algebraic theory for the solution of initial value prob-

lems for systems of algebraic differential equations has been given in [3]. In the

present paper, we extend the theory to systems of partial differential equations.

The concept of a partial differential ring with n derivations has been defined

by J. F. Ritt [2]. For our present purpose we have to supplement this definition

by a homomorphism into a partial differential ring with n — 1 differentiations,

which corresponds to the surface on which the initial values are given. Thus,

the formal setting within which we shall carry out our investigation is as follows :

A localized partial differential ring (l.p.d.r.) is a system Q = (R,R0,H) such that:

R is an integral domain and a partial differential ring with n derivations

D1,-,D„,n^2;

R0is an integral domain and (partial, for n ^ 2, ordinary, for n = 2) differential

ring with n — 1 derivations, A1,---,An_1; H(a) is a homomorphic mapping of R

intoR0,H(l) = 1;

there exists a matrix of elements of R, Â = (aik), i= 1,••-,« — 1, fc=l,--,n,

such that (H(aik)) is of rank n — 1 and

(1.1) H(Í,a¡kDka\=AiH(d), i = l,--,n - 1, for all a eR.

An l.p.d.r. will be called normal if aik = Sik, i.e.,

H(D¡a) = A¡H(a), i=l,-,n-í.

2. Equivalent systems of derivations. Let G = (gik), i = l,---,r, k = 1, •••,«,

be a rectangular matrix whose elements belong to R, where r ¡Ê 1. We say that G

is normal with respect to R if

n

(2.1)      Z (gjkDkga - gikDkgj,) = 0 for every i,j = i,—,r,   l = l,--,n.
)c=l

Let E = (eik) be a matrix of order n x n over R. We define n new derivations

on R by
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(2.2) D,  - Z eikDk.
k-\

The system </>¡> is called equivalent to the system </>,> if

(i) £ possesses an invese over R,

(ii) For every extension R of R, R with the derivations Dl,---,D„, is a

partial differential ring.

By the definition of a partial differential ring, condition (ii) will be satisfied if

and only if the D¡ commute on the elements of R.

2.4. Theorem. The system <Â> is equivalent to the system <D¡> if and only if

the matrix E has an inverse and is normal.

Proof. We have

ÔA =  Z ejkDk(t euDt) - Z    Z eJkeuDkDt + î (t e^D^D,,
j. = i V;=i        /      k = i   i=i i = i \*«l /

n n n        /    n \

Dfij =   I    Ze«eyADi+Z   (Z eikDken JO,;
*=1   ¡=1 1 = 1    u=i /

hence

(2.5) D;A - ÙJb, =   Z    Z (fjiD^i - *nP*eflß>i-
i = i  ít=i

If £ is normal, the right hand side vanishes. Thus t>pi — Dßj is the zero

operator for every i and j.

Conversely, if £ is not normal, then there exist ¡0, j0, Z0 such that

n

Z  (ey0*D*e<oio - e¡o)tD*^o/o) * °-
t = l

Let Ä be an extension of R containing an element a which satisffies D¡a = 0 for

i # Z0 and Dloa # 0. (Standard methods of partial differential algebra ensure the

existence of such extensions.)   Then

(AoAo - 4A)fl   = ¿ (ejokDkeiolo - eiokDkeJolo)Dloa ¥= 0
k=l

and the derivations do not commute on R.

Let the system </3,> be equivalent to <D¡>, then R with the derivations </3¡>

forms a partial differential ring which will be denoted by R.

2.6.  Theorem. If (D/y is a system equivalent to <jD¡> and(D¡y is a system

equivalent to^D,} (with respect to Â), í/ien<P¡> is equivalent ío<D¡).

Proof. Let £ be the matrix transforming < D¡> to < A) and let £ be the matrix

transforming </),> to *(A); £ an<i F possess inverses, hence ££, which trans-
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forms <£),-> to </5¿>, possesses an inverse. If R is an extension of R, then R re-

garded as a partial differential ring with the derivations <A> is an extension of R.

It follows that the derivations (A) commute on R. This proves the theorem.

2.7. Theorem.   // </>i> is equivalent to^D^ then <£>,> is equivalent to^D/y.

Proof. Let £ = (eu) be the matrix transforming < D¡> to < A)- By Theorem 2.5,

£ is normal and has an inverse. Let £ = (/y) be the inverse matrix to £. £ trans-

forms < /);> to < D¡). We shall show that £ is normal with respect to R.

Since £ is normal it follows that u¡eu = £>¡ej¡ for every 1 ^ i, j, I ^ n.

Let 1 ̂  r, s, í íS n be fixed, then

(2.8) Z    Z    ifrtfJuDjeu =   Z    Z    ifJsjfiAej,.
¡=1     j=l    1=1 i=l    7 = 1    1 = 1

Note that

Thus,

Z/rf/V« +   £ ei(o/r¡ = A  Z frie„ = Djôrl = 0.
¡=i

Z/r¡0,e¡i = - Z euD¡fH.
i=\ ¡=1

Transforming the left hand side of (2.8) we get

Z    fnfJitDjeu=  Z/s;Z/(Z/rA-e¡1  =   -   ïfsjifuievDjfi
i,j.k=l j=l      1=1       i=l j=l      (=1       i=l

= -   Z/SJZ Djfriôit=- ïfsiUjfrt.
j=í   ¡=1 j=l

In the same manner, the right hand side equals — Z/= ifrjDjfst ■ Hence

Z"=i/SjÔj/r( = lLj=ifrjDjfst, proving that £ is normal with respect to R. This

shows that the system < £),-> is equivalent to < D¡).

3. Normalization. Let Q = (R,R0,H) and Q' = (R',R¿,H') be two l.p.d.r.

Q' is called an extension of Q if R' and R'0 are extensions of R and R0, respec-

tively, H'(a) = H(a) for every aeJ?, and if condition (1.1) is valid in fi for the

same matrix Â.

In this section it will be shown that if the matrix A is normal, then ¡Q can be

extended to an l.p.d.r. Q* = (£*,£*,//*) which is capable of normalization in the

following sense: There exists in R* a system of derivations Dx, ■■■,Dn, equivalent

to DU-,D„, such that if R* is the partial differential ring consisting of the ring

R* with the derivations Dl,--,Dn, then Q* = (R*,R*,H*) is a normal l.p.d.r.

We prove two lemmas which will be useful later:
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3.1. Lemma. Let R be a ring generated by a set of elements A in the sense

that every element of R can be expressed as a rational combination of elements

of A. Let Dx and D2 be two derivations on R whose range is in some extension

of R, committing on the elements of A.

Then Dx and D2 commute on R.

Proof. If £>! and D2 commute on a and b, then they commute on a ± b,

ab and on a-1 (if it exists in R). Therefore they commute on every rational

combination of elements of A, which belong to R.

3.2. Lemma. Let R be a partial differential ring with n derivations

DX,"-,D„, and let R be generated by the set A in the sense of Lemma 3.1. Let R0

be a partial differential ring with n — 1 derivations A1,---,A„_1. Let H be a

homomorphism of R into R0, and let condition (1.1) be a satisfied by all elements

a of A. Then condition (1.1) is satisfied by all the elements of R.

Proof. It is easily seen that if condition (1.1) is satisfied by a and b, then it is

satisfied by a ± b, ab and a-1 (if a has an inverse in R). Therefore condition

(1.1)is satisfied by all elements of R.

3.3. Theorem. Let R be an integral domain and a partial differential ring

with the derivations D^-^D,,. Let Â = (aik), i = l,---,n — I, fc = 1,■••,«, be a

matrix normal over R of rank n — 1. Then there exist elements anX,---,am in

some differential extension R* of R, such that the matrix A = (aik), i = 1, •••,«,

fc = 1, •■•,«, is normal and has an inverse in R*.

Proof. Let <x0>, i =!,-••, n, j = 1,2, ••■, be an infinite set of elements trans-

cendental over R. Let M be the matrix

axl,---,aXn

an-\    1' '" >an-l  n

X1U '" >X„i

over R\_xlx,--,xnl]. Let <¿=|M|, then d =¿ 0, and since R[_xxl,---,xnl~\ is an

integral domain, d~1 can be adjoined to it.

Let (R¡) be an increased sequence of rings defined in the following manner:

R0 = R, Ri = R[x11,---,x„1][íT1], and for i > 1, Rt = Ri-i[xu,---,xn/].

We introduce a new derivation from R0into Rx :

n

(3.4) 0(a) = I xuXDua: aeR,
u=l

and we define the derivations D1,--,D„ on the elements xn,---,xnl by requiring

that for every fixed /, / = l,---, n, the following system of n linear equations will be

satisfied :



1963] LOCAL PARTIAL DIFFERENTIAL ALGEBRA 169

IijA^ii  = oau, i=l,-",n-l,

(3.5)
n

L xk\F>kxn =  xl2.
& = 1

The matrix of the system is M, and since |M| ~leRt the system possesses a

unique solution in £2. Using this solution we extend the definition of the deriva-

tions Du •■• ,D„ on Rx, with range in R2. ô is extended to a derivation of Rx into

R2 by Definition (3.4).

Suppose that the derivations Di,---,D„ have been extended to £,_, (t^. 1)

so that every D¡ transforms Rk into Rk+1 (k = 0,••■, t — 1). ô can now be defined

on £,_, by Definition (3.4). ¿5' is then an operator transforming R into R,.

We define the derivations Dlt ■■■,Dn on xu,---,x„t so that the following system

of linear equations is satisfied:
n

Z aikDkxu = ô'au, i = l,-",n - 1,
(3.6) k = 1

n

2-1 xklDkxlt = xu+1.
fc = l

For every fixed /, this is a system of n equations for Dkxu, with coefficients in

Rt+i. The matrix of the system is M; therefore, there exists a unique solution

for the system in Rt+l. Accordingly, the definition of Di,---,Dn and ô can be

extended to Rt, and their range will be in Rt+1.

Let R* = (J"0R¡. Having extended Dl,---,D„ to R* by induction, we are

going to show that the derivations commute on R*.

By Lemma 3.1, it is sufficient to show that the derivations commute on the xik,

and this will be proved by induction. Suppose that the derivations commute on

every xik for k < t (t 3:1). Then by Lemma 3.1, they commute on £,_ ¡. We shall

prove that they commute on xu,---,x,„.

We first prove that
» n

(3.7) Z aJkDkô'au=  Z aikDko'aß,       i,j = l,—,n - 1,  /=1,—,n.
t=i t=i

Indeed
n n n

Z a!kDkô'au = Z aJkDk Z xulDuot~1aa
k-\ k=l u=l

n n n n

= Z    Z aJk(Dkxul)Duôt'1ail+  Z    I a,Ai W«¡
k=l   u=í k=l   u=l

= Z (V1«« + Z aj^ô'-'au = S(Í ajtDJ'-^u)
«=1 k=l \*=1 /

(S ~ aa e R,_ ! and so the derivations commute on it).
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Continuing in this way we get

n n

Z aJkDkö au = ô 'Z aJkDkau,
k=l k=l

and similarly
n n

Z aikDko'aß = ö' Z aikDkaß.
k=l k=\

The right hand sides are equal since Â is normal. This proves (3.7).

Using equations (3.6) we get

n n n

Z aJkDkS'aa =   Z ajkDk Z aiuDuxu
fc=l *=1 u=l

n n n n

=  Z    Z ajk(Dkaiu)DuXit + Z    Z ajkaiuDkDuxlt.
4=1   u=l 11=1   u=l

The right hand side of (3.7) yields a similar expression. Hence

n n n n

Z    Z aJk(Dkaiu)Duxlt + Z    Z aJkatu DkDux„
fc=l   u=l k=l   u=l

n n n n

=   Z    Z aik(DkaJu)Duxu  + Z    Z aikajuDkDuxlt.
k=l   u=l fc=l   u=l

The first sum on the right hand side is equal to the first sum on the left hand side

since viis normal. Therefore

n n

(3.8) Z    Z aikaju(DkDu-DuDk)xtt = 0,  i,j = l,--,n - 1, /=l,--,n.
u=i *=i

Now let us calculate the following expressions :

n n n

Z aJuDu Z xklDkxlt  =   Z aJuDuxlt + 1   = o'+1aß,
u=l ft=1 «=1

n n n

Z xulD„ Z ajkDkxlt   =   Z xulDuo'aß   = o,+ 1aß.
u=l *=1 u=l

Thus the left hand sides are equal, and by expanding them we get

n n n n

Z    Z aju(Duxkl)Dkxlt + Z    Z aJuxklDuDkxlt
u=l   k=l u=t   k=l

n n n n

= Z    I, xul(Duajk)Dkxlt+I,    Z xulaJkDuDkxlt.
u=l   *=1 u=l   k=l

The first term on the right hand side is equal to the first term on the left hand side

since both are equal to Z't= i ô(ajk)Dkxu. Thus
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(3.9)       Z    HxklaJU(DkDu-DuDk)xlt = 0,
u=l    fc=l

7 = 1, —,n-l,   1=1,—,n.

For a fixed Z, let £ be the n x n matrix whose (k, u) element is (DkDu — DuDk)xn.

Then equalities (3.8) and (3.9) state that M£M* = 0 (M* is the transposed matrix).

Since M is regular, B = 0. This proves that the derivations commute on xu, ■ ■ -, x„t.

Thus R* is a differential extension of R. Putting ank = xkl, k= l,---,n, the

matrix A = (aik), l = i,k = n, is equal to the matrix M and thus has an inverse

in R*. Moreover, A is normal. Conditions (2.1) are satisfied for l^i, j^n — 1

because Â is normal, and for i = n, j g n — 1 and j = n, i ^ n — 1 because

Z aJkDkxn = oaß = Z xklDkaß.
Ic=l fc= 1

This completes the proof of Theorem 3.3.

We now state and prove the fundamental theorem.

3.10. Theorem. Let Q = (R,R0,H) be an l.p.d.r. such that its transforming

matrix Â is normal. Then there exists an extension Í2* = (£*, R0*, H*) for £i

such that Q* can be normalized.

Proof. R and the matrix Â satisfy the conditions of Theorem 3.3. We define R*

as in the proof of that theorem, using the same notation. Let (v¡f), i = l,---,n,

j = 1,2, •••, be a set of elements transcendental over R0. Let

d0 =

H(ail)-H(aln)

//(<*„_„)-#(«,.-!„)

»11... ».1

Then d0 belongs to R0{vij]- The matrix H(Â) is of rank n — 1, thus d0 # 0, and

since RoIX/] is an integral domain, we can adjoin dö1 to it.

We define R0* = R0[yy] (dö1).

Let H* be a homomorphism of R* into R* defined in the following way :

H*(a) = H(a) for a e R, H*(x¡j) = vtJ for i = 1, —, n, j = 1, 2,—. This defines H*

on R[xl7]. Moreover, we have//*(d) = d0. Accordingly, H* can be defined on d

H*(d~x) =dç1 ,and thus H* can be extended to a homomorphism of R* into R*.

We extend A1; ■••, A„_j to derivations on R* by defining

(3.11) A(»ft = ff*(á'fl„), i = 1, ••• ,n — 1, Z=l,"-,n, t=l,2,-

We are going to prove that (1.1) is satisfied for every aeR*. Since (1.1) is

satisfied by every a e R, it is sufficient to show that it is valid for every x„ (Lemma
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3.2). Indeed, H*( ZZnk=íaikDkxlt) = H*(ô'att) = à,vu = A;(/i*(x„)). Finally we shall

show that the derivations A1,---,A„_1 commute on R*. By Lemma 3.1, it is

sufficient to prove that they commute on every vlt :

AjAiV,, = AjH^ô'au) = H*(îajkDkô'a^,

AiAjVlt= H* it aikDko'aß).
\k=l 1

The right hand sides are equal (by (3.7)); hence (A;Ay — AyAf)t>/( = 0. Thus R* is a

differential extension ofR0 and therefore Í2* = (R*,R*,H*) is an extension of Q.

The matrix A as defined in the proof of 3.3 is normal and possesses an inverse in

R*; hence the system of derivations

n

(3.12) Di^laijDj,       i = l,-,n,
j = i

is equivalent to the system DX,--,D„. If we define R* as the ring R* with the

derivations Dx,- -,D„, then (R*,R*,H*) is a normal l.p.d.r., since

H*(D¡(a)) = H*(Í aijDja) = Ai//*(a) for every a e R*.

This proves Theorem (3.10).

The vector (anl, •••, a„„) is called a transversal vector, the derivations

Du •••,JÖ„_i will be called inner derivations, and Dn a transversal derivation.

From now on we shall treat only localized partial differential rings which

admit normalization.

4. Polynomial extensions. The ring of differential polynomials in m variables

ux,---,um over a partial differential ring was defined in [2] and will be denoted

by R{ux,-,«„}.
Let Dx,-■■,£>„ by a system of derivations equivalent to DX,--,D„ over R and

let R be the differential ring consisting of the ring R with the derivations Dif—yûa.

Then we can construct the two polynomial extensions,

R{uu •••.«„} = R[DiXi.x")ui'] i = l,---,n,

&{yt,-,ym) = RID**.^y,.] a, = 0,1,-,

Dltti.*n) being the operator D'1 -D"nn, and similarly #■»-•*■>. Each of these

rings is a partial differential ring with each of the two systems of derivations.

This follows from the definition of equivalence between systems,  taking into

account Theorem 2.7.

We prove
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4.1. Theorem. R{ux,•■■,um} and R{yi,--,ym} are differentially isomorphic

with regard to each of the two systems of derivations.

Proof. We define

</>: R{ux,--,um}->R{yx,~-,y„,},

ip: R{yi,--,ym}->R{ux,--,um},

in the following way : <p(a) = i//(a) = a for the elements of R (which are also the

elements of R) and

(¡>(D^1.*>iii) = D(0"."»V,,

\I/(Û(X>.""Vi) = t>{*."n\-

With these definitions (p can be extended to a homomorphism of R{ux,---,um}

into R{yi,,-,.ym}' and "A can be extended to a homomorphism in the other

direction.

We shall show that </> commutes with the derivations DX,---,D„. For aeR,

<t>(Djá) = Dj(a) = Dj<p(a), and

4>(DjDic".""V) = <K£>(°"."J+i.*"}u¿ = D(c".■i+».-*>j,J

-D0B*»"*<>u¿.

Moreover, if (¡) and Dj commute on p and q, it is easy to see that they commute

on p + q and p-q. Therefore they commute on every element of R{ux,••-,«,„}.

<j) also commutes with DX,--,D„ since

¿A = Z <Kbu)<pDj = Z 6yD^ = D¡(p.
j=i j=i

In the same way it can be shown that \// commutes with the <D¡> and the < A>-

[¡/(p   is   the   identity   on   R{ux, ••-,«„,},   because   \j/<p(a) = a   for a e R and

■^(D0".""'u;) = D(ai.a"Xil/<pUi) = D(x'."n) u¡. Similarly (pi// is the identity on

R{y1,---,ym}. Therefore <p is a one-to-one correspondence "on". This completes

the proof.

We are now in a position to define the polynomial extension of an l.p.d.r. Ci.

We first introduce the polynomial extension for a particular normalization

ñ =(^,R0,H)of£2:

fí' = ñ {y,z} - (R', R¿,H'),        where £' = R{yu -,ym},       R¿ = R0{zu},

i = \,—,m,       fc = 0,l,2,"-,

and /?' is the homomorphism defined by //'(a) = H(a) for a e R and

ñ'(Dl"--*,)yd = Atai-"'"~l)zht .
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It is easy to see that Q' is a normal l.p.d.r. extending £1.

The polynomial ring of £2 is now defined by £1' = il{u,z} = (R',R'0,H'),

where R' = R{ulf -,«„}, R'0 is the same as before, and //' = H'tj), c6 being the

differential isomorphism from R{u1,---,um} to R{y¡,---,ym} as defined in the

proof of Theorem 4.1. il' is an extension of D since R' 2 R,R0^ R0, H'(a) = H(a),

for the elements of R, and for every peR',

H'(llaikDkp^ =H'^(Dip) = H'Di(¡>(p)^AiH'4>(p)- A//'(p).

This shows that condition (1.1) is satisfied.

5. S-ideals. Let R be a partial differential ring with unit element and let S be

a nonempty multiplicative subset of R which does not include 0.

Given any set K Ç R, we define Ks as the set of all b e R such that abeK for

some aeS. An ideal J in R will be called an S-ideal if Js £ J. A perfect (prime)

ideal which is an S-ideal is called S-perfect (prime).

We have as in [3, §3] :

5.1. If J is an ideal, then Js is an S-ideal which includes J.

5.2. If J is a perfect ideal, then Js is S-perfect.

Next we have

5.3. A prime ideal J i=- R is an S-ideal if and only if J n S is empty.

Indeed if a = a-leJ nS, then 1 e J, J = R (this is true for all S-ideals).

Conversely, if J n S is empty, then abeJ, aeS implies a $ J, beJ, and so J is

an S-ideal.

5.4. Theorem. Every S-perfect ideal J is the intersection of S-prime ideals

which are minimal over J (as prime ideals).

Proof. It is known that every perfect ideal J is the intersection of prime ideals.

(See [2], where the theorem is proved for ordinary differential rings. The proof is

similar for partial differential rings.) A familiar argument then shows that we

may restrict the set of prime ideals to those prime ideals which are minimal over J.

We are going to show that in case J is S-perfect, these prime ideals are also

S-ideals.

Indeed, let J' be a prime-ideal which is minimal over J. If J = R, then J' = J

is an S-ideal, trivially. Suppose J ^ R, so that J' # R, and let T = R — J'.

T is multiplicative since J' is prime. Let T' be the set of all products ab where

aeS,beT, and let Tk = T' U T. Then Tj is the multiplicative set which is genera-

ted by S and T.TiC\J = (T C\J)\J(TC\J) is empty for T n J is empty by the

definition of T, and ceT' (~\ J, c = ab, aeS, beT implies bed, which is im-

possible. By a familiar argument, there exists a prime ideal J* which includes J

and excludes Tj. But then J' 3 J* and so J' = J* since J' is minimal over J.

We conclude that J'nS çJ'n Tx is empty. Hence J' is S-ideal, by 5.3.
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Alternatively, we may prove 5.4 by the methods of [3, §3], without the bracketed

qualification as prime ideals. This yields a slightly weaker result.

6. Theory of bi-ideals. Let Cl = (R,R0,H) be any given l.p.d.r. and let S be

a multiplicative subset of R, O^S. A bi-ideal is defined similarly as in [3, §4].

Thus, (J,J0) is a bi-ideal if J is an S-perfect ideal in R and J0 is a perfect ideal

in R0 such that H(J) Ç J0. We introduce a partial ordering in the set of bi-ideals

as in [3] using the same notation.

Let K £ R, /C0 = Ro- Then the bi-ideal a which is generated by K and K0

is given by

(6.1) « = ({K}S, {H{{K}S)V K0}).

Prime and maximal bi-ideals are defined as in [3]. We have the theorem

6.2. Every proper bi-ideal a is included in a maximal proper bi-ideal.

Next we prove

6.3. Theorem. Let T0 be a nonempty multiplicative subset of R0 and let

the bi-ideal a. = (J,J0) be maximal with respect to the exclusion of T0from J0.

Then a is prime.

Proof. Since J0 excludes T0 there exists a prime ideal J'0 in R0 such that

Jó 2 Jo and J¿ n T0 = 0.Let T = H~l(R0 - JQ), then T is multiplica-

tive. Indeed, if H^JeRo-JÓ, H(t2)eR0-J'0, then H(t1t2) = H(t1)H(t2)eR0-J0

since J'0 is prime. J excludes T for if aeJ, then H(a)eJ0, ^J'0, and so a$T.

Let J' be any prime ideal which excludes T and is minimal over J. (Such J'

exists by standard ideal theory.) Since J is S-perfect it follows from the proof

of 5.4 above that J' is S-prime. H(J') excludes R0 — J'0 since J' excludes T.

Hence H(J') £ J'0 and a' = (J', J¿) is a prime bi-ideal. But a < a' and J0 excludes

T0. Hence, a' = a in view of the maximal property of a.

For T0 = 1 we obtain from 6.3 as a special case:

6.4. Every maximal proper bi-ideal is prime.

Combining 6.2 and 6.4 we obtain :

6.5. Every proper bi-ideal is included in a prime (proper) bi-ideal.

The closure ä of a bi-ideal a is defined as in [3]. Theorem 4.5 and 4.6 of that

paper are valid in our present theory, and for the same reasons.

7. Polynomial bi-ideals. Let Í2 = (R, R0,H) be any l.p.d.r. Throughout

this section, we shall suppose that R0 is a field. If this is not the case from the

outset we can clearly achieve it by passing to the field of quotients.

Let £V = €l{u,z} = (R',R'0,H') be the polynomial extension of Í2 which is

obtained by the adjunction of the m differential indeterminates »i,•••,««,, and let
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S = R -<0>. Let R* be the field of quotients of R, and let R' and R*' be the

differential rings R{u} and R*{u}, respectively. Then the relation between the

ideals of R' and of R*' is described by the following theorem:

7.1. Theorem. J is an S-ideal in R' if and only if it is of the form J = J*n R'

where J* is an ideal in R* . J is perfect (prime) if and only if J* is perfect

(prime). The correspondence J* -* J is one-to-one.

Proof. Let J* be any ideal inR*' and let J = J* n R'. We see without diffi-

culty that J is an ideal and that if J* is differential (or perfect, or prime), then J

is differential (or perfect, or prime). Now let abeJ where a e S and beR'. Then

abeJ*, a'1 eR* and so b = a~i(ab)eJ*, beJ*r\R' = J. This shows that J is

an S-ideal.

Conversely, let J be an S-ideal in R' and let J* be the set of all products

a~1 b where aeR — <0> = S and beJ.lt will be seen that J* is an ideal in R*'.

Moreover, if a~lbeR', then a(a~lb)eJ and so a-1 be J, J 2 J* n R'. Since

J S J*, we conclude that J = J* n R'. The correspondence between the ideals J,

J* established in this way is one-to-one for if J*, J* determine the same J, let

ceJ*, c=a~1b, where aeS, beR'. Then beJ\ and so beJ*riR'=J2*nR'S: J%.

Hence c = a~1beJ2, J*^J2, and similarly J|çJ* so we have J* = J*.

Also, whenever J is differential (perfect, prime) J* is differential (perfect, prime).

This completes the proof of 7.1.

7.2. Theorem. IfR*' satisfies \the finite ascending chain condition for perfect

ideals, then R' satisfies the finite ascending chain condition for S-perfect ideals.

Proof. Let Jj ç J2 £ j3 c ... be an ascending chain of S-perfect ideals in R'

and let J* ç J* çz j*çz ... be the chain of the corresponding perfect ideals in

R*'. Then for some N ^ 1, J* = J*,+ 1 = •■• and hence JN = JN+1 = ••■.

As a corollary to 7.2 we have

7.3. If R is a Ritt algebra then R' satisfies the finite ascending chain condition

for S-perfect ideals.

Let Q = (R,R0,H) be any l.p.d.r. which is an extension of Q and let Rm be the

m-dimensional vector space over R. A vector n = (r]i,---,nm) in Rm is said to

satisfy the polynomial p{u} = p{ux, •■•,«„} eR' if p{nx, ■■■,nm} = 0. n is said to

satisfy    q{z10, •••,zm0,z11, •••,zml, ■•■} eR0    if

q{H(nx) -H(nm),  H(Dn(nx)), - , H(Dn(nm)) , H(D2(nx)) ,..;H(D2(nm)),-)} = 0.

We prove, as in [3], that the set of all polynomials in R' and R0' which are

satisfied by all the vectors of a given subset of Rm constitute a bi-ideal in ÍF. Given

a bi-ideal a in £2' we again define the variety of a as the set of all vectors which

satisfy the polynomials of a, and we introduce the concept of a generic point,

as before.



1963 ] LOCAL PARTIAL DIFFERENTIAL ALGEBRA 177

7.4. Theorem. Let a = (J,J0) be a proper bi-ideal in Cl'. Then at possesses a

generic point if and only if a is prime.

Proof. Suppose first that a is prime. Let R be the residue ring R''/ J. Since J is

prime, R is a partial differential integral domain, and since J is a proper S-ideal,

it contains no elements of R other than 0. It follows that the images of the elements

of R in R'/J constitute a partial differential ring which is isomorphic to R.

Thus, R may be regarded as an extension of R, and similarly, R0 = R'/ J0 may

be regarded as an extension of R0. Also, the natural homomorphisms

<&:R'->R'/J   and   <D0 : R0' -* R0'/ J0

are differential homomorphisms which map the elements of R and R0 (individually)

on themselves.

Consider now the mapping <S>0H'. This is a homomorphism from R' into R0.

Moreover, the kernel of <D is contained in the kernel of Í>0/Z' so that the equation

H<b(a) = cp0//(a), for a e R', defines a unique homomorphism H from R into R0.

H satisfies the condition (1.1) above since, for all a e R',

H (î aikDk®(a)) = //4>Z aikDka= 4>0H'(îaikDka)
\k=l I k=l U = l /

= *0(A,fl'(a)) =Aj<D0/Z'(a) = A-fi^a).

We have thus shown that Q. = (R,R0,H) is an l.p.d.r. which is an extension Cl.

The required generic point is now given by w = (<£(«!),•••, <b(um)).

This proves the sufficiency of the condition of 7.4.   Necessity is obvious.

7.5. Theorem. Let V =f^\tlVli be the intersection of a set of varieties < I^>.

Then V is a variety.

Proof. For each p, let V^ be the variety of a bi-ideal a.p = (Jp,J0y). Let a be

the bi-ideal which is generated by the sets of polynomials iK = {J^J,, and

K0 = U/i^oe» an^ ^et ^ ' ke tne va"etv OI a- Then the elements of V satisfy the

polynomials of K and K0 and so V £ V. On the other hand, any point which

does not belong to V will not satisfy some polynomials of K or K0 and hence

can not belong to V. Hence V = V, V is a variety.

As remarked in [3], the union of two varieties is not necessarily a variety.

The same methods as in [3] yield the relation a -» V -*■ ä where bt is the closure

of a.

A system of polynomials (K,K0) in Cl' is said to be consistent if the polynomials

which belong to K or K0 possess a joint zero in some extension of Q. It follows

from the preceding discussion that this will be the case if and only if the system

(K,K0) generates a proper bi-ideal. Now by (6.1), the bi-ideal generated by

(K,K0) is (J,J0) = ({K}S,{H'({K}I)UK0}). Hence
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7.6. Theorem. In order that the system (K,K0) be consistent, it is necessary

and sufficient that

H{H'({K}S)UK0}.

For any set of polynomials K (in R' or R'0), we denote by d(K) the set of all

derivatives of elements of K, including K. With this notation we may replace 7.6

by a more effective test in case R0 is a Ritt algebra. Note that in that case R also

is a Ritt algebra. The test in question is then given by

7.7. Theorem. Let R be a Ritt algebra; then a system (K,K0) in Q' is con-

sistent if and only if

lt(H'([K-]s)ud(K0)).

Proof. If (J,J0) is generated by (K,K0), then, in accordance with an earlier

remark, a necessary and sufficient condition for consistency is 1$J0. We shall

show that if R is a Ritt algebra, J0 = v/(rl'p]s)u d(K0)). But 1 belongs

to the radical of an ideal if and only if it belongs to that ideal, and so the conclu-

sion of the theorem will follow.

In order to establish the equation J0 = tJ(H'([K~\ s) u d(K0)), we observe that

J0 = {#'({*}S)U K0} = V[H'({K}S)U Ko] = J(d(H'({K}s))U d(K0)).

Now H'({K} s) is closed under differentiation, i.e., it is equal to d(H'({K} s)) for

if a is any element of {K}s, then £>¡(a) e {K}s for all D¡ and so, for i = 1, •••, n,

AiH'(a) = H' (t atkDkaj eH'({K}s),

as required. Hence

J0 = J(d(H'({K}s))Vd(K0))   = J(H'(J[K]s)KJd(K0))

<= ̂ (H'([K]s)Ud(K0)) £J0,

and so

J0= J(H'&K]s)Vd(K0)),

as required.

Let (K,K0) be a system of polynomials as above and let p{u} be any other

polynomial in R'. We may ask under what conditions p{u} vanishes for all joint

zeros of (K, K0). As in the case treated in [3], this will be the case if and only if p

belongs to all admissible prime components of {K} s. (A prime component Jt of

{K}s is admissible if and only if the system (J¡,K0) is consistent.) In particular,

we obtain the following result for Ritt algebras :

7.8. Theorem. Let {K}s = Jln--- r\Jk be the representation of {K}s by

its prime components. In order that the polynomial peR' vanish for all zeros
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of the system (K,K0), it is necessary and sufficient that for any Ji (i = 1, •■•,!<)

either p e J, or 1 e (H'(J¡) U d(K0)), or both.

Again, we may ask under what conditions a polynomial q e R¿ is satisfied by all

zeros of (K,K0). For Ritt algebras, the answer to this question is provided by

7.9. Theorem. In order that the polynomial q{z}eR'0 vanish for all zeros

of the system (K, K0), it is necessary and sufficient that there exists a positive

integer p such that

q'e(H'(lK-]s)Vd(K0)).

Proof. Let a = (J,J0) be the bi-ideal generated by (K,K0) and let ä = (J, J0)

be the closure of a. Then J0 = J0 and a -» V -* ä where V is the variety of a.

Thus, q vanishes for all zeros of (K,K0) if and only if q e J0 = J0. But, as shown

above (see the proof of 7.6), J0 = (H'Q [X] s) U d(K0)). This proves 7.9.

Finally, we consider the classical Cauchy problem for a system of first order

partial differential equations within the framework of local partial differential

algebra.

7.10. Theorem. Let Cl = (R,R0,H) be an l.p.d.r. such that R is a Ritt algebra.

Let

(7.11) A¿*i="Pí("i>"'»M»)> i = l,-,m,

be a set of partial differential equations with the "initial conditions"

(7.12) zi0 = a¡, i = !,-■■,m,

where Dn denotes the transversal derivative (the transversal vector having been

specified in advance) and where

p¡eR(uu---,um), u¡eR0,   i = í,—,m.

Then (7.11), (7.12) possess a solution in some l.p.d.r. which is an extension ofCl.

Proof. Let K = (D„u¡ - p¡>, i=l,---,m, and K0 =<z¡0 - a¡>, i = !,•■■, m.

According to Theorem 7.7, the conclusion of 7.10 will have been proved if we

can show that l£(Z/'([.K]s)u d(K0)). Suppose on the contrary that

1 e (//'([/£] s u d(K0)). If so, there exists an identity

(7.13) l = r1t1 + ••• + rktk + s1vl + ••• + stv,,

where r¡, s¡ e R'0, t¡ = H(T¡), with T¡ e [K] s and v¡ e d(K0).

By 3.1, the D¡ ate linear combinations of the D¡. It follows, taking into account

7.1, that we may write the T¿ in the form

(7.14) T,=     Z     P.^.^D^-D'^D^-Pj),

where the P¡ Xi.Xn belong to R*'.
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Among all the terms which occur on the right hand side of the equations (7.14),

we choose one for which ax + ■•■ + a„ is as large as possible. Replacing

Dxx,---Da"+1Uj in this term by D\l ■■■D'Inpj eliminates the term without affecting

the remaining expressions. Repeating this procedure a finite number of times we

obtain 0 on all right hand sides of (7.14). Applying the corresponding substitu-

tions in R'0, i.e., replacing expressions A"1 —AjLYz^+i = H'(D'11---D""*tuj) by

A\' ■■• A'^KH'DlTpf) in the same order, we eliminate tx,---,tk from (7.13), i.e.,

we obtain an identity of the form

(7.15) l = s1V+-" + s1'i>i,

where s¡eR¿ and v/ed(K0). But this identity expresses the fact that 1 belongs to

the differential ideal [K0], and this is impossible since [K0] possesses the (differen-

tial) zero zio = a¡, i = 1, --.m. This shows that an identity of the type of (7.13)

can not exist and completes the proof of the theorem.

The theory of regular local partial differential rings will be treated elsewhere.
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