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1. Introduction. This paper deals with the structure of the algebra of rep-

resentative functions for Lie algebras. We shall be concerned mostly with proving

analogs of certain of the results which are known from [5] for the case of Lie

groups. Our results may also be viewed as a natural extension of [2] and [3].

More specifially, in §§3 and 4, we treat a special class of subalgebras of R(L),

the algebra of representative functions on the universal enveloping algebra of a

Lie algebra L, called normal basic subalgebras, which are fundamental for the

representation theory. For example, we prove that the "semisimple part" of such

a subalgebra is always the same, and prove a conjugacy theorem for these sub-

algebras.

In §5, we turn our attention to the group of the proper automorphisms of

R(L). We analyze its intrinsic structure, and also obtain this group as the inverse

limit of its restriction images on the finite-dimensional stable subspaces of R(L).

These considerations lead naturally to the discussion of a more general inverse

limit system, namely of irreducible algebraic linear groups and rational group

epimorphisms, which we undertake in §6.

In conclusion, the auther wishes to thank Professor Hochschild for his invaluable

assistance in the writing of this thesis.

2. Notations and terminology. In this section, we recall some terminology

and results, mostly from [2] and [3], and introduce some notation which will be

standard throughout this paper. However, we do not attempt to make our work

self-contained.

£ will always be a field of characteristic zero. All tensor products will be taken

over £. If V is an £-space, V will denote its dual and £„ will denote the algebra

HomF(V,V). L will be a finite-dimensional Lie algebra over £, A its radical,

N = [L, A] its nilpotent radical, and H a fixed maximal semisimple subalgebra

of L. The representations we consider will be finite-dimensional. U(L) (or just t/)

will denote the universal enveloping algebra of L. A representation of L on V is

simultaneously considered as a unitary left [/(L)-module structure on V.

If (p, V) is a representation of L, an £-valued function on U(L) of the form

X o p with X e E(V)' is called a representative function associated with p. The set
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of all representative functions associated with all representations of L clearly

forms an £-space, which is called the space of representative functions on U(L),

and is denoted by R(L) (or by R).

The unitary homomorphism d : U(L) -* U(L) ® U(L) which is characterized by

d(x) = x ® 1 + 1 ® x for each xeL, gives by dualizing a commutative associative

algebra structure on U(L)'. For /, ge U(L)' their product is denoted by fg. Iff

and g actually belong to R(L), it is easily shown that f g belongs to R(L). Hence

there is an induced algebra structure on R(L). The space of representative functions,

with this algebra structure, is called the algebra of representative functions on

U(L), and is still denoted by R(L).

For feU(L)' and ueU(L), the left translate of/ by u, u ■ f, is defined by

(u •/) (v)=f(vu) for each veU(L). U(L)' becomes a left l/(L)-module under

left translation. If feR(L), then U(L) ■ f <= R(L). The elements of R(L) are

precisely those fe U(L)' such that U(L) ■ f has finite £-dimension. Analogous

results hold for / • u, the right translate of / by u, which is defined by

(f-u)(v)=f(uv).

An element feR(L) is said to be semisimple if the representation of L by left

translations on U(L) ■ f is semisimple. All representative functions which are

associated with semisimple representations are semisimple. The set of semisimple

representative functions on U(L) forms a subalgebra of R(L), denoted by R(L)S.

For any subalgebra 7 c R(L) and any subalgebra K of L, TK will denote the set

of those elements fe 7 for which K •/= {0}. 7 O R(L)S will be called the semi-

simple part of 7 and denoted by 7S.

A basis xt, • • •, xm may be introduced in N such that, for 1 ^ i, j g n, [x¡, xf] is

a linear combination of the xks with k < min(i,j). Xj, •••,xm may then be com-

pleted to a basis xx, ■ ■ ■, xn for A in such a way that the elements xm+1,---,xn belong

to a nilpotent subalgebra 7 of A such that [7,J7] = {0}. The elements of U(L)

may be represented uniquely as sums of monomials ux^"---x{1 with ueU(H).

Denote by u0 the component of u in F in the standard decomposition U(H)

= F + HU(H).

Define functions g¡ e R(L) by

gi(uxen" ■■■ x{') = u0c5oe„--- <5le¡--- o0e¡, i = l,.-.,n,

where the 8jk are the Kronecker functions. The £-linear combinations of the

gm+i,---,g„ are called the elementary functions and denoted by £. They are

precisely those representative functions which vanish on£ and L2U(L). A repre-

sentative function/is said to be a constant function if f (LU (L)) = {0}, in which

case / is identified with /(l) e F. The subalgebra £[gj, • • ■, g„] of R(L) is denoted

by V. It is stable under left translation.

For each elementary function / and each ceF*, the algebraic closure of F,

the function exp(c/) is well defined as a function from U(L) to F*. Those £*-
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linear combinations of the exp(c/) which actually take values in f are called the

trigonometric functions on U(L) and constitute a subalgebra C of R(L). Let Q

denote the multiplicative group of the unitary homomorphisms of U(L) into £.

In case f is algebraically closed, the elements of Q form an £-basis for C. Denote

the subalgebra R(L)AV of R(L) by B. Then B is stable under the left translations

and£(L) = £®C.

If T is a subalgebra of R(L) that is stable under the right translations and

contains the constant functions, then an automorphism of T is said to be proper

if it commutes with the right translations and leaves the constants fixed.

3. Basic subalgebras of R(L). We begin with two well-known lemmas,

which are reproduced here for completeness.

Lemma 3.1. Let I be an ideal of L and let V be a semisimple representation

space for L. Then the induced representation of I on V is semisimple.

Proof. The induced representation of / is semisimple if and only if the induced

representation of I + N is semisimple. Hence, we may assume that I zsN.

The representation of L on V induces a semisimple representation of L/N on V.

The representation of I/N induced from this representation of L/N is semisimple

if and only if the representation of / induced from the representation of L is

semisimple. Hence, we may assume that L = H®A, with H semisimple and A

abelian.

The induced representation of A on V is semisimple since A is a direct summand

of L. Also, I = H'@A', where A' = lnA and H' = InH. As an ideal of H,

H' is semisimple. Hence, the induced representations of H' and A' on V are

semisimple, which implies that the induced representation of / is semisimple, q.e.d

Lemma 3.2. Let I be an ideal of L such that L/I is semisimple. Let V be a

representation space for L and suppose that V is semisimple for its induced

structure as a representation space for I. Then V is semisimple as a represen-

tation space for L.

Proof. Since L/I is semisimple, we have I t> A. Hence, if the conditions of the

lemma hold for I, they also hold for A, by the previous lemma, and so it suffices

to prove the lemma for I = A.

The induced representation of N is nilpotent. Since N is an ideal of A and the

induced representation of A is assumed semisimple, the induced representation

of N is also semisimple, again by the previous lemma. Hence, the induced rep-

resentation of N is zero. Finally, the induced representation of H©A/N, i.e., of

L/N, is semisimple, whence the original representation of L is semisimple.

Next we introduce a class of subalgebras of R(L) which will be of importance

in the sequel.
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Definitions. A subalgebra D of R(L) is called a basic subalgebra if

(1) D contains the constant functions,

(2) R(L) = D®C.
A basic subalgebra D of R(L) is called a normal basic subalgebra if D is stable

under left translations, and if Ds, the semisimple part of D, is stable under both

right and left translations.

For example, in [3], the subalgebra B described in §2 above was shown to be

a basic subalgebra invariant under left translations. By [3, p. 614], any left stable

basic subalgebra necessarily contains £.

Lemma 3.3. Assume that F is algebraically closed and let D be a normal

basic subalgebra of R(L). Then Rs = Ds[ß].

Proof. It is clear that Rs => I>s[ß]. Suppose that/eRs. Then/may be written

uniquely in the form/= 2l,qSQdq(f)q with each  dq(f)eD.  Let xeL.  Then

x-f=i:qeQ(x-dq(f)+q(x)dq(f))q.

It follows that U(L) ■ dq(f)q is a [/(L)-homomorphic image of U(L) •/, for

each q e Q, and so is semisimple as a fJ(L)-module. Hence, each dq(f)q is a semi-

simple representative function. But each qeQ is in vertible and its inverse is

semisimple. Therefore, for each qeQ, (dq(f)q)q~1= dq(f) is semisimple. Hence

Rs = Ds[Qlq.e.d.

Lemma 3.4. Bs = RA and so B is a normal basic subalgebra of R(L). Under

the representation of L by left translations on R(L), the annihilator of Bs is A.

Proof. Clearly, RA c Bs. Suppose that feBs. By Lemma 3.1, U(L) •/ is

semisimple as a l/(/l)-module. We may write/= 2l,'i = 1rivi with r¡eRA and

v¡ e V for each i. Futhermore, we may choose the r¡ to be linearly independent

over £, in which case the v¡ are uniquely determined by the r¡ and /. Let

xe A. Then x •/= E[=1 rXx ■ v¡). Hence, for each i, U(A) • v¡ is a U(A)-homo-

morphic image of U(A) • fand therefore is semisimple as a U(A)-modu\e.

Since U(L) = U(A)U(H), it follows that, for each i,

(1) U(L)'Vt-U(A)U(H)'»i**     2   U(A)(h-vt).
h e 17(H)

We assert that, for arbitrary h e U(H), there exists a £/(/l)-epimorphism

U(A) ■ !?{-+ U(A)(h ■ v¡) sending each a ■ vt onto ah • v¡. It is sufficient to prove

this for elements ñ that are monomials with respect to some canonical basis of

U(H). First, we note that, since a •/-> a • v{ is a l/(j4)-epimorphism of U(A) •/

onto U(A) • v¡ and/is semisimple, N • v¡ = {0}. N being an ideal in L, RN is two-

sidedly stable, and so, in particular, \H, U(A)~\ U(H) • v¡ = {0}.

To prove the assertion, it suffices to show that, for a e U(A), a ■ v¿ = 0 implies

ah • tf¡ = 0. This can be done by induction on the filtration index of h in the usual



1963] REPRESENTATIVE FUNCTIONS OF A LIE ALGEBRA 105

filtration of U(H). For n of filtration index zero, the result is clear, so assume that

the filtration index of h is greater than zero and that the result has been proved for

all monomial elements of lower filtration index than h. Write h = xh' with xeH

and n' a monomial of lower filtration index than n. Then a ■ v¡ = 0 gives

ah ■ v¡ = axh' • v¡ = — xah' • v¡ — [x,a]h' • vx = 0

as required.

This shows that U(A) (h ■ v¡) is semisimple as a U(A)-module for each h e U(H),

and so, by (1), that V(L) ■ vt is semisimple as a U(A)-module. Therefore, by

Lemma 3.2, U(L) ■ v¡ is semisimple as a (J(L)-module. Hence, each v¡ lies in Rs,

and so to complete the proof of the first part of the proposition, it suffices to show

that V nüs consists only of the constant functions. For this, assume geV n Rs

and write g as a polynomial in the g¡ with coefficients in £. Since g e Rs, we have

N ■ g = {0} and so g is actually a polynomial in the g¡ with i = m. But then if k is

the total degree of this polynomial, Lk+1 ■ g = {0} and so the representation of L

by left translations on U(L) ■ g is both semisimple and nilpotent; that is, it is

trivial. Hence, g is a constant.

To show that B is normal, we need only note that RA is two-sidedly stable. By

definition, the annihilator of RA contains A. RA is naturally isomorphic with

R(L/A) and the canonical image of the annihilator of RA in L/A is the annihi-

lator of R(L/A), i.e., is zero. Therefore, the annihilator of RA is precisely A. This

completes the proof.

Theorem 3.1. Let L be a Lie algebra over a field F of characteristic zero.

Let R be the algebra of representative functions on L and let A be the radical

of L. If D is any normal basic subalgebra of R, then Ds = RA.

Proof. Assume first of all that £ is algebraically closed. We note that [5, p. 113,

Proposition 3.1] applies equally well in our case, the proof being as in [5], with

appropriate reinterpretation. If </> is the coefficient sum homomorphism from B

to D, then <p_1 is the coefficient sum homomorphism from D to B. From Lemma

3.3, it follows that (j)(Bs) <= Ds and <p-1(Ds) c Bs. Thus <p maps Bs isomorphi-

cally onto Ds.

For xeL, we define a map (¡)X:BS^F by <px(f) = ip(/)(x). Then <f>x is a dif-

ferentiation of Bs = RA. By [1, p. 502, Proposition 1], <¡>x defines a unique proper

derivation of Bs such that £(/)(l) = 4>x(f) f°r each/e£s. Bs may be identified

with the algebra of all representative functions on the semisimple Lie algebra H.

It follows then from [2, p. 612, Theorem 2] that Ç is the left translation by an

element x, e H, so that we have <p(f)(x) =/(x,) for each/e Bs.

Now let deDs and write d = 2ZqeQbq(d)q with bq(d)eBs. Then

d(xx) = 2^q<BQbq(d)(xx) since gfx,) = 0 for each qeQ, and hence

d(xx) = </)( T,q e q bq(d)) (x). Since (¡Tl is the coefficient sum homomorphism from

D to B, we have (p( T,q eQbq(d)) = d. Hence, d(xx ) = d(x). Since D is a normal basic
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basic subalgebra, Ds is stable under the right translations. We conclude that

(d ■ y)(x,) = (d • y)(x) for every deDs and yeL. This gives xx ■ d = x ■ d for

every deDs. Let K denote the kernel of the representation of L by left trans-

lations on Ds. The last result shows that L = H + K. The mapping </> : Bs -» Ds is a

[/(rY)-module isomorphism. Therefore, since the representation of H by left

translations on Bs is faithful, we see that the representation of H by left transla-

tions on Ds is faithful. That is, H O K = {0}, and L is a semi direct sum H + K.

We have N e K and K/N xL/(H + N)x A/N and so K is solvable. Hence

K = A and so DscBs. We recall that Rs = Ds [g] = Bs [Q] and that the elements

of Q are free over Bs. This gives Ds = Bs and so the theorem is proved for an

algebraically closed field.

In case £ is not necessarily algebraically closed, let £* denote the algebraic

closure of £. Then there are natural isomorphisms

R(L ® £*) x R(L) ® F* x (C ® £*) ® (D ® £*)

by means of which we identify these algebras. Then C ® £* is precisely the algebra

of the trigonometric functions on L ® £*, and the above shows that D ® £* is a

normal basic subalgebra of R(L ® £*). We recall that semisimplicity is preserved

under extension or restriction of scalars and that the radical of L®F* is

.4® £*. Hence,

Ds ® £* = (D ® £*)s = (R ® F*)A ®* * = RA ® £*

and so Ds = RA and the theorem is proved.

Corollary 3.1. If L is solvable, then every basic subalgebra of R that is stable

under the left translations is a normal basic subalgebra. Hence, its semisimple

part consists of the constant functions.

Proof. If L is solvable, then N = \L,L~\, whence L/N is abelian. Let D be a left

stable basic subalgebra of R. The elements of Ds are annihilated by left trans-

lations with elements of N. Hence, for each xeL and each feDs we have

/ • x = x ■ /, which proves two-sided stability.

4. Conjugacy of normal basic subalgebras. We denote by u^u* the

algebra anti-automorphism of U(L) that is characterized by x* = — x for each

xeL. The map u-*u* induces an automorphism /-*/* of R(L) given by

f*(u) =/(u*) for each x e U(L).

We have the following lemma, the first statement of which is the right analog

of [2, p. 501, Lemma 1].

Lemma 4.1. Let T be a subspace of R(L) that is stable under the left trans-

lations and let a be a linear map of T into V(L)' which commutes with the left

translations. Then every subspace of T which is stable under the right trans-

lations is also stable under a.
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Suppose that 7 is actually a two-sidedly stable subalgebra of R(L) containing

the constants and stable under the involutionf'-*f*:, and that a is also multipli-

cative and leaves the constants fixed. Then a is necessarily an automorphism of

7 and the inverse of a is given by

a"1(/)(x) = a((x-/)*)(l).

Proof. Suppose 7 and a are as in the first statement of the lemma. Let/e 7 and

choose a basis nt ,••-,/>„ for the space spanned by the right translates of/. Using a

general lemma about linearly independent maps of an arbitrary set into a field,

we may choose elements xu ■••, x„ in U(L) such that h/^xf) = <5¡; for each i and j.

This gives/ • x = L" = i (x¡ ■ f)(x)h¡ for each x e U(L) and so

(1) x-f=Í hi(x)xrf.
i = l

Applying a to (1) gives a(x •/)= E"=1 n;(x)a(xf •/). Evaluating this at the

identity element of U(L) gives a(/)(x) = Ef=i n¡(x)a(x¡ -/)(1) and so

(2) «0)-£«(*i-/)(l)*f.
¡ = i

Thus «(/) belongs to the space spanned by the right translates of/, which proves

our first assertion.

Now suppose that 7 and a are as in the second part of the lemma. We define a

linear map s:U ®U -* U 0 17 by s(u1 ® u2) = utu2, for all ut, u2e U(L). The

composition s o d gives the constant representative function 1. This may be

verified by evaluating s o d at u e U(L), and arguing by induction on the filtration

index of u.

From (1) it follows that, for arbitrary elements x, y, and z in U(L),

Î hi(y*x)(xi-f)(z)=f(zy*x),
¡ = i

and hence we see that

2 ((x-/z,.)*(Xi •/))(«)= Ms od)(u)x).
¡ = i

That is, that

î(x-hiY(xi-f)
i = i

is the constant representative function/(x).

Suppose now that <x(f) = 0. Then a(x; • /) = x¡ • a(/) = 0 and so /(x) = 0 for

all x e U(L). Thus, a has kernel zero. 7 is the sum of finite-dimensional subspaces

which are stable under the right translations and so also stable under a. Since the
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kernel of a is zero, a maps each of these subspaces onto itself and hence, a maps

T onto itself. This proves that a is an automorphism of T.

For/eT, we define the function ß(f) on U(L) by ß(f)(x) = a((x ■ f)*)(l).

Applying ß to (2), we obtain ß(a(f)) = T,"=1 a(x; • /)(l)j?(n¡), which gives

/W))to =   £ <xt ■ f)(l)ß(hd(x) = a(Í(x- htr(xt ■ f)(l)) =/(x).
¡=t \i=i /

That is, ß(a(f)) =/for each/e T. Since a maps T onto T, /? is an algebra endo-

morphism of T, and ß is the inverse of a. This completes the proof of the lemma.

Let ¿f be the group of all algebra automorphisms of R(L) that commute with

the left translations and leave Rs fixed. Then R(L) is a representation space for Jf

in the natural way.

Lemma 4.2. Every finite-dimensional subspace of R(L) which is invariant

under the right translations is a unipotent representation space for Jf.

Proof. Note first that, by Lemma 4.1, each right [/(L)-subspace of R(L) is

actually a representation space for Jif. Let S be a such a subspace of finite dimen-

sion and let {0} = S0 <= Sx cz ■■■ œ Sk = S be a composition series for S as a

right U(L)-modu\e. Choose s¡ e S¡ and let t¡ be a linear function on S that vanishes

on S;_,. Then the function tt\st, defined by (ti\sl)(x)= ti(s¡ ■ x) for each

x e U(L), is a representative function associated with the anti-representation of

L by right translations on St/St^1, which is simple, and so tt\sx belong to Rs.

Hence h(t¡\s¡) = í¡\s; for each heJf.

If e is a linear endomorphism of R(L) commuting with the left translations

then, again by Lemma 4.1, e(S) c S. We have e(t\s) = t\s for each seS and

each linear function t on S. It is clearly sufficient to prove this for the specific

linear functions of the form r„, which for each u e U(L), are defined by tu(s) = s(u)

for all seS. In this case, tu\s = u ■ s, and for arbitrary x e U(L), we find:

e(tu\si)(x) = x-e(tu\si)(l)

= e(x • tu\s¡)(l) = e(xu ■ s,)(l)

= e(Si)(xu) = (tu\e(Si))(x) ■

By evaluating i;\n(.S;) = t¡\s¡ at 1, we conclude that (¡(/.(s;)) = r¡(s¡) for each

h e Jf. Since this holds for all /; that vanish on S¡_ x, and since S¡ is ^-stable, this

means that h(s¡) — s¡ e Si_1 for all n e M'. Thus, ¿F is unipotently represented on

S.q.e.d.

Lemma 4.3. IfD is any normal basic subalgebra ofR(L), then DN = R(L)A®E.

Proof. First we show that R(L)N = R(L)A ® £ ® C. Clearly,

R(L)'1®£®CczR(L)Jv.
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Suppose then that feR(L)N. Since by [2, p. 519]

R(L) = R(L)A®C®F[gi,-,gnl

we may write/= 2Zi'=1h¡yi with each hieR(L)A®C, each yieF\_g1, •■-, g„],

and we may assume that the h¡ are linearly independent over £. JV ■ / = {0} implies

N • y¡ = {0} for each ¡, since £[gx ,-••,£„] is stable under the left translations.

Hence, y¡e£ for each i, which proves the result. Since, for any field F* =>F,

N®F* is the nilpotent radical of L®£* and R(L®F*)N®F* =R(L)N®F*,

it suffices to prove the conclusion of the lemma in the case when F is algebraically

closed, which we shall now assume. D, being a left stable basic subalgebra, contains

£. Hence,

R(L)A ®EczDNc (R(L)A ® £) [ß].

Since the elements of ß are free over D, they are likewise free over DN, so that this

last result gives DN = R(L)A ® £. q.e.d.

Let Z denote the center of JV. Clearly, we may choose the basis xt, •••, x„ for A

so that in addition to the previous requirements, x1, ---^p forms a basis for Z.

If B again denotes the standard normal basic subalgebra, then

B = RAlgp+i,-,gn][g1,-,gp].

Evidently, RA c Bz and each gk with k > p is in Bz. Hence, B = Bz\_gi, •■•, gp].

By "partial differentiation," it follows that the monomials in glt •••,gp are free

over Bz. Since

^[^+i,-,^]cBzcR^[gJ,+ 1,-,gn][g1,-,^]

this result implies that B7' = RA[gp+1, ■•-, g„].

Lemma 4.4. The free Bz-module Bz + B2^ + ••• + Bzgp ¡s sia/j/e under rne

le/i translations.

Proof. Z is an ideal in L and so Bz is stable under the left translations. Let k be

such that 1 ^ k ^ p and let x eL. £[gi, •••, g„] is stable under the left transla-

tions. In particular,

X ■ gk =/(?! , "'• gn)  With /£F[g, , -, £„].

To prove the lemma, it suffices to show that / has the form f=g0+ 2f = i u¡gt

with u¡ e£[gp+1, •■•, gn~] for i > 0 and g0 eF. To show this, we need only show

that when ux^-.-x^'x is the expression in standard form (as a sum of ordered

monomials), then each nonzero monomial we/"- • ■ x{' appearing has the property

that/, + ••■ +/p^ex + ••■ +ep.

For x e H, write

uxe„" ■■■xl'x = uxx^-.-Xi1 + u[xe„n--xl\x~\.
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For xeA, write

uxen" •■• xi'x = uxen" ••• x^Yxx^.-- xï + uxe„" ••■ xJ'+Yl*? ■"*?.*]•

Since Z is an abelian ideal in L, these formulas show that uxen" •••Xi1 will have

the required form, and the lemma is proved.

We shall say that an endomorphism of R(L) is locally nilpotent (resp. locally

unipotent) if its restriction to each finite-dimensional subspace of R(L) is nil-

potent (resp. unipotent). If/is a locally nilpotent endomorphism of R(L), then

exp/= Ej¡°=o/7n! is a well-defined endomorphism of R(L). If/is a derivation of

R(L), then exp/is actually an algebra automorphism. If/ is a locally unipotent

endomorphism of R(L), then log/= Z„co=1( - 1)"+1(1 -/)"/« is a well-defined

endomorphism of R(L). Each xeA acts, by right translation, as a locally nil-

potent derivation of R(L). Hence, the exponential of such a right translation is

well defined and is an algebra automorphism of R(L). We denote this automor-

phism by £r(x). Since N is nilpotent, it follows from the Campbell-Hausdorff

formula that, for x and y in N, the composition £r(x)°£r(y) is equal to £r(/(x,y)),

where f(x,y) — x — y is a sum of multiple commutators of x and y. Hence, the

functions Er(x) with xeA form a group, which we denote by Er(N). Each element

of Er(N) leaves Rs fixed, and sends basic subalgebras of R(L) onto basic sub-

algebras.

Proposition 4.1. Let y be an algebra endomorphism of R(L). Then yeEr(N)

if and only if y commutes with the left translations and leaves the elements of

RN fixed.

Proof. Clearly, the conditions of the proposition are necessary. Conversely,

suppose that y is an algebra endomorphism of R(L) commuting with left transla-

tions and leaving RN fixed. Then, by Lemma 4.1, y is an automorphism of R(L),

and by Lemma 4.2, y is locally unipotent. We assert that logy is a derivation.

To see this, let/and g be in R(L) and choose an integer m such that

(y - i)m+1(/) = (y - i)m+i(g) = (y~ i)m+1(/s) = o.

Let t be an indeterminate and define F(i) eR(L)[t] by

m mm

F(t)=2Z(nl)-lt"(logyy(fg)- Knir^ogyW)-  I (n!)"V(logy)"(g).
n=0 n=0 n=0

Since yk is an automorphism for every integer k, £(k) = 0 for every integer k.

Since R(L) is an integral domain of characteristic zero, this means that £(r) is the

zero polynomial. Looking at the coefficient of the first degree term in t shows that

logy is a derivation.

y commutes with the left translations, and therefore so does logy, y leaves RN

fixed, hence logy annihilates RN. Let £* denote the algebraic closure of £. We
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denote the canonical extension of logy to a proper derivation of R(L®F*) by

logy. Then logy annihilates R(L)N ® F* = R(L ® F*)"®1" and, in particular,

(logy) (exp/) = (log y) (/) exp/= 0 for every elementary function/on U(L ® £*).

We conclude, using the right analog of [2, p. 519, Theorem 6] that logy is the

right translation by an element x e L. /• x = 0 for each/e RA and so/(x) = 0 for

feRA. Hence xeA, since the elements of RA separate the points of H. Further,

we see that xeJV, since the elements of F\_gm+l, ••-,£„] separate the points of

AjN. Finally, the relation £r(logy) = y completes the proof of the lemma.

We are now in a position to state and prove the conjugacy theorem for normal

basic subalgebras.

Theorem 4.1. Let L be a Lie algebra over an arbitrary field of characteristic

zero and let V and W be normal basic subalgebras of R(L). Then there exists

an element y eE,(N) such that y(W) = V.

Proof. We assume first of all that the base field £ is algebraically closed, and

proceed by induction on the dimension of JV.

As before, let Z be the center of JV. If Z = JV, we have Vz = Wz by Lemma 4.3.

If Z # JV, we consider L/Z, identifying R(L¡Z) with R(L)Z. Under this identi-

fication, the images of Fzand Wz are normal basic subalgebras of R(LjZ). The

nilpotent radical of L/Z is N/Z.

In the case JV = {0}, we have V = W by Lemma 4.3 and so the result is true

in this case. Hence, by assuming that the theorem is true in lower dimensions, we

see that there is an element xeJV such that E,(x)(Wz) = Vz. Replacing V by

E,( — x)(V) we may assume that Wz = Vz, recalling that E,(N) is a group.

For the same reason, it suffices to prove the theorem in the special case where

W = B, the normal basic subalgebra introduced previously.

We may write each element feR uniquely in the form/= Z, SQ.vq(f)q with

each vq(f) e V. Then v± is a [/(L)-module homomorphism of R into V and coin-

cides with the identity on Bz = Vz. Denote by a the restriction of vL to

Bz + Bzg1 + ••• + Bzgp. Since gt, •••, gp are algebraically free over Bz, a. extends

uniquely to an algebra homomorphism ß : B -* V. Further, we extend ß to an

algebra endomorphism y of R(L) such that y(q) = q for each qeQ. Then it is

clear from the definition of y and Lemma 4.4 that y commutes with the left trans-

lations and leaves the elements of BN c Bz fixed. Hence, by Proposition 4.1, there

is an element x e JV such that y = E,(x). This completes the proof in the case of an

algebraically closed field.

Suppose now that F is not necessarily algebraically closed, and let £* denote

the algebraic closure of £. Since £ has characteristic zero, F * is a Galois extension

of F. Let G denote the Galois group of F* over £. G acts as a group of £-algebra

automorphisms of U(L ® F*) as follows: for geG, I e L, and aeF*,

g(l®a) = I®g(a). G then acts as    a group of £-algebra automorphisms of
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U(L ® F*)', where this action is given by g(f)(u) = g(f(g~1 (u))) for each

u e U(L ® £*), fe U(L ® £*)', and g eG. To show that such a map is multipli-

cative, first note that if, for u e U(L), we write d(u) = E¡*=, (a¡® b¡) with each

at, b,eU(L), then d(g~\u))= 1*=, (g~x (a;) ® g"1 (fe,)) for each geG. Hence,

for/i ,/a e t/(L ® £*)' we have

g(/i/2)(")= g{(fJÙ(g~ '(«))}

= ^{(/i®/2)(¡¿^1(a¡)®g-1(¿i))j

= 2 g{(/1(í"1(aí))/2(^"1(í'i))}
i = l

= 2 gÇf1{g-1(.ad))g(f2(g-\bd))
i = l

= te(/i)«(/2))(«).

By restriction, each geG then induces an £-algebra automorphism of R(L ® £*),

and by further restriction induces an automorphism of the multiplicative group Q.

Now given normal basic subalgebras B and F of R(L), with B as before, we

may as above construct an automorphism y mapping B® F* onto F ® £*.

We claim that gy = yg for each geG. To show this, write fe R(L ® £*) in the

form/ = 2ZqeQv9(f)q with each vq(f) e V ® F*. Then g(f) = ZieCg(i>sC/M«).

Since g(Q) = Q and g(l) = 1, we conclude from the uniqueness of the expansion

of g(f) as a F®£*-linear combination of the elements of Q that (vig)(J) = (gv1)(f).

Hence, (yg)(f) = (gy)(f) for each/e £ ® £*. It follows that y(£) <= <T ® £*)G = V

and so y(B) = V since y(B) is also a normal basic subalgebra of R(L).

As before, log y is the right translation by an element x e N ® F*. By the defini-

tion of the action of G, we have g(f • x) = g(f) ■ g(x) for every feR(L®F*)

and every geG. Since y commutes with the G-action, as does logy, whence

g(f ' x) = g(f) ■ x for every/eR(L ® £*) and every geG. Hence,

8(f) ■ x = g(f) ■ g(x),

and so the right translation on R(L ® £*) by x - g(x) is 0, whence x = g(x) for

every geG. That is, x( e A ® £*)G = N. This completes the proof of the theorem.

5. The proper automorphisms of R(L). We begin by recalling some definitions

from [2]. Let M be a finite-dimensional vector space over £, and PM the algebra

of all polynomial functions on EM. For a representation p of a Lie algebra L, R(p)

denotes the space of the representative functions associated with p and Sp denotes

the subalgebra of R(L) generated by the constants and the elements of R(p).
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If p is a representation of L in EM, the map t -» t o p of EM' onto R(p) extends

uniquely to a unitary algebra epimorphism of PM onto Sp, which is denoted by

p^p. The kernel of this epimorphism is called the ideal associated with p, and

is denoted by QM.

Proposition 5.1. Let S be a finite-dimensional subspace of R(L) that is stable

under the right and left translations. Let S be the subalgebra of R(L) that is

generated by the constants and the elements of S. Let sí be the group of all

proper automorphisms of S and let sí s be its restriction image in the group of all

linear automorphisms of S. Let Qs be the ideal associated with the represen-

tation ps of U(L) by left translations on S. Let Gs be the algebraic subgroup of

Es determined by Qs. Then s/s = Gs.

Proof. It is easily seen that S = Sp. We note that e(t » ps) = (e • r) ° ps for

every t e E's and every e e Es commuting with the right translations. To check this,

define for each x e U(L)and each seS, the element x'/s e E's by (x'/s)(e) = e(s)(x).

Since each t e E's may be written as an £-linear combination of the x'/s, it is

sufficient to verify the above identity for a special t of the form x'/s. In this case

the result is immediate.

Now we show that srfs<=.Gs. For oi.es/, denote by as the restriction of a to S.

Then it suffices to show that as • Qs c Qs for each aesi. Suppose therefore that

p(rt> ••->in)eßs» with eacn tieE's, and that aes/. Then p(tx o ps, •••,!„ o ps) = 0

as an element of S. Hence, since as • p(t1, •■-,(„) = p(as • ij, ■•-, as • t„), we see

that the image of as • p(tl, ■■■, t„) under p->p is

P(K • ii) » ps, -,(as • O o ps) = p(as(tt o ps),---,ccs(t„ o ps))

= <P(h °ps,"-,r„°ps)) = 0.

This shows that as • p(it, ■••, t„) e ßs, as required.

Next we show that Gs c s/s. Let e e Gs. If x and y are fixed elements of 1/(L)

and seS, then the linear function u->u(s ■ y)(x) — u(s)(yx) on £s is in Qs, hence

vanishes at e. This shows that e commutes with the right translations. Since the

the map p-»p is an epimorphism of Ps onto S, every element of § may be

in the form p(f ! o ps, ■■-, t„ 0 ps) with each i,e£j. Suppose that p(t^ o ps, ■•■,tBo ps)

is the zero element of S. Then p(t1, •■-, t„) eQs. If ee Gs, then e • Qs = Qs, and in

particular e ■ p(tt, •••, i„) = p(e ■ tt, ••■, e ■ t„) e Qs. Hence,

p(e(tl o ps), ■■■,e(t„ o ps)) = p((e ■ rt) o ps, -,(e ■ t„) o ps) = 0.

This shows that e may be extended (uniquely) to an algebra endomorphism e+ of

S that leaves the constants fixed. Likewise, we can find an extension (e_1)+ of

e~l to an algebra endomorphism of S leaving the constants fixed. The composi-

tions e+(e_1)+ and (e_1)+ e+  are algebra endomorphisms of S which coincide
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with the identity on the constants and on the elements of S, hence, are both

equal to the identity automorphism of S. Also, e+ commutes with the right

translations since e does. Thus e+ is a proper automorphism of S. Since (e+)s = e,

we conclude that eesi s. This completes the proof of the proposition.

Now assume that £ is algebraically closed. Let if be the family of all finite-

dimensional, two-sidedly stable subspaces of R(L). For each Se^we construct

si\ as in Proposition 5.1. Since each Qs is a prime ideal, each sá\ is an irreducible

algebraic subgroup of the corresponding general linear group.

Let ¡7 and F be in SP, with U => V. The restriction map n" : s/u -* s/v is a rational

group homomorphism, and so by [1, p. 122, Corollary 1] it follows that huv(s/u) is

an algebraic subgroup of si v. Using [2, p. 503, Theorem 1], and [2, pp. 511-512],

we see that the differential of n" maps the Lie algebra of siu onto the Lie algebra

of siv. Hence, since siv is irreducible, n" maps siu onto siv.

Thus we have an inverse system (siu, n") of linear algebraic groups and rational

group epimorphisms h": siu -* siv satisfying the conditions n£ o n" = h^ for

U => V => W. This inverse system defines an inverse limit group si. Since every

finite subset of R(L) belongs to some SeSf, it is clear that si may be identified

with the group of all proper automorphisms of R(L).

Noting the result of [4, p. 505, Proposition 2.8] we arrive at

Theorem 5.1. Let L be a Lie algebra over an algebraically closed field of

characteristic zero, and let R(L) be the algebra of the representative functions

on L. Let T be a finitely generated subalgebra ofR(L) that contains the constants

and is stable under the right and left translations. Then every proper auto-

morphism of T is the restriction to T of a proper automorphism ofR(L).

Let S, §, Gs and p -*p be as before. Let P(GS) denote the algebra of polynomial

functions on Gs. Denote by p->p the canonical epimorphism PS-*P(GS). The

epimorphism p-*p induces an isomorphism p-*(p)~ =p of P(GS) onto S.

We define a family of functions (S)* on Gs by/*(«) = a(/)(l) for each/e 3

Then/-»/* is a unitary algebra epimorphism of § onto (S)*. For any group G

and any function/on G, we define a function/^ on G by/7 (g) =/(g_1) for each

geG.

Proposition 5.2. Let S, §, and Gs be as above. Then the set of functions (§)* is

precisely the algebra of all polynomial functions on Gs. The algebra epi-

morphism S^>(S)* defined above is a monomorphism, and is in fact the inverse

of the previously defined algebra isomorphism P(GS)-+S. If, in addition, S is

stable under the involution /-»/*, then the inverse of the determinant function

on Gs lies in P(GS), and so every rational representation of Gs is a polynomial

representation.

Proof. We note that for each x e U(L) and seS, x'/s = (s ■ x)*. The constants

and the elements x'/s for x e U(L) and seS form a set of algebra generators for
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P(GS), while the constants and the elements s* with se S form a set of algebra

generators for (§)*. Thus P(GS) = (S)*. Let yeGs. Then

((x^Js~r)*(y) = y((^T)(l) = y(x'/s o p5)(l) = y(s • x)(l) = y(S)(x) = &]s)(y)

It follows that (p)* = p for each p e P(GS).Now let t e S. Then t* = VJt, whence,

for every x e U(L),

t*-(x) = (l'/t)(ps(x)) = (x-t)(l) = t(x).

Thus t* A ■= t. Again, this extends to each t e S. We have shown that p-* p* and

p ->p are mutually inverse isomorphisms.

Now suppose that S is stable under the involution/-»/*. Using the last state-

ment of the right analog of Lemma 4.1, we see that/* ' =/** for each/eS and

so, in particular, that (5)* is stable under the involution /->/ . But if d is the

determinant function on Gs, then d~l = d *. The last statement of the proposition

follows from the fact that the representative functions associated with any rational

representation of Gs lie in P(Gs)[d~x~\. This completes the proof.

Let si again denote the group of the proper automorphisms of R(L). We

define, for each feR(L), the function/* on si by /*(a) = a(/)(l) for each

aesi. The algebra of functions obtained from R(L) by the algebra homomorphism

/->/* is denoted by R(L)* . We have the following results:

Theorem 5.2. The map R(L)^>R(L)* is an algebra isomorphism. The

algebra R(L)* of functions on si is two-sidedly stable under translations, and is

stable under the mapping f-*f   .

Proof. The first statement follows from Theorem 5.1 and Proposition 5.2.

Stability under /->/ follows as in Proposition 5.2, stability under left trans-

lations is immediate, and stability under right translations follows from this and

the relation /• a = (a- i •/  )   which ho Ids for each a esi and each feR(L).

In the previous section, E,(N) was defined by considering exponentials of

right translations. Analogously, we may consider exponentials of left trans-

lations and so obtain a group £((JV) of proper automorphisms of R(L).

Theorem 5.3. £¡(JV) is normal subgroup of sí. si admits a semidirect product

decomposition si= si'L/A. 38 where si'L/A is isomorphic, via restriction, with

the group of all proper automorphisms of R(L/A) and 38 is a semidirect product

•^'Liih,L\ ' E¡(N)> where siL/[L^ is isomorphic, via restriction, with the group

of all proper automorphisms of .R(L/[L,L]). Furthermore, siL/lLL^ is iso-

morphic with the direct product of an (n — m)-dimensional vector group and

the group of the proper automorphisms of C.
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Proof. It was shown in [2, p. 519] that

R(L) = R(L)A ®C®E®F[gl, -, gm].

Since R(L)A, C, and £ are stable under the involution/-*/* it follows that

R(L) = R(L)A ® C ® E ® F [g!, - - -, g,„]*.

R(L)A is isomorphic with R(L/A) and is stable under the proper automorpisms

of R(L). Let siL/A be the subgroup of si consisting of those automorphisms

which coincide with the identity on C ® £ ® £[g,, •••, gm]*. Since

C® £®£[g,, •••,gm]* is stable under the right translations, every proper

automorphism of R(L)A can be extended to an element of siL/A. It follows that

siL/A is isomorphic with the group of the proper automorphisms of R(L/A) and

that si is a semidirect product si LjA • ¿@ where 3$ is the subgroup of si consisting

of those automorphisms which coincide with the identity on R(L)A.

The subalgebra £ is two-sidedly stable and hence stable under the proper

automorphisms of R(L). Moreover, if g is any elementary function and a is a

proper automorphism of E, then a(g) = g + c with ceF. In order to see this,

note first that/ e R(L) is elementary if and only if/ vanishes on £ and L2 U(L). Let

x,yeL and u e U(L). Then oc(g)(xyu) = a(g ■ xy)(u) = a(0)(u) = 0, whence

a(g) vanishes on L2U(L). This gives a(g) = g' + c where g'e£ and ceF. For

each x e L, g • x is a constant function, hence a(g)(x) = a(g ■ x)(l) = g(x) and so

g'= g, which proves the assertion. Since, given cm+1, •••, c„eF, the map

g¡-*■ gi + c¡,i = m + 1, •••,n, can evidently be extended to a proper automorphism

of £ = £[gm+1, ••■, g„], we have shown that the group of the proper automor-

phisms of £ is isomorphic with F"'m.

By [2, p. 519], R(L/[L,L~\) » C®£. C®£ is stable under the proper auto-

morphisms of R(L). Let siL/[L¡ LX be the subgroup of 38 consisting of those auto-

morphisms which coincide with the identity on £[g,, •••, g,„]*. Now suppose, for

the moment, that £ is algebraically closed, and let a be a proper automorphism of

C ® £. Since £ is finitely generated, we know from Theorem 5.1 that there is an

element ß in si such that ß coincides with a on E. Since R(L)A®£®£[g1,-■ • ,g„,]*

is right stable we can find ye si such that y coincides with aß ~~% on C and with

the identity on R(L)A® £ ® F\_gx, •■■, gm]*. Then yßesi and is an extension of a.

Since si = siL/A ■ 3), this shows that each proper automorphism of C ® £ may

be extended to an element of J1. It follows that siL/[L¡ L] is isomorphic with the

group of the proper automorphisms of R(LI\_L, L]) and that Se is a semidirect

product siL/[Lt L] • A, where A is the subgroup of si consisting of those proper

automorphisms of R(L) which coincide with the identity on R(L)A® C ®E. But

we showed in proving Lemma 4.3 that R(L)A ®C®E = R(L)N. Hence, by the

right analog of Proposition 4.1, it follows that, whenever £ is algebraically closed,
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Now let £ be a field that is not necessarily algebraically closed and let F be it

algebraic closure. Let L = L®Fand Ñ = N®F, and as usual consider R(L) as

a subalgebra of R(L). Denote by si the group of the proper automorpisms of

R(L). Each aesi extends uniquely to a proper automorphism ä of R(L) leaving

R(L) stable. Let ße3S. Then, by the above, ß = y a S, with y e sii/[i> i-¡ and

SeE^Ñ). Clearly y and S leave R(L) stable, so by restriction induce elements y

and «3 of si. Furthermore, y esiL/[L>L¡ and oeE¡(N). Hence, in general, we have

Also, Et(N) is normal in si since it is the kernel of the restriction homomor-

phism from si to the group of the proper automorphisms of R(L)N. Using the two-

sided stability of both C and £, the result about the structure of síL/ÍL¡ L] follows

from what we have shown above.

Remark. Since L/A is semisimple, siL/A is isomorphic with an irreducible

algebraic linear group whose Lie algebra may be identified with L/A. Indeed

this is clear from Proposition 5.1 and [2, §5].

6. On inverse limits of algebraic groups. In this section, F is assumed to be

algebraically closed. Let (3!, <) be a directed set, and suppose that we are given

an inverse system /if : Gß -* Ga of linear algebraic groups Ga and rational group

epimorphisms nf defined for every pair of elements a and ß such that a < ß.

Let S3? denote the inverse limit group defined by this system. By [4, p. 505, Propo-

sition 2.8], the natural homomorphism hx:^-*Gx is an epimorphism for each

aE@. We have hx = h£° hß for each pair a, ßeS> with a < ß.

Let R(GX) denote the algebra of the rational representative functions on Gx.

We define algebra monomorphisms izß : R(GX) -* R(Gß) for each pair a < ß by

nß(f) =/o nf for each/eR(Ga). This is a direct system of algebras R(Ga) and

algebra monomorphisms n"ß. When the R(GX) are considered only on £-spaces,

this system yields a direct limit £-space Rife) and natural £-linear maps

7ia : R(Ga) -* R(@) for each <xe@>. The nx are known to be monomorphisms since

the ifß are monomorphisms. Also, nßo naß = nx for each pair a< ß. Since 3¡ is

directed, RifS) = \)„anJßlßu).
We will now define an algebra structure on Rife). For arbitrary elements/,

geRÍ/S), choose aeSandfeR(GX) such that/ = n„(fa), and choose ßeSi and

gp e R(Gß) such that g = nß(gß). Choose y e Su such that a < y and ß < y. Define

the product off and g by

/s = ̂ «(/V *?(/))•

It is easy to check that this product is independent of the choices of a, ß, /",

and gß and hence, that it is associative and distributive. Clearly, each nx is mul-

tiplicative with respect to this product. Let #Yá?) denote the algebra of all £-

valued functions on <&.

Define a unitary algebra homomorphism  i : R(@) -* !F IfS) by i(f)=f*oha
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where a and/" are chosen so that/= nx(f). Clearly it is well defined and, since

S> is directed and each na is a monomorphism, i is a monomorphism. By means

of i, we identify R(<8) with a subalgebra of êF(f£).

Definition. R(&) is called the algebra of the rational representative functions

onS?.

Remark. In the notation of the previous section, it is clear that R(L) * is

precisely the algebra of the rational representative functions on si.

For each ae@, let Lx denote the Lie algebra of Gx, and for each a > ß, let

dhß denote the differential of hß. Then, since £ has characteristic zero, dhß is a

Lie algebra epimorphism of Lx onto Lß. The inverse system (Lx, dh*ß) defines

an inverse limit Lie algebra which we denote by J5?. By [4, p. 505, Proposition

2.10], the Lie algebra homomorphisms dhx:^C^ Lx are epimorphisms.

We recall that if H is an algebraic group of automorphisms of a vector space V

and if e belongs to the Lie algebra of H, then De denotes the proper derivation

of R(H) that is induced by the left translation by e on £„'.

Let £R denote the algebra of endomorphisms of R(@) and define a Lie algebra

monomorphism i:J?->ER as follows: given le£C and feR(&), choose ae@)

and f*eR(Gx) such that nx(fx)=f, and define /(/) by i(l)(f) = nx(DdhM)(f*)).

We will show that i(l)(f) is independent of a. For suppose that we have a,ße2,

f" e R(GX), and f e R(G„) such that nx(f") = nß(fß) =/. We must show that

%ÁPdh^(i)(/")) = nß(Ddhß(i)(fP))- It clearly suffices to do this in the case a<ß. Then:

K(DdhM(f)) - nß(Ddhß(l)(fß)) =  %(7#A,M»(n - %(/)(/*))

=  7iß(DdhM(r)0hßx-Ddhß(n(f))

= nß(DdhiidhßH))(r) o hi - Ddl,ß(l)(f o Aj)).

But Ddhß dhßm(f") o hl = Ddhß(l)(fx o nf) by the definition of the differential of a

rational map and so the required result follows.

It is easily checked that the commutativity relations na(hx(g) ■ f") = g ■ nct(f'í)

and n^f" ■ hx(g)) = nx(fx) ■ g are valid for each/" eR(Gx) and each ge^S.

We now show that i(^C) is precisely the algebra of the proper derivations of

R(fS). First, each element of i(£t°) is clearly a derivation of R(^) which, by the

commutativity relations, commutes with the right translations. Let D be any proper

derivation of R(@). The commutativity relations show that, for any/ eR(@),

(S • f (and / • $) have finite dimension. Hence, an argument as used in proving

the first part of Lemma 4.1 shows that each subspace of R(@) that is stable under

the left translations is also stable under D. Again by the commutativity relations,

each itx (R(GX)) is stable under the left translations. Hence D induces a proper

derivation of each nx(R(Gx)) and so of R(GX). This derivation has the form D, for

some (unique) \xeLx. It follows directly that for a < ß, we have dhßx(lß) = lx.

Hence the set {lx}xe3 determines an element le£f.  Clearly, /(/) = D and we
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have proved that i(£C) coincides with the Lie algebra of the proper derivations

of RifS). By means of i, we identify «5? with this algebra.

Definitions. Let (p, V) be a representation of 'S, not necessarily finite-dimen-

sional. For each ^-stable finite-dimensional subspace S of V, let ps denote the

induced representation on S. Then the algebra generated by the functions X ° ps,

where S ranges over the finite-dimensional ^-invariant subspaces of V and X

ranges over E's for each S, is called the algebra of representative functions associ-

ated with p, and denoted by R(p). If R(p) c R(fS), p is said to be a rational repre-

sentation of &. p is said to be a locally finite representation if, for each veV,

p(S)(v) is contained in a finite-dimensional subspace of V. A locally finite rep-

resentation of =SP is a similarly defined.

We shall now associate with every locally finite representation (p, V) of 'S a

locally finite representation (dp, V) of J£. Assume first that V is of finite dimension.

In that case, R(p) c R(*S) implies that R(p) <= nß(R(Gß)) for some ßeSi. Hence p

induces a rational representation pß of Gß satisfying p = pß0hß. pß has a differ-

ential dpß. We define the representation dp of JSP by dp = dpß 0 dhß. dp is clearly

independent of the choice of ß.

Now suppose that (p, V) is locally finite. We define dp:£C-» E(V) as follows:

for each IeJSP and veV, let IF be a finite-dimensional invariant subspace of V

containing pCS)(v) and define (dp)(l) by (dp)(l)(v) = d(pw)(l)(v). It is easily

verified that (dp)(l)(v) is independent of W. To show that dp is a representation

of JSP, fix lt and l2 in .SP and teK Choose IF a finite dimensional invariant sub-

space of V containing v, (dp)(l^(v), and (dp)(l2)(v). Then

«Wi,IJ)(») = <*(pw)([/i,f2])0>) = [d(pJOi),d(Pw)(Í2)]0>)

= [dpai),<*p(j2)](t>).

Definition, dp is called the differential of p.

It is easily verified that dp is trivial if and only if p is trivial, and that a sub-

space of V is ^-invariant under p if and only if it is .SP-invariant under dp.

For each a £ S3, denote by S(LX) the algebra of representative functions on

Lx which are associated with differentials of rational representations of Gx. By

analogy with the situation for the R(GX), we may construct a direct limit algebra

S(jSP) of functions on JSP. The following proposition follows easily.

Proposition 6.1. A locally finite representation p of JSP is the differential

of a rational representation of 'S if and only if the representative functions

associated with p lie in S(JSP).

Definition. Iß is said to be irreducible if each Gx is an irreducible algebraic group.

Since RifS) = \^JxeSnx(R(Gx)), it is clear that ^ is irreducible if and only if

RC&) is an integral domain.
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