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1. Introduction. The theory of positive-definite J-fractions was used by Wall

[3] to show that there is associated with each bounded ./-fraction a convex region

R, and that the ./-fraction converges in the exterior of R to an analytic function.

The principal purpose of the present paper is to obtain an analog of Wall's

results for a wider class of J-fractions whose coefficients are not necessarily

bounded.

The lower bound of a J-form is defined in §2 and some elementary properties

are noted for reference. In §3 the partial bound, Y(6), of a J-fraction is defined,

and necessary conditions and sufficient conditions for partial boundness are given.

Also, the structure of 0-sets of partial boundeness is determined, and it is shown

that Y(9) is continuous and has left and right hand derivatives.

In §4 the convex set R associated with a partially bounded J-fraction is defined

and some convergence theorems are given. Partially bounded J-fractions having

a linear convex set R are characterized, and the notion of the convex hull of

a partially bounded J-fraction is used to extend the previously stated convergence

results.

2. The lower bound and lower limit of a J-form. For two given infinite

sequences of real numbers a,, a2, •••, and ß2 ß2, ■■■, consider the quadratic

forms (Jacobi forms, or J-forms)

m—1 m-2

Jim\x,y)= 2 (ßp+n-y)x2p+n-2 I <xp+„xp+nxp+n+i,   (m,n = 1,2,--),
p=0 p=0

in the real variables xx,x2, •■•, where y is a real parameter. The largest value Y^

of y for which J^\x, y) is non-negative-definite is called the lower bound of

J(B)(x,0). If M„,n) denotes the maximum of | ap+B | and | ßp+n | for 0 á P ^ m - 1

it is easily seen that f£° ^ — 3M(£> since

J%>(x,-3M%>)

^Mi)")[|xn|2 + (|xn|-|xn+1|)2 + -+(|xn+m_2|-xn + m_1|)2+|xn+m_1|2].
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If for a fixed value of n there exists a largest value Y(n) of y for which all of the

forms Jlü\x,y), (m = 1,2, •••), are non-negative-definite, then the forms J¡¡"\x,0),

(m — 1,2, •••), are said to be bounded below and y(n) is called their lower bound.

From a result of Wall and Wetzel [5] on non-negative-definite J-forms it follows

that the forms J%\x,0), (m = 1,2, •••), have lower bound Yw if and only if F(n)

is the largest value of y which satisfies both of the following conditions:

(i)ßn+p-y^0, (p = 0,1,2,-).

(ii) There exist numbers gp, 0 ^ gp ^ l,such that

(2.1) «2n+Pe(ßn+P-y)(ßn+P+i-y)(i-gP)gP+1,        (P = 0,1,2,-).

The observation that J%+i(x,y) is identical with J%\x,y) when xa+m = 0 yields

the inequality

(2.2) Yi'U^Y^

from which the following theorem is obtained.

Theorem 2.1. The forms J^\x,0), (m = 1,2,—), are bounded below with lower

bound 7(n) if and only if

(2.3) lim y^B)= Yin)
m= oo

Theorem 2.2. A necessary condition for the forms J^\x,0),(m = 1,2,—), to

have the lower bound Y(B) is that

(2.4) Bw =   gib  ßn+p ^ y<">.
0ap<oo

A sufficient condition for the forms to be bounded below is the existence of

the bound B(n) and of

(2.5) A™=   lub   |an+p|,
Ogp< 00

in which case the lower bound Y'(n) satisfies

(2.6) B(n) - 2AW g y(n) ^ B(n).

The stated necessary condition is an immediate consequence of (i) of (2.1).

The sufficiency of (2.4) and (2.5), and the validity of inequality (2.6), follow by

noting that (2.1) holds for gp = 1/2 when y = B(n) - 2AW.

The observation that ^mii(x,y) is identical with J^+1)(x,y) when x„=0 yields

the inequality
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(2.7) rSîiSTÏ*1!

Also, the decomposition

J&iOoO = J(:+1\x,y) + An\x,y) ~ Jf+1W)

and the fact that

yo,+ i) + yw _ yo.+ i) = mjn/y^ + i^ yWy(»+D + y(»> _ y/"*1'},

J«i(x,y) 2: 0 for y = F<"+1)+ y?»- !?♦",

lead to the inequality

2.8) Fj& à FiB+1} + Y2(B) - FiB+x).

The following result is a consequence of (2.7) and (2.8).

Theorem 2.3. // Y(n) exists for a single index n, it exists for n = 1,2, •■•, and

(j« y(»+i)i  y(») _ y(">< y(n)< y("+1)

If

(2.10) Y(oo) = lim F(n)

n = oo

is finite, then the forms J„\x,y) are said to have the lower limit Y(oo).

3. The partial bound of a J-fraction.   A J-fraction is a continued fraction of the

form

(3.1) K(z) = Kl(z)^
z + bt  — z + b2 — z + b3 —

in which ap, bp are complex numbers and ap # 0, p = l, 2,---, (nonterminating), or

else ap^0, p £ k, ap = 0, p > k, (terminating). K(z) is said to be positive

definite for Im z > 0 provided the forms Jm(x,0) = J^\x,0) of §2 are non-

negative-definite, where

(3.2) ap = sp + iap.       bp = tP + ißp>

(cf. Wall and Wetzel [4, p.375]). If the forms Jm(x,0) have lower bound Y = Y(1),

K(z) is said to be bounded below with lower bound Y. An equivalent statement

is that K(z—iY) is positive-definite for Imz > 0, or that K(z) is positive-definite

for Im z > - Y.

In his study of bounded J-fractions Wall [3] introduced an arbitrary real

parameter into the iproblem by noting that a simple equivalence transformation

of K(z) yields the new J-fraction in Ç = e'ez,
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w      C + eieb1 - Ç + e">b2 - Ç + e"b3 -  '" '

For this J-fraction the roles of ap and ßp in the related ./-forms are assumed by

ap(0) = Wap,       ßp(9)=lmewbp.

If for each 9 in a set T, e~,eK(z) is bounded below with lower bound Y(9), then

K(z) is said to be partially bounded, with partial bound Y(9), for 9 in T. In

view of the periodicity of e'B, it is clear that T will be completely determined by

a knowledge of the part of T in any half-open 9 interval of length 2n.

The remainder of this section is devoted to a determination of the structure of

a set T of partial boundeness, and to a study of some properties of the partial

bound, y(0), on T.

Theorem 3.1. // K(z) has partial bound Y(9)for 0X < 9 <92 then

(3.3) B(0)=   gib   ßp(9)^Y(9), 0t<9<92,
lgp< OO

and the elements bp, (p= 1,2,...), lie in the convex region 39 of the b-plane

(b = t + iß) defined by

(3.4) aS:ß(9)^B(9),       9,<9<92,

where ß(9) = Ime'eb. A sufficient condition for the partial boundedness of

K(z)for 0, < 0 < 92 is the existence of B(9) and of

(3.5) A(0)=   lub   |ap(0)|,       01<0<02,
lgp<oo

in which case the elements ap,(p = 1,2, •••), are bounded and the partial bound,

Y(9),ofK(z) satisfies

(3.6) B(0) - 2/1(0) ̂  y(0) ^ B(0),       0! < 0 < 02.

Inequality (3.6) and the statements of both necessary and sufficient conditions

follow at once from Theorem 2.2 and the definition of partial boundedness. The

remark on the boundedness of the elements ap is easily verified by noting that

the existence of A(9) for any two distinct values of 0 differing by less than n implies

boundedness for the real and imaginary parts of ap.

In order to show that the region SS of (3.4) is convex it is sufficient to observe

that any point b on the line joining points b' and b" of SS has the representation

b - ab' + (1 - a)b"

where 0 g o S 1. Then for all 9,91<0< 92,

ß(9) = aß'(9) + (1 - a)ß"(9) k B(0),

and b is in the region SS.
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This completes the proof of Theorem 3.1.

For the bounded J-fractions of Wall [2] the elements ap and bp are bounded.

Theorem 3.1 shows that a bounded J-fraction is partially bounded for 0 g 0 5j 27t

and the partial bound in this case is identical with the bound defined by Wall.

The following theorem gives a condition under which a partially bounded

J-fraction will be a bounded J-fraction.

Theorem 3.2. If K(z) is partially bounded for 0, < 0 < 92,where92 — 01>n,

then K(z) is bounded.

The boundedness of the elements ap is a consequence of Theorem 3.1. It is

easily seen that the elements bp are bounded since the hypothesis insures the

existence if Y(0) for the four distinct 0-values, 0',0' + n, 9", 9" + n, where

0 < 9" — 9' < n (i.e., the convex region â?is bounded since its lines of support turn

through an angle greater than n).

Theorem 3.3. If K(z) is partially bounded for 9 = 0O, 0O + n, then

Y(90) + Y(90 + n) ^ 0.

The proof is a consequence of Theorem 3.1 since ßp(0o + n)= —ßp(90).

Theorem 3.4. // K(z) is partially bounded in T and 0, eT, 92e T, where

0 < 02 — 0, < 7i, then T contains the interval 9X 5¡ 0 ^ 02, and the partial

bound of K(z) satisfies

<"'  ™*WfÏ5™ + S$Î%™'    °'iSie-
For any 9,

sin (02-0) sin (0-0J
a*(0) - shtTcV^) a"(öl) + sin(92-9x) ap{°2)>

sin (02-0) sin (0-0.)

ßp{6) = sin (02-0,) ^0l) + 8111(02-00 ^p( 2)'

and the J-forms associated with e_,9X(z) are

sin (02-0)
<UA>°)=77;

sin(02-0i)

m—1 m—2 n

2 ßP + i(öi)Xp+1-2 Z ap+1(0,)xp+1xp+2
,p=0 p=0 J

sin(0-0t)

+ sin(02-0,)

m-l m-z -i

S jSp+i(02)*p+i-2 E ap+i(ö2>p+i^p+2 •
p=0 p=0 J

Since the terms in square brackets are the J-forms Jm(x,0) associated with

e~WiK(z) and e'*2 K(z), respectively, it follows that for 92 g 0 S ö2>
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•X-p4
j (X 0) >   \&in(°2-9) sin(9-9l) IC
JÁX'0) -   Lsin(ö2-Öl) r"'(0l) +   ^(0,-00 rm(Ö2)Jpt0

Thus Jm(x, 0) has a lower bound Ym(9) which satisfies

sin(02-0) sinfl-flj
7m(0) -  «11(02-0^    "( l)+ ÜulrV^T) Ym(02)-

The proof of Theorem 3.4 may now be completed by noting that this last inequality,

together with (2.2) and Theorem 2.1, implies the existence of Y (9) and the validity

of (3.7).

It is easy to see that, modulo 27t, a set T of partial boundedness must have one

of the following forms :

(i)    T is vacuous;

(ii)   T contains a single point, 0O;

(iii) T contains two points, 0O and 0O + n;

(iv) T contains a 0-interval of length not exceeding n.

(v)   T contains a closed 0-interval of length 2ti.

The fact that each of these possibilities may occur is illustrated by the ./-fractions,

K(z), given below.

(i) | bp\ -* co as p-> oo and the numbers, arg bp, are everywhere dense in [0, 27t].

Then gib ßp(9) = — oo for each 0 and X(z)is not partially bounded for any 0.

(ii) ap real, | bp\ -* co as p -> co and the numbers, arg bp,are everywhere dense

in [0,7t]. Reference to (2.1) shows that y(0) = glbjS„(0) ̂  0, but K(z) is not

partially bounded for any 0, 0 < 0 < 2ji, since gib ß„(9) = — oo.

(iii) ap,bp real, lim inf bp = — oo, lim sup bp = oo. Reference to (2.1) shows

that y(0) = Y(n) = 0, but gib ß„(9) = - oo for 0 < 6 < n and n < 0 < 2%.

(iv) bp>0, lim inf bp = 0, lim sup bp = co, and a\ = bpbp+1(l - gp-i)gp

where 0 < sp_! < 1. It can be verified from (2.1) that Y(9) = 0 for 0 ^ 0 ^ n,

and K(z) is not partially bounded for any 0, n < 9 < 2%, since gib ßp(9) = — oo.

(v) K(z) is any bounded ./-fraction.

Implications of the inequality (3.7), which is similar to a convexity condition

on Y(0), are given in the two following theorems. These results are stated in terms

of partial bounds, but apply also to any function satisfying (3.7).

Theorem 3.5. // K(z) has partial bound Y(6) for 9t<9 <92 then Y(9) is

continuous for 0t < 0 < 02. Moreover, the existence of either one of the limits

YJflt) =    hm inf y(0),
» = e*

y*(ö+) =     [¡m supy(0)
e = e,+

implies the existence of

Y(ßt)   =   lim y(0),
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in which case K(z) is partially bounded for 0, _ 0 < 02, and 7(0,) = Y(9X).

A corresponding remark applies for 9 = 92.

For arbitrary 9,9X<9 <92, and for <p > 0, sufficiently small, the relations

Y(0)  *    Sin(1~fY(0 - *) + ^7[0 4- (1 - 0«.
sin <p sin (j> J

(3.8)

Y(0 + t<t» *   SÍn(1;^Y(0) + ^7(0 + «
sin c/> sin <p

are obtained from (3.7) by replacing 9X<9<92 by 0 - fc6 < 0 < 0 + (1 - t)c/>

and 9<9 + t(p<9 + (t>, respectively, where 0 < t < 1. When í -» 0+ the second

relation (3.8) yields Y%(9+) ̂  Y(0) and, similarly, a statement equivalent to

Y*(0~) = Y(0) is obtained when i->l". When <p->0+ the first relation (3.8)

yields

Y(0)^(l-f)Y*(0-) + iY#(0+),

Y(0)^(l-f)Y*(0-) + iY*(0+).

Since these relations also hold for í = 0 and t = 1 the continuity of Y(0) for each

0, 0i < 0 < 02, is a consequence of the inequalities

ï*(0*) ^ Y(0) = 7*(0*).

When Y*(0Í") exists, the continuity of Y(0) for 0, < 0 < 02 insures the validity

of the second relation (3.8) with 0 = 0, and with Y(0) replaced by Y*(9X). The

existence of Y(9X) follows from the resulting inequality, Y*(0t) = Y*(01"),

and the fact that K(z) is partially bounded for 0, _ 0 < 02 is a consequence of

the continuity of Y(0) and of the forms Jm(x,0) for 9X _ 0 < 02.

The proof of Theorem 3.5 may now be completed by using a similar procedure

to dispose of the cases in which one of Y*(9X), Y*(92), YH!(0J) exists.

Theorem 3.6. A partial bound, Y(9), defined in 0, < 0 < 02, has finite right

and left hand derivatives for each 9, 9X<9 < 92.

For <j) > 0, sufficiently small, and for 0 < t < 1, the second relation (3.8) gives

7(0 + t<¡,) - 7(0)       sin t<j> 7(0 + <j>)      sin(l - t)<¡> - sinçA

tip íc6 sin ep íc/>sinc6

As í -> 0 it is found that the lower right hand derivative satisfies

D+Y(9) = ^jL-[7(0 + </>)- cos ç67(0)] .

As (¡> -> 0 this yields

Z)+Y(0) = D + Y(0),
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which shows that the right hand derivative exists, finite or infinite. From the

first relation (3.8),

sin (j) - sin ttb sin (Í - t)(j)Y(9 - t<P)      Y[_9 + (1 - Q0] - Y(9)

(1 - t)(j> sin t<j> (1 - t)<¡> sin t<f> (1 - t)4>

When t -* 1 this shows that

^y(0)^^^- + z)+y(0),
sin f/> sin 4> v '

and it follows that D+Y(9) = D+ Y(9) is finite.

A similar treatment of the upper and lower left hand derivatives will complete

the proof of Theorem 3.6.

4. Convergence theorems. If a ./-fraction K(z) has partial bound Y(9) for 0

in a set T of the sort determined in §3, then it is easily verified, by an argument

similar to that used for the region SS of Theorem 3.1, that the set R of points in

the z-plane defined by

(4.1) R:Im eiez ^ - Y(0),       9eT,

is convex. R is called the convex set of K(z).

The following theorem is due to Wall [3].

Theorem 4.1. If K(z) is a bounded J-fraction then its convex set R contains

the zeros of the denominators of K(z), and K(z) converges uniformly on each

compact set in the exterior of R to a function analytic in the exterior of R.

A theorem of Dennis and Wall [1] which will be used in the sequel is stated

below in the terminology of the present paper.

Theorem 4.2. If K(z) is partially bounded for 9 = 0O, and if K(z), or an

infinite subsequence of its approximants, converges at a single point exterior to

the half plane R:Im e,e°z ;£ — Y(90), then K(z), or the subsequence of approxi-

mants, converges uniformly on each compact subset in the exterior of R to a

function analytic in the exterior of R.

Below is an analog of Theorem 4.1 for partially bounded ./-fractions.

Theorem 4.3. // K(z) has partial bound Y(9)for 0 in an interval I of length

not exceeding n then the zeros of the denominators of K(z) lie in the unbounded

convex region R defined by (4.1) for 0 in I. Moreover, the approximants of K(z)

are uniformly bounded on each compact region at positive distance from R,

and the convergence of K(z) or a subsequence of its approximants at a single

point exterior to R implies uniform convergence on each such compact region

to a function analytic in the exterior of R.
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Proof. From the definition of partial boundedness it follows that for each 0 in

/, e~ieK(z) has lower bound Y(9) for Im ewz > 0, and hence that e~ieK(z) is

positive definite for Im elBz > — Y(9). The nth approximant of e~'e K(z) is

e~l8P„(z)/Q„(z) where Pn(z)/Q„(z) is the nth approximant of K(z); and by a

well-known property of positive definite /-fractions, (cf. [2, p. 113]),

1     ^ ö»(z) ft,(z)      = 5

holds for arbitrary <5 > 0 provided

(4.3) Im ewz £ - T(0) + 5,       0 in /.

Since the numerators, P„(z), and denominators, Q„(z), are polynomials in z without

common factors it is immediate that the zeros of Q„(z) lie in R.

The remark on uniform boundedness is readily verified by noting that if the

minimum distance of the compact region from T is denoted by <5, then for each

point z of the region there is some 0 in I for which (4.3) and (4.2) hold. Thus i/o

is a uniform bound.

If z0 is a point exterior to R at which K(z) or a subsequence of its approximants

converge then there is a 0O in / and a <50 > 0 such that Im eie°z0 S: — Y(90) + <V

By Theorem 4.2, after deleting a factor e~ie°, it is seen that K(z) or its subsequence

of approximants converges to a function analytic in the half plane Im e'e°z > — Y(90).

The function may be continued analytically throughout the exterior of R by

re-applying Theorem 4.2 after noting that the half plane Im e'ez > — Y(9) overlaps

the half plane Im ew°z > - Y(90) if 10 - 0O | < n.

The proof of Theorem 4.3 may now be completed by using the previously

established remark on uniform boundedness to verify the statement on uniform

convergence.

A sufficient condition for the convergence of K(z) in either Theorem 4.2 or

Theorem 4.3 is the divergence of the series Z|ap|_1. The divergence of the

series insures the determinate case for K(z), and a positive definite /-fraction

converges when the determinate case holds [1, §4; 2, pp. 109 ff.].

The proof of the following result is similar to that of Theorem 4.3.

Theorem 4.4. // K(z) is partially bounded for 9 = 90, 9 = 90 + it, then the

zeros of the denominators of K(z) lie in the strip

(4.4) R : Y(90 + n) ^ Im eie°z ̂  - Y(90).

The approximants of K(z) are uniformly bounded on each compact connected

region exterior to R and the convergence of K(z) or a subsequence of its appro-

ximants at a single point in the half plane Im eiä°z > — Y(90) (or

Im e ° z < y(0o + n)) implies uniform convergence on each compact region

in that half plane to a function analytic in the half plane.
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The following theorem identifies those partially bounded J-fractions whose

associated convex region R has no interior points with real J-fractions, and makes

available for them the convergence results for real J-fractions (cf. [4, pp. 114 ff.]).

Theorem 4.5. A J-fraction K(z) is partially bounded and its associated

convex set R is without interior points if and only if there exist real numbers 0O

and y such thate~'e°K(z) is a real J-fraction in Ç = e'e°z + iy.

If K(z) is partially bounded and R has no interior points then there exists 0O

such that e~ieK(z) is bounded below for 0 = 0O, 0o + 7i, and Y(0O + n) = - Y(0O).

Since e~ie°K(z) and e~Ke° + K)K(z) are positive-definite for Im ew°z > - Y(90)

and for Im ei(e° + ,t)z > - 7(0O + tí), respectively, (2.1) shows that

ßp(90) - 7(0O) = 0,

ßp(90 + n) - 7(0O + tx) = - [ßp(90) - 7(0,)] = 0,

and hence that ßp(90) - Y(90) = 0, ap(0o) = 0. Thus e~WoK(z) is a real J-

fraction in Ç = ei9°z + ¿7(0O).

Conversely, if e~ie°K(z) is a real J-fraction in ( = e l6°z + iy then ap(0o) = 0 and

ßp(9) - y = 0, so that K(z) is partially bounded for 0 = 0O and 7(0O) = 7. But

also, e~m+n)K(z) is a real J-fraction in C = ci<fl°+*>+ iy, and K(z) is partially

bounded for 0 = 0O + n with 7(0O + 7i) = — y. It follows from Theorem 4.4 that

the associated convex region R is contained in the line Im e'e°z = — y.

In the terminology of §2, the preceding parts of the present section have dealt

with the J-fraction K(z) — Kx(z), where

Kn(z) = a" a"+1

z + f>„ - z + bn+x - z + bn + 2 -

and with the related partial bound  7(0) = 7(1)(0), and convex set R = R(1).

In view of the formal identity

„_     P^-alP^WK^z)
(4.5) K(z) =-,

0„(z)-«¿Qn-i(z)K„ + i(z)

it is evident that information about the convergence of K„(z) yields information

about the behavior of K(z). To facilitate the statement of results,

7(oo)(0) = lim 7(B)

is called the partial limit of K(z) and the related convex set,

R(c0): Im ewz = - 7(oo)(0),

is called the convex hull of K(z).
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In the case of terminating J-fractions the machinery for the determination of

y<oo)(0) breaks down. The difficulty can be eliminated by defining Yffi to be

+ oo and R(oo) to be the null set in this case. This situation will be easy to

identify in terms of the convex sets R(n) since Theorem 4.5 and a simple com-

putation show that K(z) is terminating if and only if there is an index n for which

Kn(z) has the associated set R(n) consisting of a single point.

Theorem 2.3 shows that Yin)(9) exists for those and only those values of 0

for which Y(9) exists, and for such 0, R(n+1) c R(n). The identity (4.5) and the

fact that a non-terminating J-fraction cannot converge to a rational function of z

(cf. [2, p. 197]) leads to the following result, which is, in a sense, an extension of

Theorem 4.1.

Theorem 4.6. // K(z) is a bounded J-fraction, then K(z) converges in the

exterior of its convex hull, except perhaps at certain isolated points which may

cluster on the boundary of R(co), to a function meromorphic in the exterior of R(oo).

The excepted points, if they exist, are poles of the meromorphic function, and

the convergence of K(z) to the function is uniform in any compact region which

is exterior to R(oo) and contains none of the excluded points.

For any compact region G exterior to R(co), there exists an index n such that

G is exterior to R(n). The proof of the theorem may be completed by applying

Theorem 4.1 to the bounded J-fraction K„(z) and noting that, by (4.5), the poles

of the meromorphic function in G occur only at those isolated points of G where

ß„_1(z)-a„2_1ß„_2(z)Kn(z) = 0.

The statement, in terms of the convex hull, of similar extensions of Theorems

4.2-4A is omitted.

It is interesting to note that the convex hull for a partially bounded J-fraction

may be the null set. This is the case for example (ii) of §3 if ßn(0) -+ co.
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