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Explicitly this paper deals with functors of the category GA of associative

algebras—not necessarily with identity—over a commutative ring A with identity.

The contents of the first part remain valid however in a much more general

situation. We have formulated the theory of Baer-invariants in §§1-3 in the

language of A-algebras, in order to exhibit their significance in a concrete cate-

gory and also in order to preserve the continuity with the later sections. The

translations into abstract terms does not present any difficulty. It is in particular

clear that the definitions and results of §§1-3 apply equally well to any variety

£ of groups with multiple operators in the sense of P. J. Higgins (cf. [3]).

With every subvariety 23 of G there is associated a subfunctor and a quotient

functor of the identity functor of G (cf. §1, see also [5]). The absolute Baer-

invariants appear then as their "derived" functors (§3), the procedure involved

being, however, quite different from that in [6]. The principal homological

tool is that of a normal short complex (cf. §2). Relative invariants are ob-

tained by considering pairs of varieties 33 ! and 33 2 (cf. §3).

Historically one may take as starting point of the theory the discovery by

Hopf (cf. [4]) that if

(1) G S F/K

is a group, presented as a quotient group of a free group F, then the groups

(2) (F,F)/(F,K)   and   (F,F) nK/(F,K)

are independent of the choice of F, i.e., are invariants of G. Hopf found in par-

ticular that

(3) (F,F)nK/(F,K) = H2(G,Z)

is the second homology group. In a series of papers (cf. [1]) Baer introduced

a large class of invariants of type (2) derived from free, or reduced free presen-

tations (1). It had long been felt that there is a deeper connection between Baer's

work and the homological methods in algebra developed since.
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In our terminology the original Baer-invariants are those associated with

varieties (E of ordinary groups and "commutator" subvarieties 93 of (£. Baer's

construction procedure is an iterative one, based on the commutator calculus.

He was certainly aware that his methods could in principle be adapted, so as

to yield invariants also in other situations. There is, however, a definite ad-

vantage in employing the homological procedure developed in this paper. It

provides once and for all a universal, and at the same time technically quite

transparent construction of Baer-invariants for any pair (E, 93, with £ say an

arbitrary variety of groups with multiple operators and 93 an arbitrary sub-

variety of (L

Elsewhere (cf. [6]) I have shown that the theory of derived functors and sat-

ellites in homological algebra can be extended to certain non-Abelian categories.

The varieties of groups with multiple operators fall under this heading (cf. [6,

II, Introduction]), and in fact some of the classical Baer-invariants were thus

regained (cf. [6, II]). The construction method there differs however fundamen-

tally from the one used here. In [6] we deal with arbitrary additive functors and

get derived functor or satellites in all dimensions. On the other hand for functors

associated with varieties and for dimensions 0 and 1 the methods of the present

paper go much deeper. The full connection between the two approaches remains

yet to be explored.

From §4 onward we are specifically concerned with the category C£A = f£

of A-algebras. In §4 we give a description of the Baer-invariants for varieties

associated with ideals of A; these turn out to be tensor and torsion products.

Associating with each A-algebra A the supplemented A-algebra A+ with

augmentation ideal A, one obtains an isomorphism of (£ with the category S+ of

supplemented algebras. In §5 we study the Baer-invariants, and also the tensor

product Aw of n copies of A over A+, from the point of view of supplemented

algebras. In particular we show that if A is a projective (free) A-algebra then,

for all n, A(n) is a projective (free) A+-module.

The subject matter of the last three sections are the powers of algebras, which

play the same role here as the terms of the lower central series in group theory.

The associated Baer-invariants are described in §6. It is shown that they can

also be expressed by means of the functors Aw. In §7 we establish a connection

with the homology groups of supplemented algebras. As a particular case we

obtain the exact algebra analogue to the Hopf equation (3) for H2(G,Z). Finally,

in §8 we consider some illustrative examples.

1. Varieties of algebras. Throughout A is a fixed commutative ring with

identity. A A-module is always one on which 1 acts as the identity map. A A-al-

gebra A is a ring and a A-module, the two additions to coincide, which satisfies

the usual postulate
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X(axa2) = (Xax)a2 = ax(Xa2),       for all ax,a2eA, all XeA.

The existence of an identity in A is thus not to be assumed. The term "free al-

gebra" is to be understood in this sense, as an algebra "without" identity. The

category of A-algebras will be denoted by G.

We shall frequently speak simply of "modules" and of "algebras," the base

ring being A, unless otherwise mentioned. If A and B are algebras, a "homo-

morphism" /: A-+B is always an algebra-homomorphism, unless otherwise

specified. The modules Im/ and Ker/ have again the structure of algebras.

Moreover Ker/ is an ideal of A, where by ideal we mean "ring ideal" plus

"A-submodule."iIf also Im/ is an ideal of B we say that/ is normal. It is now

clear what is meant by a monomorphism, an epimorphism, and an exact sequence

in G.

We shall make use of the non-Abelian form of the basic lemma on connecting

homomorphism (cf. [6,1, 4.1, 4.2]). Let

Xi -> A2 -> A3 ->• 0

Y
0 -> Yt -> Y2

Í2 3

be a commutative diagram in G with exact rows. The construction of a connect-

ing homomorphism and the results given in [6, cf. I, §4] for a non-Abelian cate-

gory remain valid here. If in particular the/ are all normal then the A-modules

Coker/j have the structure of algebras, and we have

1.1.     Lemma. The sequence in G

Ker/j -» Ker/2 -* Ker f3 -» Coker fx -* Coker/2 -> Coker /3

is exact. If Aj -> A2 is a monomorphism then so is Ker/X -> Ker/2. // Y2 -» Y3

is an epimorphism then so is Coker/2-> Coker/3.

We shall consider covariant functors T of G in G. T associates with each al-

gebra A an algebra T(A), and with each homomorphism f:A-*B a homomor-

phism T(f) : T(A) -* T(B). In addition to the usual axioms

A. (i)   T(fg)= T(f)T(g),
(Ü) T(iA)  = iT,A),

we also postulate

(iii) T(0) = 0.
Here t, with various subscripts, stands for identity maps, and 0 is always a null

map.

A variety 33 in G is a full subcategory of G, satisfying the following axioms:

B. (i) If f:A-+B is an epimorphism and AeSB then Be33.
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(ii) Iff:A-*B is a monomorphism and Be93, then ,4 e 93.

(iii) If {Ahfi} is an indexed set of pairs of algebras ^4¡e93 and epimor-

phisms f¡ : A -* A¡, with A fixed in (£, and i/p|Ker/¡= 0 then ,4 e 93.

B(iii) can be replaced by

B(iiia) If {A¡} is an indexed set of algebras A¡e3i then  Y[A¡eí8.

The two systems of axioms are equivalent here, and in fact in any category

with direct products. B(i)-(iii) is, however, more general; it shows that the notion

of a variety makes sense even without the existence of direct products.

For ie£we write V(A) = pjKera, a running through the homomorphisms

A-» B with Be93. V(A) is an ideal. Let U(A) = A/V(A). Fand U are functors,

the subfunctor and the quotient functor associated with the given variety 93.

We then have (cf. [5, §2])

1.2. Theorem, (i) For all A, U(A) e 93. Also A e 93 if and only if A = U(A),

i.e., V(A) = 0.

(ii) A subfunctor V of the identity functor of G is associated with a variety

if and only if V(A) is always an ideal of A, and V preserves epimorphisms.

(iii) A quotient functor U of the identity functor of (£ is associated with a

variety if and only if U is right exact.

We denote by A(n) the n-fold direct product of copies of the algebra A and by

g(n) : A(n) -* B(n) the homomorphism induced by the homomorphism g :A -* B.

A word w in f£ (of length n) (n 2:1) is a function which associates with every

Ae& a map

wA:Ain) -* A

of sets, such that for every homomorphism g:A-+B the diagram

•WAM    -   >  B(n)

(1.1) wA w,

A    —!->  B

commutes. The elements wA(ä) with ¿re AM will be called the values of wA, or

the values of w in A. The word which, for all A, induces the zero map will be

denoted by 0, irrespective of its length.

We shall identify A(r) x A^s) = Air+s) and occasionally denote the values of a

word w of length r + s by wA(ä, ä'), äe A<r), ä' e ,4(s), if the two sets of "variables' '

play distinct roles. If w is a word of length n, we define words *w and w* of length

n + 1 by

*wA{a,â) = awA(â)ï

*,.    „ ...    f       aeA, äeAM.
¿a, a) = wA(a)a )w.
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Clearly (*w)* = *(w*). If If is a set of words we write I?'for the set of all words

w, w*, *w, (*w)* with weW.

Let W be a set of words. The algebras A with w^ = 0A for all w e W form a

a variety 23^. Every variety 33 is given in this manner. In fact let W° be the set

of words w with wA = 0A for all Ae 23. Then for W= Wm we have 23 = 23^.

This choice of Wis, however, for practical purposes too big. Useful criteria here

are given by:

1.3. Lemma. Let W be a set of words, and let 23 be a variety with associated

subfunctor V. Then 23 = 2V '/> and only if,for all Ae(i, V(A) is generated—as

an ideal—by the values in A of the words in W.

Suppose this to be the case. Then for all AeC, V(A) is generated—as a

module already—by the values in A of the words in \V.

Note here that if W is finite then so is \V.

2. Short complexes. We consider complexes of algebras, whose differentiations

are homomorphisms of algebras. A short complex (s. complex) A is one for

which A„ = 0, except when n = 0,1. A normal short complex (n. s. complex) A

is a short complex for which the map Ax -> A0 is a normal monomorphism.

As a rule we shall then view Ax simply as an ideal of A0. The homology complex

of a n.s. complex A is then nontrivial at most in zero dimension, and we thus

get associated with it the exact sequence

(2.1) 0 -+ At ^ A0 -^ H0(A) -+ 0.

A word w in the category of n.s. complexes, of length (n, m), is a function which

associates with every n.s. complex A a pair of maps of sets

wl : A™ - A0,

wA : A%> x A(xm) - Ax

satisfying the obvious commutativity conditions analogous to (1.1). We associate

with each word v in the category of algebras, of length n, a word v' = w in the

category of n.s. complexes, of length (n,n) called the extension of v. w is given

by the rule

(2 2) W^äo)        = VA¿ao)'

wi(â0,âi)   = vAo(á0 + äj - vAo(ä0),

where of course A^ is considered as embedded in A{^. If first we view wA as

a map into A0 we see that it is a difference word in the sense of Higgins (cf. [3]).

Applying the epimorphism s of (2.1) to its values, we find that these do in fact

lie in Kere =v4x- It is now easily seen that w is in fact a word.

d,eAf\
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Let there be in the sequel 93 a variety with associated functors Fand U, and

let IF be a set of words whose values generate V(A) as a module, for each A e £.

Denote by W the set of extensions w = v' of words v e W. If A is an n.s. complex,

write F0(A) for the ideal in A0 generated by the values of the wA, and Ft(A)

for the ideal in A0 generated by the values of the wA, w running through W.

Then

F0(A) = V(A0),

(2.3)
V(A1)^V1(A)^V(A0)nAi.

We obtain a n.s. complex V(A) with components FX(A) and F0(A). V is easily

seen to be a functor of n.s. complexes. We shall show presently that it does de-

pend solely on the variety. The associated exact sequence is

(2.4) 0 -> Pi(A) -» F0(A) % H0(Y(A)) - 0.

2.1. Theorem. Let Abe a n.s. complex and let 5 be the set of ideals J of A0

having the following properties:

(i)   J £ V(A0), i.e., there is an exact sequence

0 - J -► V(A0) H C -► 0.

(ii)   Whenever Be£ and f,g :B-+A0 is a pair of homomorphisms such that

Ef = sg,thenejV(f)=ejV(g).

Then

(a) V,(A)e%.

(b) If Je g then V¿A) ç J.

Property (a) will be fundamental throughout, (b) shows that FX(A) is the unique

minimal ideal with property (a). Thus in fact V(A) has a characterisation which

is quite independent of the choice of the set of words W.

Proof, (a) Let v e IF (length n), w = v', and let/, g : B -> A be homomorphisms

with ef = eg. For beBw we get fw(b) = gw(b) + âu ^eA™ Hence

f(vB(b)) = vAo(gM(b) + a,) = g(vB(b)) + wi(gw(b), a,). Thus

£VV(g)b=SyV(f)b

whenever b is a value of vB for some veW. As these values generate V(B) as a

module, the equation will then hold for all b e V(B).

For (b) it Will suffice to prove the following proposition:

Let ve W,& (length n), v' = w. Let elements ä0 eA¿"\ ât e A[n) be given. Then

there is an algebra B, an element beV(B) and homomorphisms f,g :B-> A0

with e/ = eg such that

V(f)b = F(g)fe + wi(flo,âi).:
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These requirements are in fact satisfied on taking B as the free algebra on

elements b1,---,bn, b =vB(bx,-■•,b„), and choosing/ and g as the homomorphisms

with

f(b¡) = a¡ + a},       g(b¡) = a¡,

where

do =(ax,--,an),       äx=(a'L,--,a'„).

For each n.s. complex A we define a short complex U(A) by

U0(A) = fJ(^o),        UX(A) = AJVX(A).

Then UX(A) -> U0(A) is normal, and by 1.2,

(2.5) H0(V(A))^U(H0(A)).

For the homology in dimension 1 we get

(2.6) HX(V(A)) = V0(A)nA1/V1(A).

We have an exact sequence

(2.7) 0-V(A)->A->l/(A)^0,

and so by 1.1 and (2.5) an exact sequence

(2.8) 0 -» HX(V(A)) -+ H0(V(A)) - H0(A) -> U(H0(A)) -+ 0.

As Ker[//0(A) -► U(H0(A))~\ = V(H0(A)), the significant part of (2.8) can be re-

written as an exact sequence

(2.9) 0 -+ HX(V(A)) -+ tf0(V(A)) -> V(H0(A)) - 0.

The sequences (2.7)-(2.9) are functors of n.s.  complexes.  Moreover  by 2.1

we have

2.2. Lemma. Two homomorphisms F, G : A -* B of n.s. complexes induce

the same homomorphism on sequences (2.8), (2.9) provided that H0(F) = H0(G).

In conclusion of this section we derive twoimportant properties of n.s. complexes.

2.3. Proposition. If the sequence

0-+A1^Ao?->Ho(X)-+0

splits then

HX(V(A)) = 0,       iîo(V(A)) S V(H0(A)).

Proof. Let A* be the n.s. complex with A* = H0(A), A* = 0. We obtain homo-

morphisms F : A -» A*, G : A* -» A, where F0 = s and where G0 is a homomor-

phism which splits the sequence in 2,3. H0(FG) and H0(GF) are identity maps,
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whence by 2.2, H ¿11(A)) = Hi(V(A*)). The latter algebra is null. The second

isomorphism now follows from the exactness of (2.9).

2.4. Theorem. For every n.s. complex A

V0(A)A1 + AlV0(A)^Vl(A).

Proof. Let v e W® (length n), and let w be the extension of *v. Denote by Ö

the zero of A("\ If à e A(¿\ aeAí then

a vAo(ä) = *vAo(0 + a,ä + Ö)- *vAo (0,0) = wJi((0,â),(a,Ô)) e FX(A).

Thus we see that A1V0(A) ç V¿A), and similarly we get V0(A)At ç Ft(A).

An ideal J of an algebra A will be called a central ideal if J is annihilated by

A, i.e., if A3 + JA =0. A is a central ideal of A precisely, when it has zero mul-

tiplication. The variety of G of such algebras may be identified with the category

of A-modules. A homomorphism f:B^>A, with Im/ central in A, will be called

central, and an exact sequence

o-bX,i-c->o

will be called central, if/ is central. We then have

2.5. Corollary. (2.9) is a central sequence. In particular HAA}(A\) has zero

multiplication.

3. The Baer-invariants. An isomorphism

(3.1) H0(A) S A

of algebras, where A is an n.s. complex with AQ a projective algebra, is called

a projective presentation of A. A will always have a projective presentation.

Moreover by 2.2 the homology algebras

(3>2) H0(V(A)) = D0V(A),
H,(V(A)) = DMA)

are already determined by A to within isomorphism.

Let/ : A -» B be a homomorphism. Choose a projective presentation H0(B) = B

of B. Then there is a homomorphism F : A -> B such that the diagram

H0(A)  Si A

H0(F)      j/

H„(B)   =   B

commutes. By 2.2 the homomorphisms

(3 3) H0(V(F)) = D0V(f),

HX(U(F)) = D,V(J)
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will not depend on;the particular choice of F. We now recognize D0Fand DXU

as functors in the sense of Definition A (§1), the Baer-invariants of 23. By 2.3

we have

3.1. Proposition. If A is projective then

DtU(A)=0,       D0V(A) = V(A).

From (2.8), (2.9) we now obtain exact sequences

0 -► DXU(A) -► D0V(A) -> A -► U(A) -► 0,

(3.4)
0 -► DXU(A) -► D0V(A) -> V(A) -► 0

and by 2.5 the second sequence is central.

We consider now exact sequences

(3.5) 0-C^b£,4->0,

and the associated commutative diagrams

0-> KerD0V(f) -> D0V(B) D°V^ >D0V(A)

iy Iß 4«
0    ->    C ->      B -> A -+ 0

with exact rows. Here a and ß are homomorphisms occurring in sequence (3.4),

and so are normal. Hence also y is normal.

The sequence (3.5) is said to be 23-centraI if on setting C —Clt B = C0 we

get for the n.s. complex C the equation ^(C) = 0.

3.2. Theorem. For every sequence (3.5), DuV(f) is an epimorphism, and so there

exists a connecting homomorphism

D XU(A)^ Coker y.

If (3.5) is '¡B-central then y is null, and so the sequence

0 -> KerD0V(J) - DxU(B) -> DXU(A) - C -» U(B) -» U(A) -* 0

is exact.

Proof. For some given projective presentation .r70(BO S B of B, set A0 = B0

and let Ax be the kernel of the composition A0 -*B-*A. Then H0(A) S A is

a projective presentation of A, and D0V(f) is the homomorphism

V(B0)/VX(B)^V(A0)/VX(A),

induced by the identity map of V(B0) = V(A0). It is therefore an epimorphism.

Moreover its kernel is the quotient VX(A)/VX(B) of ideals of B0. Hence if (3.5)

is 23-central, then y is null. The remainder of the theorem now follows from 1.1.
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One obtains relative Baer-invariants by considering side by side with 93 a

subvariety 93' of 93. Denoting by I the identity functors of C we obtain a com-

mutative diagram with exact and normal rows and columns

0       0

i      1
0 _► V J*. i -4 I/ _► o

(3.7) 111
0-> F'->•/-► t/'-»0

4    4
0       0 .

Going over to n.s. complexes, we derive a functor monomorphism V-» V' and

a functor epimorphism U -> U', and so a commutative diagram with exact and

normal rows and columns

0

1
(3.8) 0 -*   Dit/  -♦   D0V   -   V   - 0

111
0 -► DilT   ->• D0V  -+  V   -+ 0.

From (3.7) we obtain an isomorphism

(3.9) Ker[U-> U'] s Coker [F-> F'],

and from (3.8) an isomorphism

(3.10) Ker^U->I>il/'] S Ker[D0F-> £><,>"],

together with an exact sequence

(3.11) O^Coker^U-^rj'J-^Coker^oF-iDoF']^ Coker [F-»F']^0.

4. Varieties induced by ideals of A. Let J be an ideal of A. The algebras which

qua modules are annihilated by J form a variety 93. The associated subfunctor

is given by

(4.1) V(A) = JA.

If A,B are algebras then A<g)AB has the structure of an algebra, irrespective

of the existence of identities in A or B. For the quotient functor U associated

with 93 we get the natural isomorphism

(4.2) U(A) ^ A/J®AA.

The isomorphism (4.2) for modules was established in [6, cf. II (6.5)] ; it is easy

to verify that it is in fact an isomorphism of algebras. For the Baer-invariants

we get
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4.1. Proposition. There are natural isomorphisms

(i)   D0V(A) ^J®AA,

(ii)   DXU(A) S TORÎ(A/J,A)
of algebras.

Proof. Each Xe A defines a word X given by the values XA(a) = Xa. V(A) is

always generated as a module by the values of the I in A, (all X e J). But the

XA are homomorphisms of Abelian groups (in fact of A-modules). It follows

easily now by considering the extensions of these words that for every n.s. com-

plex A

VX(A) = V(A1).

Let H0(A) £ A be a projective presentation. The preceding argument shows

that

(4.3) D0V(A) = Coker IJAX - JA0~].

We thus obtain a commutative diagram

J®A^!    -> J®SA0   ->  J ®SA    -► 0

1"        |"
0 -►     JAt       -tí      JA0      ->   D0V(A)   -> 0

I i'
JAX      -*      JA

1 i
0 0

with exact rows and columns. A0 is projective as a A-module and so Kerp0 = 0.

Hence p is an isomorphism. This establishes (i).

We have the identification Ker[J®AA-+Ä]=TOR$(A/J,Ä) of modmes.

Taking the right hand side as algebra with zero multiplication, this becomes

an identification of algebras. But now (ii) will follow from (i).

5. Algebras and supplemented algebras. We consider side by side with G the

category G+ of supplemented algebras (over A) (cf. [2, Chapter X]). For AeG

we make the direct sum of modules

(5.1) A+ = A + A

into an algebra, the product being defined by

(auXx)(a2,X2) = (axa2 + Xxa2 + X2auXxX2).

he map A+ ->■ A, given by the direct product (5.1), makes A+ into a supple-

mented algebra with augmentation ideal A. Conversely, if A' is a supplemented
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algebra with augmentation ideal A then there is an isomorphism ,4+ £ A' of

supplemented algebras, inducing the identity map on A and A. The two categories

(£ and Œ+ are now easily seen to be isomorphic, and any functor of one may

be viewed as a functor of the other.

By a two sided A """-module M we mean a left and right A+-module, the identity

acting as the identity map, such that

(aiu)a2 = a^ua?), for all ai,a2eA+, all ueM.

The structure of a two sided A+-module on a A-module M is given by homo-

morphisms

M®AA+-+M,      A+®AM-+M

of A-modules, satisfying the obvious identities.

A functor T of (£ whose values are A-modules is said to admit a two sided

module structure (over (£+) if:

C. (i) for each Ae(i, T(A) has the structure of a two sided A +-module.

This structure is given by homomorphisms

T(A)®AA+-+T(A), )AT(A)-+T(A).

We now require in addition:

(ii) If f:A-*B is a homomorphism of algebras and f+ :A+ -*B+ the in-

duced homomorphism of supplemented algebras then the diagrams

(a)

(b)

A+®AT(A) -> T(A)

/ + ®An/) T(f)

B+®AT(B)   -. T(B)

T(A)®AA +  -> T(A)

T(B)®AB +   -» T(B)

commute.

An algebra A, the supplemented algebra A+, all ideals of A, and their quotient

algebras are two sided A+-modules. Hence the functors A+, the identity functor

I of £, and the functors U, V, associated with a variety of (£, admit a two sided

module structure. The same is true for the functor (3.9) associated with a pair

of varieties. Moreover we have in the notation of §3:
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5.1. Proposition. The Baer-invariants D0V, DXU and the relative Baer-

invariants Ker[£>,.[/-»Dj.17'], Coker[DXU^DXU'~\, Coker[D0V^>D0V'~\ ad-

mit a two sided module structure over G+.

For fixed A the maps of (3.4) and (3.7)-(3.11) are homormophisms of two sided

A* -modules.

Proof.   Choose a projective presentation H0(A) s A. Then

DXU(A) = HX(\](A)),       D0V(A) = H0(V(A))

have the structure of two sided ^40+-modules and the map DXU(A)-»D0V(A)

preserves this structure. But by 2.4, Ax annihilates both D0V(A) and DXU(A)

on the left and on the right. Hence these two sided Aq -modules have in fact

the structure of two sided ¿"""-modules, and this structure is independent of the

choice of the particular projective presentation.

Similar arguments give the whole of Proposition 5.1.

If M and N are two sided A+-modules then so are M®AN and M®A*N,

the left (right) .¿"""-module structure to be taken from M (and N). Moreover, the

map

M®AN-+M®A+N

is a natural epimorphism.

5.2. Lemma. Let TX,T2 be functors of G admitting a two sided module

structure. Write

Tt®AT2(A) =  TX(A)®AT2(A),

T(A) =  TX(A)®A+T2(A).

Then Tx ®A T2 and T are functors of G admitting a two sided module structure.

Proof. The assertion on Tx ®A T2 is trivial. It thus remains to be shown

that given a homomorphism f:A-*B of algebra there is one and only one

homomorphism

T(f):T(A)^T(B)

of A-modules such that the diagrams (a) and (b) in C, (ii) and the diagram

(c)

7\(.4)®AT204)-íi> TL4)

7i ®Ar2(/) T(f)

\(B)®AT2(B) _íi>   T(B)
commute.



234 A. FRÖHLICH [November

We first consider diagram (c). The A-module Kere¿ is generated by the

elements

xta ®x2 — xi® ax2, xt e X^), x2 e T2(A), aeA+.

rt ®AT2(f) maps these generators, and therefore the whole module KereA into

KereB. As eA is an epimorphism it follows that there is one and only one homo-

morphism T(f) making (c) commutative. The commutativity of (a) and (b) is

now a consequence of the commutativity of the corresponding diagrams, with T

replaced by Tt®AT2.

Write from now on

AW = A+,       A^ = A,       Ain+1) = A^®A+A.

The symbol A(n) has thus henceforth quite a different connotation from that in

§2; the direct products to which it had referred then will no longer occur. We

shall always identify

A(r + s) = A(r) (g)^+ A(s) for r ^ 0, s ^ 0.

By 5.2 we obtain, for each r, a functor 7(r)of G admitting a two sided module

structure over (£+. Its values are I^\A) = A^.

Let n ^ m ^ 1, and 1 < t'j < ¿2 < ••• < im_1 < n.

We define a homomorphism

a"      • aW _>  A("0
gm.A -A      -* A

by

gm,A("i ®a2®--®an) = flj ••• a,,., ® ah ■•• ah-t® ■■■ ® altn_i ■■■ a„.

Here the right hand side, and so the definition of gnmA is in fact independent of

the choice of ii,---,im_l. Next let

g°o,A:A+^A+

be the identity map, and

glA:A = A<»^A^ = A +

the inclusion map. Finally if n > 0 set

n       _     1        n
50/4 — go.Agl.A-

Then for n ^ r ^ 0, g" A is a homomorphism of two sided ,4"""-modules, giving

rise to a homomorphism

grn:/w-v/(r)

■'.<'.'

of functors.
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Denote by iA the identity map of AM. Then

(5.2) t" = gnn,

and

(5.3) iA ®A+ g"j;;+» ®A+ tj = gr">/4 (s ^ 0, t ^ 0, s + t = r - 1).

From the definition we now have

(5.4) gnrg: = g? (O^r^n^m).

Also

g".A ®A+ g?.A = (»J ®¿ + O (fl% ® A*   O

and so from (5.2)-(5.4)

(5-5) g?^ ® ¿+ glA = g?^ (i S n, q á m).

Denote by eA the homomorphism

The map

hnA = g2n:AeA:Aw®AA^->Aw

now defines on ¿(n) the structure of an algebra, which for n = 0,1 coincides with

the given one of ¿(0) = A+ and A(1) = A.

Omitting in the following calculation the subscript A we now get for m.¿z n ^ 1,

by (5.4) and (5.5),

h\g:®Agï) = g„2v(g;® as?) = g2nn(gmn®A+g:)em

= g2ng¡:em = gmnglTem= gmnhm.

Thus g™A is a homomorphism of algebras. The same is also true for n = 0; one

only has to look at the case m = 1, n = 0.

We have already seen that g?™A defines a functor homomorphism J(2m) -» /(m).

We can reinterpret this statement to say that, whenever/ : A -» B is a homomor-

phism of algebras, then so is I(m\f).

We recapitulate:

5.3. Proposition. The modules A^n) have the structure of algebras and de-

fine a functor 7(n) o/G in G which admits a two sided module structure over G+.

The maps g™A (m ^ n) are homomorphisms of algebras and of two sided

A^-modules, defining a homomorphism g„m:I(m)-> J(B)offunctors.

Now we prove

5.4. Theorem. If A is a projective algebra then, for all n, Aw is a

projective right A+-module and a projective left A -module, and for all m^n,

gn,A ls a monomorphism.
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If, moreover, A is a free algebra then, for all n, A(n) is a free right A+-module,

and a free left A^-module.

Proof. Suppose that A is a projective algebra. We shall first show that it is a

projective right A """-module.

Let/: M -* A be an epimorphism of right A """-modules. We have to establish

the existence of a homomorphism g:A^M of right A+-modules such that

fg = U-
Define a multiplication in M by

m1m2 = mj(m2),

where the element/(m) of A is viewed as an element of A+. One verifies that M

has now the structure of a A-algebra and that / becomes a homomorphism of

algebras. Therefore there is a homomorphism g : A -» M of algebras such that

fg = iA. But then g must be also a homomorphism of right /l+-modules.

Similarly one shows that A is a projective left A+-module. The assertion on

Aw now follows easily by induction, using elementary properties of the tensor

product.

glA is always a monomorphism. By (5.4) we only have to show that also

g"n^A is a monomorphism, for n ^ 0. But g^A = iA ®A + g\>A is induced by the

monomorphism A->A+. A(n) being a projective right v4"""-module it follows that

g"n+1 is in fact a monomorphism.

Let A" be the ideal of A generated by the products of n factors (n ^ 1). Then

A" = Im g"ltA. Now suppose that A is a free algebra. Then, by the first part of

5.4, A(n)= A". We shall prove then that A" is a free left A+-module. The same

is of course trivially true for Am.

Let A be the free algebra with the indexed set {a;} (j e J) as a free generating

set. Let J„ be the set of n-tuples k = (ju •••,;'„) in J, and put, for k e J„,

Let for all n ^ 1, An be the free A-module on the ak (k e J„), and let A0 = A. Then

00 00

A =  1 A ,        A+ =  lA„
n=l b=0

are graded algebras with the strong multiplicative property

(5-6) AaAm = An+m .

If n ^ 1, m S: 1 the set {at} (fe e Jn+m) coincides with the set {atar} (I eJ„, re Jm)

and so A„+m is the direct sum of A-modules a¡Am (leJ„). The same is also true

for m = 0. But, as A" = 2Zm=0A„ + m, we now see that A" is the direct sum of

A-modules a, Lm=0Am = atA+. The latter modules are in fact right A+-modules,

and as A is a free algebra
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atA+ = A+ (isomorphism of right ,4+-modules).

Hence finally A" is the direct sum of copies of A+.

6. The powers of an algebra. For each positive integer r, let 23r be the variety

of nilpotent algebras of class r — 1, i.e., of algebras in which all products of r

factors vanish. Thus 23(1)consists of the zero algebra only, and 23<2) is the cate-

gory algebras with zero multiplication, i.e., of modules.

Denote by V, Ur the associated functors. Let Ar be the submodule of an

algebra A generated by the products

(6.1) axa2---ar = wrA (ax,a2,---,ar).

Then

(6.2) V(A) = Ar,       Ur(A) = A/A'.

Let A be an n.s. complex. As V(A) is always generated as a module by the values

in A of the word wr, defined in (6.1), it follows that V[(A) is the module generated

by products axa2---ar in A0 with at least one factor out of Ax, i.e., we have

(6 3) V\(A) = Au       VX\A) = A0AX + AXA0,

Fi+1(A) = A0AX + Ar-lAxA0 + - + AXA¿ (r ^ 2),

(sum of submodules). We thus get from (6.2), (6.3) the recursion formulae

V'+1(A) = AV\A) = V'(A)A,

Fi+1(A) = A%At + V[(A)A0 = AtA% + A0V[(A).

Let now H0(A) S A be a projective presentation of A. Then

(6 5) D0V\A) = A'o/VXA),

DxUr(A)= A0nAx/V[(A).

23ris a subvariety of 33r+1. We are thus in the situation discussed in §3, and

we get the explicit formulae

Ker\_Ur+1(A)->Ur(A)-] = Ar/Ar+1,

Ker \_D0Vr+1(A) - D0Vr(A)\ = (A'0+ ' O Vxr(A))/V[+l(A),

Coker lD0V'+1(A)->D0Vr(A)-] = A^/(A0+A + V[(A)),

Coker [Dx Ur+ ' (A) ^ Dx U'(A)] =  \_Ar0+1 + (Ar0r\Ax)]¡(Ar¿ ' + Vrx(A)).

Return now to the functor 7(r) of §5. We have an exact sequence

0->Kergi -»/(r) -+I-V Cokergï->0, whose maps, for fixed A, are homomor-

phisms of algebras and of two sided ¿"""-modules.
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6.1. Theorem. There are unique functor isomorphisms

t: Coker g[ s L/',

s: Í(,)£D0F,

u: Kergr1^D1Ur

such that the diagram

0_>Kergï-^/ (r) Al-Ucokerg¡-

(D)

0- DifJ' D0V
rß' Ur 0

commutes. The maps tA, sA, uA are homomorphisms of algebras and of two sided

A+-modules.

Proof. Let H0(A) s A be a projective representation of A. By Theorem 5.4,

g'i.Ao gives rise to an isomorphism A^ s Ar0 of algebras and of two sided A+-

modules. We shall show later that this in turn induces an isomorphism

(6.7) Ker[4r)->^w]^Fi(A),

on the respective ideals. Taking quotients we obtain an isomorphism

sA:A'-r)^D0V(r\A)

of algebras, and of two sided A$ -modules, i.e., of two sided A+-modules. The

functor property of the maps SA is then established in the usual manner.

The lower row of the diagram DAo, obtained from D by "specialization" to

A0, is exact. By 3.1, ß'Ao is therefore a monomorphism and so the commutativity

of DAo determines SAo uniquely. Moreover, the diagram

aV

1**
D0Vr(A0)-

A"

r
+D0V'(A)

commutes. Its upper row being an epimorphism this determines sA uniquely.

As Im g\ A = V(A) we have an isomorphism tA : Coker g\ A s Ur(A) of algebras

and of two sided A """-modules with the evident commutativity property. As yA is

an epimorphism this determines tA uniquely. Its functor property is immediate.

The existence and uniqueness of u, and all its properties now follow from the

exactness of the rows of D.



1963] BAER-INVARIANTS OF ALGEBRAS 239

To establish (6.7) we proceed by induction, the case r = 1 being trivial. For

the step from r to r + 1 we consider the commutative diagram with exact rows

and columns

A{'(r)
>A0 + A1

^ir(A)®^0+¿o <t>->V+1)       —+   A(r)®Ao + AQ.

n(A) ®„0* a —> a¿o, |(r+l)

y

^o

^o

We get

Ker[¿¿'+1)-» ¿(r+1)] = Im<p + Im0.

But the latter ideal is mapped onto V[(A)A0 + Ar0A1 under the isomorphism

A0r+1) s Ar0+1. By (6.4) we now get (6.7) for r + 1.

7. Powers and homology of supplemented algebras. The nth homology group of

A+ with coefficients in the right ¿"""-module M is TOR^+(M,A). We

shall show that

T(A) = TOR,?+(¿(r),A)

is a functor of G with values in the category of A-modules. Let f :A->B be a

homomorphism of algebras. Then B(r) has the structure of a right A+-module

and/(r):¿(r)->B(r) is a homomorphism of right ^4"""-modules. We obtain a

homomorphism

TORf (¿(r),A) - TORf (B(r),A).

On the other hand we get a homomorphism/* :¿+->B+ of supplemented

algebras, and so a homomorphism

TORf(Bir\ A) -♦ TORnB+(B(r)> A).

By composition we now have the required homomorphism

T(f) : T(A) - T(B).

7.1. Theorem. There are functor isomorphisms

TOR01+(¿(r), A) S Coker \p0Vr*\A)-+ D0VT(Af],

TORf *(i4w, A) S Ker[D0Fr+1(¿)^D0Fr(¿)].
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Remark. In view of (6.6) this theorem provides explicit formulae for certain

homology groups.

Before giving the proof of 7.1 we note that for r = 1 we have on the one hand

TOr{(A,A) = TOR^1(A,A),

while on the other hand

Ker[D0F2(,4) -» D0V\A)] = D,U2(A),

Coker \D0V2(A)-+D0V\A)] = U2(A).

Hence we get

7.2.   Corollary.

(i)   TORi*(A, A) = A/A2,

(ii) TORCÍA, A) = A\ n^/iMi+M.
whenever A = A0/Ai, with A0 a projective algebra.

7.2 (i) is well known. It is the analogue of the equation

Ht(G,Z) = GI(G,G)

for the homology group of a group G in dimension 1.

7.2   (ii) is the analogue of the Hopf equation

H2(G,Z) = (F,F)nKI(K,F),

which holds whenever G is represented as the quotient group of a free group F

with kernel K. (See Introduction, equation (3).)

Proof of 7.1. Let C be the complex with C0 = A+, Cx = A, Cn = 0 otherwise,

and Ci -> C0 the inclusion map gJ;i4.+Then for / = 0,1 the ¡th homology module

of the complex Air)®A+<Z is TORf+04(r),A). But by (5.3) grr_V = irA®A+gliA.

Hence

(7 1} Kergr',V = TORfV'U),

Coker g^1 = TORf^'U).

Let now H0(A) = /4bea projective presentation of A. We have a commutative

diagram

A0 =   A0

i I
Ar)      ^       Ar

A0        =      "^O

whose rows induce the isomorphisms
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¿(r+1) S D0V+\A),        A(,) S D0Vr(A)

of 6.1, and whose columns induce the homomorphisms

¿<'+1>^¿<'>,       D0Vr+i(A)->D0V'(A).

We thus obtain natural isomorphisms

Kerg;,r S Ker[D0F'+1(¿)-*Dol%4)].

Coker g^1 2 Coker [D0Vr+i(A)-> DQVr(A)~\.

Comparison with (7.1) now gives the theorem.

From 6.1 we obtain, by tensoring the monomorphism Dj t7r(^4) -* ¿(,) with

A, a homomorphism

DlUr(A)®A+A-* ¿(,+ 1).

Similarly the epimorphism Air) -»■ Ar gives rise to an epimorphism

aA : ¿(r) ®A♦ A -> A' ®a♦ A,

and

(7.2) KeraA = \n\[piUr(A)®A+A^Ai'+l)~\.

As Kero^ç: Kergj*^1 s D1Ur+1(A) we now obtain a homomorphism

D1Vr(A)®A+A^ DXU'+\A).

All these homomorphisms are natural. On the other hand we may consider

TOR¡f+(¿r,A) as a functor of G in the category of A-modules. We then have

7.3. Theorem. There are functor isomorphisms

(i) CokerrTOR^V^, A) ->TORf(¿r, A)] s Ker^ U\A) ®A.A -+ D, U,+1(A)l
(ii)  TORf (Ar, A) s Coker \DXUr(A) ®A+A -*DXU'+1 (¿)],

(iii) TOR^+(¿r,A) £ Ker[[/r+1(¿)-> UT(A)~\.

Proof. From the exact sequence

0 -► D,. l/r(¿) -> ¿(r) -► A' -► 0

we obtain the exact homology sequence

••• -> TOR?+(¿(,),¿) -► TORf(Ar,A) -♦ DXU\A) ®A+ A -* A{r) ®A. A->~-

and so, as TOR?+(A,¿) = TOR2+(A, A), an isomorphism

Coker[TOR21+(¿(r),A)->TOR21+(¿r,A)] g Ker[D1t7r^®i4+¿->¿t,+ 1)].

But the right hand side here coincides with the right hand side in (i).
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For (ii) and (iii) we consider the commutative diagram with exact rows and

columns

0 -► ,4('+1)-> ¿('+1)  -» 0

\aA XA

0->TOR?+ (Ar, A) -> Ar®A+A -^> AT ,

0

where vA = t¿r ®¿+ g0>¿ and so

TORo^íAA) = Cokerv¿ = ¿rA4r+1,

which is the isomorphism (iii). From (7.3) we get an exact sequence

0 - Ker oA -► Ker xA -► TORf+ (Ar, A) -> 0.

As Kert^ s D1Ur+1(A), and by (7.2), we now get (ii).

§7.2 is also a corollary of 7.3. We only have to take again the case r = 1.

8. Examples.

8.1. Proposition. If the algebra A has an identity e then for all r,

D1Ur(A) = 0,

D0Vr(A) = Ar = A.

Proof. The map

a-* e® ■•■ ® e® a

defines a homomorphism/ : A -* Air) of A-modules and fg\ A is the identity map

of A(r\ Hence KergJ A = 0. Now apply 6.1, and observe that Ar= A.

If J, K are ideals of a commutative algebra A we write [J : K] for the ideal

consisting of the elements a e A with aK £ J.

8.2. Proposition. If A is an algebra on a single generator, then for all r ^ 1

D0Vr+1(A)   s A,

DtUr+1(A)   BS [0:/lr]

(isomorphisms of two sided A+-modules).

Proof. Let A0 be the free algebra on a single generator x, and let 6 : A0-*A

be a homomorphism of algebras with 6(x) as generator of A. Then 6 is an

epimorphism. Write Kerö = ^41.

The map y -> yxr (yeA0) gives rise to an isomorphism /: A0 s Ar0+i of two

sided Aq -modules, and / induces isomorphisms
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At S AlA, = V[+1(A),

[A^.A'v]  SS A^'nA,.

We thus get isomorphisms

(8 ]} a0/a, is* 4+1/K+I(A) = r>0^+1(A

On the other hand 9 gives rise to isomorphisms

/o 2) Aq/Ai = A,

\_Al:A'0]/A1 S [0:#].

The isomorphisms of 8.2 are the compositions of the inverses in (8.1) with those

in (8.2). They are isomorphisms of Aq -modules, and so, as everything is annihil-

ated by Alf of j4+-modules.

The last example is to illustrate the fact that D^U*, D0V are not additive.

Let, for r ^ 2, g be the set of maps of the set {1,2,•■■,r) onto the set {1,2}.

Let R be a ring, Mu M2 two sided R-modules, and let/eÇ- We then write

LR(f) = Mf(1)®RMf(2)®- ®RMm

and we denote the direct sum of the modules LR(f), with / running over g, by

L?(MUM2).

8.3.   Proposition.  Let A = A± + A2 (direct sum of ideals). Then for r^.2,

(i)    D0V'(A) s zDoFr(A) + D0V'(A2) + l)(AJA\,A2\A22),
(ii)  D,Ur(A) S DiU'UÙ + D1Ur(A2) + Lsr (AJA2,A2/A22),

(isomorphisms of algebras and of two sided A+-modules).

Proof.   We use 6.1.   A± and A2 are two sided ,4+-modules, and so

A(r) g A(r) + ^(r) + ¿4* ^ ^       ̂ ¿^ sum Qf ¡(Jeals)

As AtA2 = A2At = 0 the last term on the right has zero multiplication and lies

in Ker grUA.

8.3 now follows once we have shown that

(8.3) l^(At,A2) 2 L\(Ay¡A\,A2IA22).

One verifies easily that

Ker[^1®A^2->.^1/^1®AA2/^] = Ker[^1®A/l2->^1®^+^2]

whence

At ®A+ A2 S AJA\ ®aA2¡A\

and similarly on interchange of subscripts. But this implies (8.3).
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