GENERAL PRODUCT MEASURES

BY
E. O. ELLIOTT AND A. P. MORSE(?)

1. Introduction. Our purpose is twofold. First, we desire to associate with
any indexed (countable or uncountable) collection of (outer) measures free from
any finiteness or o-finiteness restrictions, an associated product space and a
product measure which retains and generalizes the intuitive precepts of product
measure. Secondly we wish to extend to countable products, some topological
results obtained in an earlier paper Product measures(*) for a binary product
of measures.

In the classical theory, the formation of an infinite product of measures is
undertaken only when all except a finite number of the component spaces have
unit(®) measure. As a first attempt to bypass this restriction, we substitute in
place of the traditional covering family of measurable cylinders, the more fun-
damental family of rectangles having all sides measurable and for which the
product of the measures of sides is finite. This product is used to gauge the measure
of such a rectangle, and with this the resulting product measure faithfully agrees.
There is, however, a defect in this first product measure. Under this measure,
for uncountable products, our fundamental rectangular sets may not be measur-
able. By suitably modifying this first product measure we obtain a second one
not sharing this defect, and for it, a Fubini theorem for the integrable functions
under any binary decomposition of the product. The modification consists of
requiring to be of measure zero each set which is contained in some union of
cylinders in the product space over null sets of component subspaces. For the
convenience it offers, but not of necessity, we also require to be of measure zero
each cylinder in the space over some null subset of some subproduct space.
Fortunately, these modifications do not disturb the measure assigned to a fun-
damental rectangular set.

Our second objective is obtained through an additional modification of our
product measure. In finite products, much as in PM, we further require to be
of measure zero each set whose characteristic function integrates iteratively to
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zero under each binary decomposition of the product. We extend this third
version of product measure from finite to arbitrary products by means of a rather
general procedure embodied in Definition 6.15.9 and Theorem 6.24 which we
employ to good advantage twice in the present paper.

The topological features enjoyed by our third product measure are given in
Theorem 7.7 and may be informally described as follows. Suppose that each
measure in a countable product is so related to the topology on its space that
(1) open sets are measurable, and relative to each set of finite measure: (2) each
open set is equal in measure to the upper bound of the measures of its closed
subsets; and (3) from each covering of the space by open sets a countable sub-
family can be extracted which covers almost all the space. Then our associated
product measure, defined free of topological considerations, is related to the
product topology in this same way.

In §2 we assemble, for the convenience of the reader, our special notations
and definitions which are common to the remainder of the paper.

In §3 we present the basic measure theoretic results that are needed for con-
structing measures or proving the measurability of given sets. In this connection
we suppose the reader has a knowledge of measuie theory such as might be
acquired from reading H. Hahn, Theorie der reelen Funktionen, Vol. 1, Berlin,
1921, pp. 424-432.

Using the theory of limits and Runs(*), we develop in §4, for our needs, a
theory of unordered infinite numerical products rather analogous to the theory
of unordered numerical summation.

In §5 we present definitions and theorems relating to product spaces, that
set the scene for our treatment of product measures which follows in §6.

Topology enters our paper for the first time in §7, which concludes with the
previously described Theorem 7.7.

2. Preliminary definitions and notations.
2.1. DEFINITIONS.
sbA =subsetA = EB (B < A) = the family of sets B such that B < 4.
A ¢ Bif and only if A = B and 4 # B.
spA = superset A = EB (B o A).
sngy = singletony = Ex (x = y).
fnt = finite = EA (4 is a finite set).
cbl = countable = EA (A4 is a countable set).
oF = |J 4eFA = Ex (x€ A for some A€ ).
1 = (| A€F A = Ex (xe A for each A€ ).
Join § = EA (4 = o$) for some § = F).
.10 Join’ § = EA (4 = 69 for some § € fntNsb ).
The reader may find it more to his taste to read statements like

- R e Y I R N

(4 H. Kenyon and A. P. Morse, Runs, Pacific J. Math. 8 (1958), 811-824.
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“HefntNsbF’ as “§ is a finite subset of F’’ rather than *‘H belongs to the
intersection of finite and subset §’’.

.11 Join"¥ = EA (A = ¢$ for some §) € cbl Nsb ).
.12 Meet'§ = EA (A =oF N for some §efnt NsbF).
We should like to remind the reader that in case §) is the empty set, n§) is the
universe and consequently o € Meet' .
13 Meet"§ = EA (A4 =oF N for some $ ecbl Nsb ).
.14 cmply = complement § = EA (4 = 6§ ~ B for some B € §).
.15 o = the set of non-negative integers.
We assume that the integer 0 and the empty set are the same and also that
the integer 1 is equal to sng0.

.16 CrxA = 1 or 0 according as x is or is not a member of A4.
.17 rctAB = Ex,y[x€ A and y€B].
.18 vsAx = verticalsection of 4 at x =Ey [(x,y) € 4]

In the interest of improving the readability of expressions like “‘[f(x)](y)”
we abandon the traditional “‘f(x)’’ notation for a function value and substitute
that defined in 2.2.1 below. We also introduce in 2.2.5 and 2.2.6 the function
makers which we find so convenient.

2.2. DEFINITIONS.

.1 .fx = the value of f at x = the y such that (x,y) ef.
Thus, if f is a function valued function (operator) then ..fxy is the value of the
function .fx at y.

.2 dmnf = Ex [(x,y) €f for some y].

3 dmn'f = Exedmnf (|.fx| < o).

4 mgf = Ey [(x,y)ef for some x].

.5 funxeAP = Ex,y[x€A4 and y=P].

.6 funxc AP = Ex,y[x< A and y=P].

In.5and .6 weallow*“P’’to be replaced by expressionslike‘‘ax”’or ‘. f(x Ny)”’etc.

3. Measures. We present in this section certain well-known definitions and
theorems (without proof) concerning (outer) measures. We cast these in a form
convenient to our purposes.

3.1. DEFINITIONS.

.1 ¢ measures S if and only if ¢ is such a function on sbS that:

0<.pA whenever AcS; and .¢pA< L Be{F .¢B whenever Fecbl and
Acaf cS.

.2 MsrS = E¢ (¢ measures S).

3 rlm¢ = realm¢ = odmn ¢.

.4 Measure = E¢ [¢ measures rlm ¢].

.5 mbl¢ = measurable¢ = EAedmn¢ [¢ € Measure and .¢T = .¢(TA)
+ .¢(T ~ A) whenever Tedmn ¢].
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mbl’¢ = mbl¢ Ndmn’¢.
zrp = zero¢p = EA (.9A=0).
sctd T = sectiong T = funAd edmn¢ .¢(T N A).
sms¢ = submeasure¢ = Ey [¢ € Measure and y =sct¢p T for some
Tedmn’¢].

.10 cblecvr$ A = countablecoverH A = EG ecbl Nsb$H (4 < o®).

1 mssgSH=fund S (inf® ecblevrHA4 XBe® .gB).

Thus, if ¢ =mssgS$ and A = S then .¢4 is the infimum of numbers of the

form

o w9

.

X Be® .gB,

where ® is a countable subfamily of § which covers A.

In this connection we should like to remind the reader that the infimum of
the empty set is oo.

.12 approx¢ = approximater¢ = EF [¢ € Measure, 6 = rlm ¢ and corres-
ponding to each Aedmn’¢g and r >0 there exists Cezr¢ and & ecblevrF
(A ~ C) for which

Y Be® .¢B < .94 + r].

.13 bsc¢ = basicg = EF = Join"mbl’ ¢ [¢ € Measure and ¢ = mss ¢ rlm ¢§F].
.14 cnsr¢R = conservativepR = fundedmn¢@infCeQR .¢ (4~ C).

.15 knsr¢ & = cnsr¢Join"K.

16 sp’¢A = EBcrim¢ (.¢(4 ~ B)=0).

3.2. THEOREM. If g is a non-negative real-valued function, $ < dmng,
6HcS, and p=mssgS$ then:

.1 ¢eMsrS;

2 .¢pA < .gA whenever A€$;

.3 each Aedmn’¢ is so contained in some member B of Meet"Join"$H
that .9A = .¢B;

4 ifAde$Hand X Be® .gB= .gA whenever ® ecblcvr$) A then .9A = .gA.

3.3. THEOREMS.

.1 If Feapprox¢p, Acrim¢, and .¢T = .¢(TA) +.¢ (T ~ A) whenever
Te{, then Acmblg.

.2 If §eapprox¢ Nsbmbl¢ then corresponding to each Aedmn’¢ there
exists such a ¢ measurable set Besp A that .¢B = .¢A.

3.4. THEOREM. IfY eMsrS,y = mssyS$H,0$ < S,08 = Sand ¢ =knsr Yy ]
then:

.1 corresponding to each Acdmn’¢ there is such a member C of Join"K
that .pA=.y (A~C);

2 ¢=mss@S (YU K)eMsrS;
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3 .9A £ YA whenever Ac S;

4 mbly cmblg;

S Join"KRczrg = UAezr://UBeJoin”Rsb(AUB);
.6 ¢ = cnsryzro.

3.5. THEOREM. If § eapprox¢d, ¥ c mbl'@ and Y = mss @S then ¢ = cnsr
Yzr¢ and FUzrd ebsco.

4. Numerical products. In keeping with 4.2 of PM we shall assume in the
present paper that for each x,

0-x=x0=0.

We shall make use of Runs(#) especially pp. 822-823. It should be noted that
in Theorem 6.9 of Runs it is understood that 0+ co is not a real number whereas
in the present paper 0-co = 0.

4.1. DEFINITION. clsn’ A = Ea, B[ c pefnt NsbA]. Evidently clsn’4 is a
run for each A. Informally we agree that

[licAd .4

is the numerical product, as j traverses 4, of .aj. More formally we accept the
axiomatically definitional

4.2. THEOREMS.

1 JJi€0 .aj = 1.
2 If —w=<.ak< o then []jesngk .aj = .ak.
3 IfANB=0, AUBefnt, and — oo <.aj < © whenever je AUB, then,

[lieduB = (HjeA .aj) . (HjeB .aj).
4 [ljieA .aj = Imaclsn’A]]jea .aj.
.5 If .aj = .bj whenever je A then[]jcA .aj = [[jeA .bj.
From these and limit theory we infer the rest of the theorems in this section.

4.3. THEOREM. If Aefnt and — o ZL.aj< © whenever jeA; then
—w=]]ji€A .aj = .

4.4. THEOREM. If Aefnt and — 0 £.aj < © and — oo £ .bj £ © whenever
j€A then,

(HjeA .aj) : (HjeA .bj) = [lic4 (aj- .bj).

4.5. THEOREM. If ANB=0 and — o0 < .aj < 0 whenever je AUB, and
if —wo<p=[ljic4 .@jSo, and —-w<qg=[][jeB aj< o, and
r=[]je(AUB) .aj then:
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1 if |p| +|q| < o« then prqg=r;
2 ifp-q#Othenp-q=r.

4.6. THEOREM. If — o0 <.aj< o0 and — oo £.bj < o0 whenever je A, and
if —o<p=[]jcd .ajS o, —0=<g=]]jed .bj< © and

r=[ljie4 (aj-.bj)
then:
A if |p| +|g| < then p-g=r;
2 if p-q#0 then p-q=r.

4.7. THEOREM. If 0 =<.aj <1 whenever je A then
0=<J]jeA .aj = infacfntNsbA[[jea .aj < 1.
4.8. THEOREM. If 1 =< .aj < oo whenever j€ A then
1=]]j€A .aj = supacfntNsbA[[jewa-aj< co.
4.9. THEOREM. [[jeAl =1.

4.10. DEFINITIONS.
.1 pslx = Sup(sngl Usngx).
.2 nglx = Inf(sngl Usngx).
Thus
psl x =x and nglx =1 whenever x = 1,
ngl x=x and pslx =1 whenever x <1,
and
x=pslx - nglx whenever — o0 < x < 0.
For measure theoretic purposes we feel satisfied with the
4.11. DerNITION. ] +j€4 .aj = ([Tj€ 4 psl .aj) - ([]j € 4 ngl .aj).

4.12. THEOREMS.
.1 If .aj = .bj whenever je A then [[+jcA .aj = [[ +jeA .bj.
.2 If 0<.aj < oo whenever je A and if

0<Jlied .aj <
then
1<[lieAps] .aj < co.
3 If0=<.aj < © whenever je A and if
0<[[+jed .aj<

then
1=<[]jeA psl .aj < co.
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4 If0<.aj £ oo whenever je A and if

[IieA4 psl .aj <
then
0<[[+jcd .aj = [[icA .aj < .

5 If 05 .aj < © whenever je A and if

[lied aj <
then

0<[[+jcd .aj = [licA .aj < .
.6 If 0<.aj < oo whenever je A then
0<[[+jeA .aj £ co.
7 If ANB=0 and 0 =< .aj < o whenever jEe AUB then
(IT+jeA .aj)-([1+jeB .aj) =[] +je(AUB) .gj.
.8 If0<.aj<.bj < o0 whenever je A then
0<[[+jcd aj<[]+jecA .bj < 0.

9 If 0ZL.aj<o and O0Z=.bjs< oo whenever jeA, and
[l +j€A .aj + [[+j€A .bj < o then

[[+jeA (aj-.bj)=([[+jcA .aj)- (] +je4 .bj).
.10 If 0<.aj £ o whenever je A, and if r>0 and
0<[[+jed aj<o
then there exist A’ efnt NsbA and A" ecbl Nsb A for which
|IT]+jed .aj —[[+jed’ aj|<r

and
.aj = 1 whenever je A~ A".

251
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5. Product spaces. The product of two spaces 4 and B is generally taken to
be rct A B. The product of a multiplicity of spaces .X1i, i e dmn X, however, is
customarily taken to be the set of functions defined in 5.1.1 below. In the setting
of this latter product space, we explore in this section the operations of forming
rectangles, cylinders, projections and sections, and state, without proof, a number

of orientational and useful theorems.
5.1. DEFINITIONS.

.1 PrX=Ex[X is a function, x is a function, dmnx=dmnX, and

.xi €.Xi whenever i edmnX].
.2 sbmbA = submember4 = Ey[y < x for some x e A4].
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(AVUUB) = Ez [z=xUy for some xe A4 and some ye B].
(ANNB) = Ez [z=x Ny for some x€ A and some ye B].

cyl AS = cylinder in S over A=Ez €S [x < z for some x € 4].

sctn Ax = section of 4 at x=Ey [xNy=0 and xUyeA4].

sliced i= Jxe4 sng .xi.

prjAB = projection of A onto B=[(4 N NB)NB].

Product & = EC [C=(4 U UB) for some Ae® and some Be®].

Lo LrwL

5.2. THEOREMS.

1 (AVUUB) = (BUUA) and (AN NB)=(BN N A).

2 (AVUBUUC) = ((AVUB)UUC) and (ANN(BNNC))
=(ANnNB)NNC).

3 (Auul)=A4and (AVvU0)=(ANN0)=0.

4 IfA#0then(ANN1)=1.

5 If AAcA and B'cB then (A’ UUB’)c(AUUB) and (A’ N NB’)
c (AN NB).

5.3. THEOREMS.

1 (AVUeB)= UBeG (AU UB)and(4 N Ne®)=|JBeG (4N NB).

2 (Avunb)c (NBe® (AVUB)and (AN NnB)=(Be® (4N NB).

3 (AUUC)~(BUUC) = (4~ B)UUC) and (ANNC)~ (BNNC)
c((A~B)NNC).

4 cyle®C = | JBe®cylBC and cyla®GC = (1BeGceylBC.

5 cyl4o® = | JCeGcylAC and cyl 4nG = () C eyl AC.

6 sctno®x = |JBeGsctnBx and sctnn®x = () Be®sctn Bx.

g prjc®A = UC €® prj CA and prjn®A < nCe(ﬁprj CA.

.8 ¢cylAC ~ cylBC ccyl(4 ~ B)C, sctnAx ~ sctn Bx = sctn(4 ~ B)x, and
prjCA ~ priDAc prj(C ~ D) A.

5.4. THEOREMS.

(ANNB) csbmb A, and if B+# 0 then Ac sbmb(4 UU B).

If A< B then sbmbAc sbmb B.

If (ANNB)=1 then (sbmbA NNsbmbB) = 1.

Ifx'cx,ycy,xNy=0and x’ Uy =xUythen x'=x and y' = y.
S If (ANNB)=1, x€A, yeB, x'€A, y’eB and x'Uy' =xUy then

x=x"andy=y'.

LR

5.5. THEOREM. If (A'NNB’)=1 and C' =(A' UUB’) then:
.1 cyla®GC = (\Be®cyl BC whenever C = C' and o6 < B';
2 prjn®A= (| CeG prjCA whenever Ac A’ and 0® < C';
3 ¢cyl(A~B)C = cylAC ~cylBC whenever Ac A’, Bc A' and C < C'.

5.6. THEOREMS.
d Pr0 =1,
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2 If X is "a function then [Pr(XY)NNPr(X ~ Y)]=1 and
PrX =[Pr(XY) UUPr(X ~ Y)].

.3 slice 0i = 0.

4 If 0#£ A=PrX then slice Ai=.Xi whenever icdmnX.

5.7. THEOREMS.

1 cylcylA B C <cylAC.

.2 If AcsbmbB and B = sbmbC then cylcyl ABC = cyl AC.

.3 prjprjCBA cprjCA.

4 If A<sbmbB and B = sbmbC then prjprjCBA = prjCA.

5.8. THEOREMS.

1 (Uxed [sctnBx U Usngx] = B.

If B=cylAB then B =|_Jx €A [sctnBx UUsngx].

If x "y =0 then sctn A(x U y) = sctn(sctn Ay) x.

If (A NN B) = 1 then [sctn Ax UUsctn By] < sctn(4 UU B)(x U y).
S If AcA, BB, (ANNB)c 1, xesbmbA, and yesbmbB then

[sctn A’x UUsctn B'y] = sctn (4’ WU B')(x U y).

59. THEOREM. If X is a function, 0# X, AcPrX =S and
F=EYc X [0#Yefint] then A=) YeFcyl(prjAPrY)S.

6. Product measures. If m is an indexed collection of measures then in 6.1.1
we call m measuretic and we define for m, in 6.1.8, our first product measure
¥ = cpmm. Our second and third product measures are defined in 6.15.11 and
6.31.2 and if ¢ is one of these, then ¢ = cnsryzr ¢ and we think of ¢ as being
a conservative modification of .

6.1. DEFINITIONS.

.1 measuretic = Em [m is a function and rngm < Measure].

.2 spcm = Prfuniedmnmrim .mi.

.3 boxerm = EX [me measuretic, X is a function, dmn X = dmnm, and
Xic rlm .mi whenever i e dmnm].

4 bxm=EA[A=0or, A=P1 X for some X €boxerm].

.5 boxm =EAebxm [slice Ai embl .mi whenever i edmnm].

.6 vilmm = the function ¥V on box m such that .V0 =0 and
VA=][]+iedmnm ..mislice Ai whenever 0 # A €boxm.

.7 bscboxm = dmn’ vimm.

.8 cpmm = mss(vimm) (spcm) (bscboxm).

.9 cp = fun m e measuretic cpm m.

.10 nilfunction m = EX eboxerm [.Xiezr .mi whenever icdmnm].

.11 nilsetm = The family of sets of the form

Wi

Uiedmnm Exespcm (.xie.Xi),

where X enilfunction m.
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.12 nilcylinderm = E4A cspcm [A=cylBspcm for some pcm and
Bezr cpmp].

6.2. DEFECTS OF cp. Suppose .# = Et [0 < ¢ < 1] and suppose & is Lebesgue
measure restricted to J. Let m=funte S & and X =funtef {S ~sngl}.
Suppose Y =.cpm=cpmm and A=PrX. Now Aebscboxm yet A¢mbly
since it is not hard to check that .}y4 =1 and .y(spcm ~ 4) = 1.

Fairly evident and essential is our first

6.3. THEOREM. If 0 € p € m e measuretic, g=m ~ p,I =dmnm, S’ =spcp,
S” =spcq, S = spcm, B’ = bscbox p, B” = bscbox g, B = bscboxm, V' = vim p,
V'=vilmq, V=vimm, R’ =nilsetp, N" =nilsetq, and N =nilsetm then:

.1 If 0+ S then slice Si =rlm .mi whenever icl;

.2 Seboxm;

3 if 0#Fcbxm and X =funiel ((AeF slice Ai then X eboxerm
and 7§ =PrX ebxm;

4 if Beboxm, NeR, A=B~ N then Acboxm and .VA=.VB;

.5 .VA=(V'prjAS’) - (.V"prjAS") whenever A€B;

.6 B = ProductB’'B" UProduct box p zr V" UProduct zr V' box q;
.7 Meet” B = B;

.8 Join” N=N;

9

cylA’S e N whenever A'eN’;
A0 if AeNthen A=(A"VUS)U(S'UU A") for some A'e N’ and A" e N’;
.11 cylinder A’S € nilcylinder m whenever A’ € nilcylinder p.

Since our methods for obtaining product measures will be variable in what
follows, we shall let them enter our definitions and theorems explicitly as a vari-
able. Thus, in 6.4 and elsewhere, « may be thought of as a function which re-
presents a method for obtaining product measures, i.e., if m € measuretic N"dmna
then ¢ = .am is the « associated product measure on spcm.

6.4. DEFINITIONS.

.1 approximativea = Em € measuretic [bscbox m e approx .am].

.2 semiproductive o = Em eapproximative of..emA = .vinmA and
Aembl .am whenever A €bscboxm;

[fz amdz = [[.f(xUy) .apdx .a(m ~ p)dy

whenever 0 ¢p €m and — o0 £ [.fz .amdz < o0].

.3 mblproductive o = Em € semiproductive a [if 0 € p € m then
Productmbl .ap mbl .a(m ~ p) =« mbl .am].

4 productivea = Em € mblproductive « [cyl Bspcm € zr .am whenever 0 € p
@ m and Bezr .ap].

.5 mc H = fun m e measuretic knsr cpom m .Hm.
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.6 harmony o« = funm € measuretic zr .am.
.7 H is « Harmonious if and only if: H is a function on measuretic; produc-
tive o = measuretic; and zr .am < .Hm,

cyl B spc me.Hm,
0 = [[Cr(xUy)A .apdx .a(m ~ p)dy,

whenever: m € measuretic, 0 ¢ p ¢ m, Be .Hp and Ae.Hm.

Thus, if « represents such a method of producing product measures that
productive a = measuretic then, for any m € measuretic, if ¢ = .am we are assured
that:

(1) members of bscboxm are ¢ measurable and the ¢ measure of such a
box is its volume,

(2) the family bscbox m Uzr¢ is ¢ basic,

(3) the Fubini equality holds for the ¢ integrable functions under any binary
splitting of the product space,

(4) a rectangle of measurable sets is ¢ measurable,

(5) a cylinder over a set of underlying measure zero has ¢ measure zero.

Aided with 3.5 we infer at once from 6.4.3 and 6.4.6 the following

6.5. THEOREM. If productive « = measuretic and H =harmonyo then
H is o« Harmonious and a = mcH.

6.6. THEOREM. If memeasuretic, Y eMsrspcm, ¢ = knsr ¥ nilsetm,
Bebscboxm, and .yA = .vim m A whenever A € bscboxm, then .¢B = .vimm B.

Proof. Referring tc 6.3.8 and 3.4.1 we secure such a member N of nilsetm
that .¢B = .y(B ~ N). Observe (6.3.4) that B~ Nebscboxm and that
~vimm(B ~ N) = .vimmB. From these two equalities we infer .¢B =.vimmB.

Fundamental to our theory is the

6.7. THEOREM. If m emeasuretic, ¢ € Msr spcm, bscbox m €approx ¢,
nilset m< zr ¢ and . A = .vim mA whenever A € bscbox m then bscbox m < mbl’¢.

Proof. Let & = EA [A4 = cyl Bspcm for some (i, 4) € m and B € boxsng(i, )],
observe that

.1 Meet"R =EA [A=cylBspcm for some pecbl Nsbm and Beboxp],
and divide the remainder of the proof into two parts.

PART 1. K c mbl¢.

Proof. Suppose Ae &, T € bscbox m and check that TA and T~ A are both
members of bscbox m. Also, notice that

vimmT = vimm(TA) + .vimm (T~ A).
Hence, .¢T = .¢(TA) + .¢(T ~ A), and employing 3.3.1 we infer Aemblg.
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PART 2. bscboxm < mbl ¢.
Proof. Suppose A and Tare both members of bscboxm. Thus T4 € bscbox m.
If .¢(TA)=0 then

OT 2. ¢(TA) +.¢(T~A)=0+.¢(T~ A) £ .¢T
and we conclude
(¢))] QT = .¢(TA) + .¢(T ~ A).

We assume below that .¢(TA4) > 0. Thus, ¢(TA4) = .vimm (TA) and employing
4.12.10 we select such countable subsets m’ and m” of m that

.mi(slice(TA)i) = 1 whenever iedmn(m ~ m’)
and
.mi(slice T i) = 1 whenever i edmn(m ~ m").

Let p=m’'Um”, B=cyl(prjAspcp)spcm, and
N= Uw € (m ~ p)cyl(prj Tspcsngw ~ prj Aspcsngw)spcm.
Observe that
..mi(slice Ti ~ slice Ai) = 0 whenever i edmn(m ~ p)

and infer N enilsetm.
Notice also that B e Meet” &, and calculate,

T~A= T~ (\wem cyl(prjAspcsngw)spcm

It

U we m(T ~ cyl(prj Aspcsngw)spcm
= U w e p(T ~ cyl(prj Aspcsngw)spcm)
v U we(m ~ p)(T ~ cyl(prj Aspcsngw)spcm)
c U w e p(T ~ cyl(prj Bspcsng w) spcm)
v U we (m ~ p)cyl(prj Tspcsngw ~ prj Aspcsngw)spcm
= T~BUN.
Thus, using Part 1 to check that B e mbl ¢, we note
T £ .¢(TA) + .¢(T~ A)
< .¢(TB) + .¢(T~BUN)
.(TB) + .¢(T~ B) + .¢N
.O(TB) + .¢(T~B) + 0 = ¢T.
Aided again by 3.3.1 we conclude that 4 e mbl¢.

IIA
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6.8. THEOREM. If memeasuretic,c, 0 €p €m, g=m~p, peMsrspcp,
veMsrspeg, nilset p = zr y, nilsetq = zrv and N €nilsetm then

J JCr(x Uy)Npdxvdy = 0.

Proof. According to 6.3.10, N=(N'UUrlmv) U(rlmu YU N") for some
N’ enilset p and N” enilsetq. Note that if y erlmv ~ N” then sctn Ny = N’ and
hence,

JCr(x Uy)Npdx = 0.

Since .wvN” = 0 we are assured that
J JCr(x Uy)N pdxvdy = 0.

6.9. THEOREM. If O Cp € memeasureticc, g=m~ p, [LEMSISPCP,
vEMsrspeq, .uA = .vimp A and A e mbl u whenever A € bscbox p, .wB = .vimgB
and Bemblv whenever B e bscboxgq, then

vimmC = [ [Cr(x U y)Cudxvdy whenever C <bscboxm.

Proof. Suppose Cebscboxm, A=prjCspcp, and B=prjCspcq. Thus,
C = (4 YU B) and assuming first that A ebscbox p and B e bscboxg we obtain
with the aid of 6.3.5 and PM 4.4, p. 182, that

vimmC = (.vimpA) - (.vimg B)
(fCrxApdx) - ([CryBvdy)
= [([CrxApdx)CryBuvdy

J [Crx ACryBudxvdy

[ JCr(x Uy Cpudxvdy.

If A ¢ bscbox p then .vB =0 = .vimmC. Also if B¢ bscbox g then .u4 =0 = .vim
mC. In either case, clearly

0 = [[CrxACryBudxvdy
[ [Cr(x Uy)Cpdxvdy

and we are assured of the desired equality.

We state the following theorem without proof. It is a one sided version of the
useful 5.3 in PM (p. 189). Aside from the transfer of setting from the space
rctrlm prlmv to the space (rlmpu U Urlmv), the proof of the present theorem
is contained in that of PM 5.3.

6.10. THEOREM. If m € measuretic, ¢ € Msrspcm, Febscgd, 0 € p Cm,
n€Msrspep, ve Msrspe(m ~ p), .pA= [ [Cr(x U y) Audxvdy wheneverA€,
and —0 £ [.fz¢dz < 0 then [.fzdpdz= [ [.f(xVy)pdxvdy.
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6.11. THeoreM. If 0C pC m € measuretic, S=spcm, S’=spcp, S"=spc(m~p),
UeEMsrS’, veMsrS”,
g=fcnBcS [ [Cr(x Uy)Budxvdy,

& = Product mbl’ pumbl’v and Y =mssgS§ then:
.1 Yy eMsrS;
.2 Product mbl umblv = mbly;
3 WA = .gA whenever Ac.

Proof. We know .1 as a consequence of 3.2.1. For .2, suppose
A=(A"UUA"), A'embly, A"emblv, and let R; =[(S'~ A" )UUA"] and
R, =[S"UU(S" ~ A")]. Now check that

1) S=AUR,UR,, S~A<R,UR, and R,R,=0,

and divide the remainder of the proof of .2 into two parts.
PART 1. If Be{ then

B =.g(BA) +.g(BR,) + .g(BR,).
Proof. Suppose Be , then in view of (1) we are assured that
Cr(x Uy)B = Cr(x U y)(BA) + Cr(x U y)(BR,) + Cr(x U y)(BR;)
whenever xe S’ and yeS". Hence,
.gB J JCr(x U y) Budxvdy
J J{Cr(x U y)(BA) + Cr(x U y)(BR,) + Cr(x U y)(BR,)} pdxvdy
= [{[Cr(xVy)(BA)udx + [Cr(xUy)(BR,)udx + [Cr(xUy)(BR,)udx}vdy
[ JCr(xUy) (BA)udxvdy + [ [Cr(xUy)(BR,)udxvdy
+ [ JCr(x U y)(BR,) udxvdy

.g(BA) + .g(BR,) + .g(BR,).

PART 2. Aembly.
Proof. Suppose Tedmn’y, r> 0, and secure such a family ® ecblevr T
that
Y Be® .gB < YT +r.

Using .1, (1), 3.2.2., and Part 1 we infer

YT £ W(TA) + Y(T~ A)
Y(TA) + Y(TRy) + .Y(TR;)
Y Be® .Y(BA) + X Be® .Y(BR,) + LBeG® .Y(BR,)
Y Be® .g(BA) + X Be® .g(BR,) + X Be® .g(BR,)
2 Be® {.g(BA) + .g(BR,) + .g(BR,)}
Y Be® .gB< YT + r.

IA A TIA TIAHIA
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The arbitrary nature of r assures us
YT = Y(TA) + Y(T~ A).
For .3, suppose A€, r >0, and choose such a family ® ecblcvr ¥4 that
WA +r= X Be® .gB.
Notice that for each z,
0<CrzA < YBeG®CrzB
and hence that
WA+r2 X Be®.gB= X Be® [ [Cr(x U y)Bpudxvdy
fX Be® [ Cr(xVUy)Bpudxvdy
IJ Y Be®Cr(x U y)Budxvdy
[ JCr(x U y) A pdxvdy
g4 = YA.

[\

Since r was arbitrary we are assured of the desired equality.

6.12. THEOREM. If0 G p G m emeasuretic, u € Msrspc p, v e Msrspc(m ~ p),
mbl’y e bscy,

YA = [ [Cr(x Uy)Apudxvdy whenever Acmbl'y,
N =sbspcm, ¢ =knsryRN and

0= [ [Cr(x Uy)Budxvdy whenever BeR,
then:
.1 ¢ eMsrspcm;
.2 mbly c mblg;
3 .pA = YA whenever Acmbl'y.

Proof. For .1 and .2 use 3.4.2 and 3.4.4. For .3, suppose Aembl’y and
secure such a countable subfamily ® of 9 that

DA = Y(A ~ oB)
and such a member A’ of mbly Nsp(4 ~ ¢®) that
YA = Y(A ~ o).

Notice that for each z,

CrzA' + X Be®CrzB 2 CrzA
and hence
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PA = YA = [ [Cr(xUy)A pdxvdy + 0

JJCr(x Uy)A' pdxvdy + X Be® [ [Cr(x U y)Budxvdy

JJCr(x U y)A'pdxvdy + [ X Be® [Cr(x U y)Budxvdy

JJ{Ct(xup A’ + X Be®Cr(x Uy)B} udxvdy

2 [[Ct(xUy)Apudxvdy = YA = .PA.

6.13. THEOREM. If0 € p € m € measuretic, p € Msr spc p, v € Msrspc(m ~ p),
bscbox p U zr u € bsc u, bscbox(m ~ p) U zrv e bscv, ¢ € Msrspcm, bscbox mUzr
¢ ebsco, and .¢(T Ncyl Bspcm) = 0 whenever .¢T < o and Bezr u or B € zrv,
then

I

Product mbl ymblv € mbl ¢.

Proof. Suppose A’emblu, A"emblv, A=(4'UUA"), Tebscboxm,
T'=prjTrlmyu, T’ = prj Trlmv, and secure such sets B’ € Meet” Join” bscbox p
and B” € Meet"Join" bscbox(m ~ p) that

¢} MT'A'~B) = .u(B'~T'A")=0
and
2) W(T"A" ~B") = w(B" ~ T"A") = 0.

Let B= (B’ UU B") and note

?3) TA~B = (T'A'"VU(T'"A" ~B")U(T'A’ ~B'YUUT"A")
and

4 B~TA = (B'UU(B" ~T'4A"))U((B' ~ T'A") UU B").

From (1), (2), and the fact .¢(TA) < cc we learn from (3) that .¢(TA ~ B)=0.
Checking that B € Join"dmn’ ¢, we learn from (1), (2) and (4) that .¢(B ~ TA4) = 0.
Since clearly Bembl¢ we conclude TA e mbl ¢,

OT = .$(TA) + (T~ A),

and employ 3.3.1 in reaching the desired conclusion.

’

6.14. THEOREM. If H is a Harmonious, and o' = mcH then productive a
= measuretic.

Proof. We infer the desired conclusion from Parts 1, 2, and 3 below.
PArT 1. If m emeasuretic, ¢ =.a'm, and Y = .am then:

1 ¢=knsry .Hm;

.2 mbly « mblg;

3 .pA = YA whenever Aembl’y;

4 [.fzdpdz= [.fzydz whenever —c0 £ [.fzydz < co.
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Proof. For .1, let ® = zr .am and use 6.5 to check that y = knsrcpmm ®.
Thus, since ® < .Hm,

¢

knsr cpm m .Hm

= knstr cpm m (& U .Hm)
= knsr knsr cpm m ® .Hm

knsr y .Hm.

For .2 and .3, assume 0 € p ¢ m, and let p=.ap and v =.0(m ~ p). Now,
employ 6.12 taking t = .Hm. Finally, .4 is a direct consequence of .2 and .3.

PART 2. If0 € p €memeasuretic, ¢ =.a'm, Y =.am, u=.a'p,v=.a'(m ~ p)
then:

.5. .Hm Ubscboxmebsco;

6 .pA= [ [Cr(xUy)Apdxvdy whenever Ae.Hm Ubscboxm;

.7 cylBspcm e zr ¢ whenever Bezru or Bezrv.

Proof. For .5 use Part 1 and 3.4.2. For .6, let £ =.ap and n = .a(m ~ p),
check that

pA= [ [Cr(x Uy)Aédxndy
whenever Ae.Hm U bscboxm, and use .4 in checking, for # almost all y,
6)) JCr(x Uy)Aédx = [Cr(x U y)Audx.
Use .4 again to learn from (1) that
JJCr(x Uy)Aldxndy = [ [Cr(x U y)Audxvdy.

For .7, suppose .uB = 0 and 3.4.5 split B into B, e zr .ap and B, c D e Join” .Hp
so B = B; UB,. Thus, cyl By spcm € zr .am and cyl B, spcm < ¢yl D spcm € Join”
.Hm c zr .a’'m and therefore Bez1¢. The case Bezrv is similar.

ParT 3. If 0Cp C memeasuretic then

Product mbl .a’p mbl .a'(m ~ p) « mbl .a'm.

Proof. Use .7 and 6.13.

A family of sets more general than bscbox m is introduced in 6.15.5. It replaces
the family of cylindrical sets of the classical theory of infinite product measures,
and can be described as follows. Suppose m € measuretic, p € fat Nsbm, A’ < spc p,
A" ebscbox(m ~ p), then 4 = (A’ UU A") is one of these sets. If p is the smallest
subset of m for which A can be so represented, then we call p the stand of 4,
m ~ p the tower of 4, A’ the foot of A and A" the top of A.

6.15. DEFINITIONS.

.1 standmd =nEpefntNsbm [A=(4"UUA4") for some A’ = spcp and
some A" € bx(m ~ p)).
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.2 towermA = m ~ standm A.

.3 ftmA=prjAspc standm A.

4 tpmA = prjAspctowermA.

.5 frame m = EA c spcm [m e measuretic, standm A4 € fnt, and
tpm A € box tower mA]. v

.6 Vimam = fun A4 eframe m.

[..astand mAftmA - .vIm tower m Atpm A].

.7 harmonil = funm € measuretic [nilsetm U nilcylinder m].
.8 startproductionam = mss(Vimam) (spcm) (dmn’ Vim o m).
.9 production « = fun m e measuretic

knsr(startproduction a m) (.harmonil m).

.10 cm = mc harmonil.

A1 cnmm = .cmm.

In 6.15.9 above, we have defined a general method for extending finite products
of measures to infinite products. Suppose o represents a method for obtaining
a product of a finite number of measures, i.e., fnt N measuretic « dmne. Then
o’ = production x is the extension of that method to arbitrary products and
dmna’ = measuretic.

Useful in 6.17 is

6.16. THEOREM. If p efnt Nsb m < mblproductive «, g € fnt Nsbm, pNg=0,
u=.ap,v=.aq9, ¢ =.a(pUq), A cspcpebscboxp, and B c spcqe bscboxq
then

GH(AUUB) = .uA - wB.

Proof. Use 3.3.2, 6.4.3 and 6.4.2.
For our purpose, we give a general version of the well known

6.17. THEOREM. If memeasuretic,c, .A rlm A =1 for each A e rngm,
fnt Nsbm < mblproductivea, § = Uq €fnt Nsbmsbspcq, g is the function on
& which assigns to each A€ the value ..nq A where q is that subset of m for
which A = spcqg, ® ecbl Nsb§, and spcm = cylo® spcm then

Y Ae® gd = 1.

Proof. First note that spcp e bscbox p and hence that .gspcp = 1 whenever
p<fnt Nsbm. Now, employ the countability of ® to secure such a sequence r
of members of fnt Nsbm that
1) 0=.r0 c .rnc.r(n + 1) whenever new,
and
Q) A < sbmbspco rngr whenever 4e€®.
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Let Q =spcorngr, R=funnewspc.rn, and
b = funnew [.Rn ~ cylo® .Rn].
Suppose ne€w and use 5.7.1 and (2) in calculating
cyl .bn .R(n +1) = cyl .Rn .R(n + 1) ~ cylcylo® .Rn .R(n + 1)

> .R(n +1)~cyle® .R(n +1) = .b(n +1).
Thus, we infer

A3) .b(n + 1) =cyl .bn .b(n + 1) whenever ne€w,

and divide the remainder of the proof into six steps.

Step 1. If Ae{, Be{, and A=cylBA then .g4A < .gB.

Proof. Suppose p=m’efnt Nsbm, Bcspcp and A « spcm’. Then either
AcBor p cm’ and A ccylBspcm’. For the latter alternative we employ
6.16 to infer

.gA < .g(cylBspcm’) = .gB-1 = gB

and hence, for either case, conclude .g4 < .gB.

Step 2. If A€, Be§, A=cylBA, and x € sbmbB then sctnAdx e §,
sctn Bx e § and sctn Ax = cylsctn B x sctn Ax.

Proof. Let p’, p, and g be those subsets of m for which x gspcp’, B = spcp
and A = spcq, and notice that p’' = pcgq.

Suppose yesctnAx. Then xNy=0 and xUyeA. Let z=xUy. Since
A = cylBA there exists a member ¢t of B which is a subset of z. Let s =z~¢
and secure such y’espc(p ~ p’) and y"espc(q ~ p) that y =y’ Uy". Now,
z=(xUy)Uy" =tUs and infer with the aid of 5.4.5 that x Uy’ = ¢t. Thus,
y' € sctn Bx and weinfer yecylsctn Bx sctn Ax. Since, cyl sctn Bxsctn Ax csctn Ax,
we conclude the desired equality. Obviously sctnBx <spc(p ~ p’) and
sctn Ax < spc(q ~ p) and our proof is complete.

Step 3. If kew, xe.bk, and lim,, , .g (sctn .bnx) > 0 then there exists
such an x’ €.b(k + 1) Nspx that

lim,_ , .g(sctn .bnx') > 0.

Proof. The choice of x’ is clear when .r(k + 1) = .r(k). We henceforth assume
.r(k + 1) # .rk and use (3), Step 2 and Step 1 in ascertaining that

@ if new and n> k then .g(sctn .b(n + 1)x) < .g(sctn .bnx).

We are now assured of the existence of such a number s > 0 that .g(sctn .bnx) > s
whenever new and n>k. Let p=spc(.r(k +1)~.rk), p=.ap, o*=En
ew(n>k +1), and d =funnew* Etespcp [.gsctn.bn(x Ut) > s/2].

Use (3), Step 2 and Step 1, as above, in checking .g(sctn.b(n + 1) (x U1))
<.g(sctn .bn(x U 1)) whenever n € o*, wherefrom we learn
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5) .d(n + 1) = .dn whenever n e w*.

Suppose now that new, m’' =.rn ~ .rk, g = m’ ~ p, and secure A e mbl .am’

Nspsctn .bnx for which .g4 =.g(sctn.bnx).
Let D=Etespcp [.gsctnAt>s/2] and check that .uD=.u.dn and

D embl u. Thus, ,
.gA J[Cr(uUnA .aqdupdt

[.gsctn At pdt

J(CrtD + Crt(spcp ~ D)) .gsctn At pdt

JCrtD.gsctnAtpdt + [Crt(spcp ~ D) .gsctn At udt

" < [CrtDudt + [(s/2)pdt

.uD + s/2.

I

Hence, .uD = .gA — s/2 = s — 5/2 = 5/2, and we infer
6) . .dn = s[2 whenever ne w*.
From (5) and (6) we learn .u[|n€@* .dn >0 and 0#("| n € w.dn. Since clearly,
for each new*, .dn csctn .b(k + 1)x, we are assured of the existence of such
a point t esctn.b(k + 1)x that .g(sctn.bn(x U £)) > s/2 whenever n € w*. Taking
x' = (x U1t) realizes our objective.
Step 4. 0= (newcyl .bnQ.
Proof. Use (2), 5.3.5 and 5.7.2 in checking
(ne ocyl .bnQ = @~ |Jnewcyl(cyloGspe .Rn)Q
=Q~ cyl(U new cylaGspc .Rn)Q
= Q ~cylcyloG U newspc .RnQ
= Q~cyleGQ = 0.

STEP 5. limn— o .g.bn = 0.
Proof. The alternative to our assertion, in view of the (3), Step 2, Step 1

monotonic nature of the numbers .g.bn for n € w, is that
@) limn,_, .g.bn > 0.

Let us tentatively assume (7) in order to reach a contradiction in (8) below.

Using Step 3, and noting 0 €.b0 = 1, we may inductively obtain a sequence y
with the following properties: for each new,

.1 .yne.bn and .yn c.y(n + 1), and

.2 limk- oo .g (sctn .bk .yn) > O.

Let z= U new.yn, suppose n€w and notice that .yne.bn, z ~.ynespc
(orngr ~ .rn) and hence that zecyl .bn Q. Thus,
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®) ze(\newcyl .bnQ

in contradiction to Step (4). We conclude therefore that limn— oo .g .bn = 0
STEP 6. 1< X Ae® .gA. :
Proof. Suppose s > 0, and employ Step 5 to secure such an n e w that

9 .g.bn < s.
Let p=.rn, p=.ap, S=spcp, ® =EAe€® [0+#cylAS] and observe that
(10) S =.bnu|JA4e® cyl4S.
Hence,
1 =.uS £ .u.bn + X Ac®’ .ucylds

IIA

s + XL Ae®G’.gd
s + X AeB.gA
and exploiting the arbitrary nature of s we infer

1< XA4e6 g4

IIA

completing both the proofs of Step 6 and our theorem.

6.18. THEOREM. If memeasuretic, .ArlmA =1 for each Aierngm,
fat Nsbm < mblproductive «, ® ecblsbframem, and 6® = spcm then

Y Ce® .VimamC = 1.

Proof. Let = U gefnt Nsbmsbspcqg and let g be the function on §
which assigns to each A € § the value ..xgA where q is that subset of m for which
A c spcq. Suppose S =spcm and divide the proof into two parts.

Part 1. If r> 0 and C eframem then there is such a member A of § that
CccylAS and

.gA £ VimamC + r.
Proof. Let p'=standmC, g¢'=m~p’, A'=ftmC, B =tpmC and
f=.gA'. Thus, A’ e, C ccylA’S, and our conclusion is immediately inferred

when f = 0. Suppose therefore, that f> 0 and employ 4.12.10 to secure such a
finite subset g of g’ that

(1) |.vimg’B’ — [] +iedmngq..mi slice B'i| < (r/f).

Let B=prjB’spcq and A=(A'UUB). Thus [[ +iedmngq..mi slice B'i
= .vimgqB = .gB and we learn from (1) after multiplication by f that

?) |VimamC — f - gB| < .
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Using p’ Uqefnt and 6.16 we readily infer that .g4 =f- .gB, and using (2)
complete our proof with the observation that C ccylAS and A€ §.
PART 2. X Ce® .VimamC = 1.
Proof. Suppose r >0 and employ Part 1 to obtain such a countable sub-
family § of & that
a® U AeHcylAS
and

Y Ae$H .gA £ X Ce® .VimamC + r.

Use 6.17 to infer
Y Ac$ gA =21

and then conclude, in view of the arbitrary r, that

Y Ce® .VlmamC = 1.

6.19. DEFINITIONS.

.1 weight Km=]] +iedmnm .Ki.

.2 factorform = EK [K is a function, dmnm < dmnK, 0 £ .Ki £ o when-
ever iedmnK and 0 < weight K m < «].

.3 factormeasureticK m = funi edmnm (.Ki - .mi).

.4 responsivea = Em emblproductivea [for each K efactorform, .o fac-
tormeasureticKm = (weight K m) - (.am)].

6.20. THEOREM. If M < mblproductive «, and zr .am =zr .aom’, m'e M
whenever m,K and m' are such that me M, K efactorform and m’ = factor-
measureticK m, then M < responsivea.

Proof. Suppose meM, K efactorform, m’=factormeasureticKm, k=
weight Km, ¢ = .am and ¢’ = .am’.

STEP 1. bscboxm’ = bscboxm and .vimm’'A = k- .vimm A whenever A
€ bscboxm.

Proof. Use 4.12.9, 6.19.3 and 6.19.2.

STeP 2. If .pA < oo then .¢'A <k - .PA.

Proof. Suppose r > 0 and secure such a countable subfamily & of bscbox m
that

P(A~0oF) =0and .04 + (r/k) = X Bey .¢B.
Thus,
$(4) = .9'(4~0F) + .9'(c)

0+ XBeg .9'(B)
2 BeFk - .¢(B)

k X Be§ .¢B

k- .pA +r.

onaA

IIA
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Since r is arbitrary we infer .¢'(4) <k - .¢A.

Step 3. If .¢’A < o then k- .94 < .¢'A.

Proof. Suppose r > 0and choose § € cbl sb bscbox m for which .¢'(4 ~ ¢3)=0
and .¢'(A) +kr= X Be{ .¢'B. Then

$A S (A~ o) + .¢(cF)
0 + XY Beg .¢B
Y BeFk™! ¢'B
k™' X Beg .¢'B
k™! ¢4 +r.

lIA

IIA

I

I\

Thus, k - .9A < 9’4
From Steps 2 and 3 we infer

A = k - .¢'A whenever A cspcm
and conclude m eresponsive o« and therefore

M c responsive a.

6.21. THEOREM. If m e measuretic, fnt Nsbm < responsivea, B € bscboxm,
F ecbl Nsb framem and B < 6§ then

Y Ce® VimamC = .vimmB.

Proof. The conclusion is obvious if .vimmB=0. We therefore suppose
.vimm B > 0 and proceed by letting m’ = funi e dmnm[funa c slice Bi ..mia].
Suppose a’ is that function on sbm’ which assigns to each p’ = m’ the measure

fun A < (prjBspcp) (..apA),

where p is that subset of m for which dmnp =dmn p’.
Verify that

) fnt Nsbm’ < responsivea’.
Let K =funiedmnm (1/..mi slice Bi),

m” = factormeasureticK m’,
and check that

2 (weight Km') - .vimmB = 1,
and
3) ..m"irlm .m"i = 1 whenever i edmnm”.

Next let ' = U C e §sng(C N B), check that spcm” < 6§’, and employ 6.18
to ascertain that
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4 Y C'efF Vima'm'C' = 1.

Suppose Cc &, C'=CNB,p"=standm”"C’,p’ «m’,p = m,dmnp” = dmn p’
=dmnp, Ay=ftmC’ and A, =tpmC’. Then,

VimaomC = .VimamC’
= ,.apAoy * .vim(m ~ p)A4,
= ..a'p’dy - vim(m' ~ p') A4,
= ..a'p’A4,y - weightKm' - .vimmB - .vim(m’ ~ p')A,

(..2'p"'Ayweight Kp')-(weight K (m’~ p").vim(m'~p')A,)- .vimm B
{(..a’'p"4y) * VIm(m" ~ p")A,} .vimmB

= Vima'm"C’ - .vimmB.
Hence, for each Ce§
©) NVimamC 2 .Vima’'m"(CNB) - .vimmB
and we conclude
Y Ce§ .VimamC = vimmB - X Ce§ .Vima'm” (Cn B)
> vimmB - X C'ey .Vlma'm"C’
= vimmB.

6.22, THEOREM. fnt N measuretic < responsivecp.

Proof. Let R = En,m [n €, m € measuretic, and m contains no more than

n elements].
Thus, if new then vsRn is the class of measuretic functions each of which
contains n elements or less. It is evident that

(€)) vs R1 cresponsive cp.
Suppose N € ® and that we know
2) vs RN < mblproductivecp.

Our proof is completed with the aid of mathematical nduction by demonstrating
below that

3 vs R(N + 1) < responsivecp.

Proof. Suppose mevsR(N +1),0c pcm,gq=m ~p, S =spcm, y=cpmp,
v=cpmg, Y =cpmm,
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g=funBcS [ [Cr(xV y)Budxvdy,

& =Productmbl’ymbl’v and ¢ = mssgS§.
We are assured by (2), 6.9, and 6.11.3 that

@ .¢T = .vimm T whenever T € bscbox m.
Consequently, = mss ¢ Sbscboxm and with 3.2.4 we infer that
5) YT = .¢T = .vinmT whenever Te bscboxm.
We establish next that

(6) WA £ .pA whenever A€ .

Proof. Assume A=(4A'"UUA4"), A'embl’'y, A”embl’v, and r>0. Let
k=.uA’ + .wA" and let t be such a number that 0 <t <r/(2k) and t* <r[2.
Now select such families &’ € cblcvr bscbox p A’ and " € cblcvr bscbox g A” that

A" +t2 X B'€®’ .uB’ and wA" +t2 X B’ e®" B
Let ® =Product®’'®” and use summation by partition in ascertaining
WA £ Y Be® .vimmB
2B e® X B e® .vimm(B'UUB’)
Y B e®' X B e€® (.uB' - .vB")
Y B'e®’ (uB’ X B'e®" .vB")
Y B'e€®’ (.uB’' (wA” +1)
(vA"+1) X B’ €®’ .uB’
(A" + (A" +1) = uA’" - wA" + t(pA’ + vA") + 12
pA' wA” w4

22
QpA +r.

A A oA

Our proof of (6) is completed by recalling the arbitrary nature of r.
Suppose Aembl¢, Tebscboxm, and r> 0. Note 6.11.3 and secure such
members ® and §) of cblevr F(TA) and cblevr F(T ~ A), respectively, that

Y Be® .¢B + r/2 £ .¢(TA),
and

Y Be$ 9B + r[2 £ .¢(T~ A).
Thus, using (6),
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ST = .)(TA) + .¢(T~ A)

Y Be® .¢B + X Be$H .¢B +r

X Be® .YB + X BeH YB+r

W(TA) + Y(T~A) +r

YT +r = 4T + r.

v v v ol

v

Inferring therefrom that
YT = Yy(TA) + (T~ A)

we conclude with 3.3.1 that 4 e mbly.
We learn from 6.11.2 and 6.3.6 that

@) bscboxm < Productmbl g mblv = mbl¢ = mbly.

Our proof that vs R(N + 1) = mblproductive cpis completed with reference to
(5), (7), and 6.10.

Suppose m e vsR(N + 1), K efactorfor m, m’= factormeasuretic K m and use
the fact bscboxm =bscboxm’ and vilmm =k-vimm’ in checking that
zrcpmm’ = zrcpm m.

Clearly m’evsR (N + 1) and from 6.20 we infer vs R(N + 1) < responsivea
to complete our proof.

6.23. THEOREM. If m € measuretic, A € bscboxm then

..cpmmA = .vimmA.
Proof. In 6.21 take § = bscboxm and employ 3.2.4 and 6.22.

6.24. THEOREM. If fnt N measuretic = responsivea, «” = startproductiona, and
a’ = production « then:

.1 .a"m =knsrcpmmzr Vim .am whenever m € measuretic;

.2 responsivea’ = measuretic = productivea’;

.3 &' = mcharmonya'.

Proof. Let a* = funm e measureticknsr .«"m nilset m.
PART 1. If m e measuretic, y =.o"m, and A € bscboxm theny = knsrcpmm
ztVimam and .YA = .vimm A.

Proof. Since yy = mssVImamspcmdmn’Vimam we may employ 6.21 and
3.2.4 to learn

¢)) .WB = .vimm B whenever B e bscboxm.

Let Q =knsrcpmmzr Vimam, suppose .QT < oo and secure such a countable
subfamily J of zr Vimam that .QT = .cpm m(T ~ 6J). Now suppose r > 0 and
secure D ecblevrbscboxm (T ~ 633) for which
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cpmm(T~63)= Y Be®D vimmB—r.
Thus,
QT+r 2 X BeD .vimmB

Y BeD .VimomB + 0
Y BeD.VinamB + X, BeJ .VimamB
= Y Be(DUS) .VimamB = YT

and, using the fact that r is arbitrary, we conclude
2 QT = YT whenever .QT < oo.

Suppose .Yy T > 00,0 < r < oo and secure such a member ® of cblcvrdmn’ VimamT
that
YT +r = X Be® .VimamB,

and secure such a function R on ® that, 0 <.RB whenever Be®, and
r= X Be® .RB.

Let 3 =0® NzrVimam and noting mblproductivea contains fnt N measuretic,
secure such a function F on ® ~ 3 that if Be ® ~ 3 then:

.FB e cblsbbscboxstand m B;
..astandmB(ftmB ~ ¢.FB) = 0;
Y Ce.FB .vimstandmBC < ..astandmBftmB + .RB/.vimtower m Btpm B
Consequently, if Be ® then:
((ftmB ~ ¢.FB) UUtpmB) eframem;
.Vimoam((ftmB ~ ¢.FB) UUtpmB) = 0;
(C VUtpmB)ebscboxm whenever C €.FB;
and ¥ Ce.FB .vimm(C UUtpmB) <.VimamB + .RB. Letting

J= UBe@ UCG.FBsng(C UUtpmB)
and
JI=23 UUBe(f’)sng((fth ~ g.FB)UUtpmB)

weinfer € cbl Nsbbscboxm, J'e cbl Nsbzr Vimam, XBeJ.vimmB < YT +r
and Tc oI U0 . Clearly,

QT £ .cpmm(T ~ 6J')
< XBe.vimmB £ YT + r.
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Again r is arbitrary and we conclude

(€)) QT < YT whenever YT < oo,
Taking (3) and (4) together we conclude
O] Q =y,

and our proof is complete.
PART 2. semiproductive a* = measuretic.

Proof. Use Part 1, 6.6, 6.7, 6.8, 6.9, 6.10, after checking approximativea* =
measuretic.

PART 3. mblproductivea* = measuretic.

Proof. Suppose 0 € p € memeasuretic, u=.0*p, q=m~p, v=.a%q,
¢=cpmp, n =cpmgq, ¢=.a*m, Yy =cpmm, N’'=nilset p, 3’ = Join"zr Vima p,
N" = nilsetq, 3" = Join" zr Vima g, N = nilset m and 3 =Join" zr Vimam.

Let A’embly, A" emblv, A =(4"UU A"), T' € bscbox p, T” € bscbox g, and
secure such sets B’ € Meet” Join” bscbox p and B” € Meet” Join” bscbox g that

MWB'~T'A'UT'A’'~B') =0
and
(B~ T'A"UT'A"~ B") = 0.
Use 3.4.5in obtaining Q" ezré,R'e N',S'€3’,Q"€zrn, R"e N",and S" € 3" for
which
B'~T'A'UT'A'~B'c Q" UR'US’
and
B'~T'A"UT'A"~ B"cQ"UR"US".
Let T=(T'VUT"), B=(B' VU B") and note that
B~TAUTA~B < [(Q"UR'US’) UU(T"UB")JU[(T'UB’)UU(Q"UR"US")].
Now,

Q' VU(T"UB)]ezry, (T'"VUB)YUUQ)ezry, (R'UUspcq)eNR,
(spcp WVURNeN, (S’ UUspcg)e3, and (spcp UUS")e3, and we conclude
B~TAUTA ~ Bezr¢
and infer the ¢ measurability of TA from that of B. Consequently,

QT = .¢(TA) +.¢(T~ A)

and referring to 3.3.1 we learn 4 € mbl ¢ to complete the proof.
PART 4. productivea’ = measuretic.
Proof. STEP 1. If m e measuretic then .¢’m = knsr .¢*m nilcylinder m.
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Proof.

’

.a’'m = knasr .a"m (nilset m Unilcylinder m)
= knsr (knsr .«"m nilset m) nilcylinder m
= knsr .a*m nilcylinder m.

StEP 2. If memeasuretic, ¥ = .a*m, ¢ =.a’'m and .YT < cothen .¢T = .YyT.

Proof. Let & be such a countable subfamily of nilcylinder m that
@T = Y(T~ 68R). Suppose BefR, B=(B'UUB"), pcm, B’ ezrcpmp,
g=m~p, B"=spcq, p=.a*p, v=.a*q and secure such a member T’ of
mbly Nsp T that .YT' =y T. Thus T'B e mbl’y. Noting that for each x e spc p
and yespcq, 0 < Cr(x U y)(T'B) £ CrxB’, employ Part 2 in obtaining

0= .Y(T'B) = [[Cr(xV y)(T'B)udxvdy
< [[CrxB’ pdxvdy
fOvdy =0.
Thus .Y(T’'B) =0 whenever BeR. Hence,
0< . Y(ToR) S W(T'oR) < X BeRY(T'B)=0

and YT < .Y(ToR) + Y(T~ o])=0+.¢T < yYT.

SteP 3. If m emeasuretic, ¥ =.a*m, ¢ =.a'm, and — o0 j.fzn//dz L
then [.fzddz= [.fzydz.

Proof. Use Step 2 and the 3.4.4 fact that mbly = mbl¢. (Note. Actually, in
view of Step 2, it is clear that mbl¢$ = mbly.)

SteP 4. If 0 € p € m € measuretic, and A enilcylinderm then

0= [[Cr(x Uy)A.a'pdx.a'(m~ p)dy.
Proof. Suppose A =cylA'spcm, p'=m, A’ ezrcpmp’, u=.a'p, g =m~ p,

v=.t'qand ¢'=m~ p'.
Let

Z =Ey'espc(qp’)[..a*(pp')sctnd’y’ > 0].

Since ..a*p’A’ =0 we are assured that ..a*(gp’)Z = 0. Thus, for some
Z, ezr cpm (qp’), Z,enilset (qp’) and Z; €Join” zr Vim a(qp’) we have
ZcZ,VZ,UZ,. Since cylZ,spcq enilcylinderq, cylZ,spcq enilsetq, and
cyl Z;spcq € Join” zr Vim a g we are assured that

(5) (cylZspcq) = 0.
Now, if yespcq ~ cylZspcq, y =y' U )", y espc(qp’), y" espc(qq’) then
..a*(pp)sctnA'y’ =0

and for some S; ezrcpm(pp’), S, enilset(pp’) and S; € Join” zr Vima(pp’) we
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have
sctnAd'y’' = S, US, US;.

Since cyl S, spc p enilcylinder p, cyl S, spc penilset p, and cyl S;spcpe
Join” zr VIm ap we infer 0 = .u(cylsctn A’y’spc p) and noting

cylsctn A'y'spcp =sctn Ay
we conclude

6) .u(sctn A y) = 0 whenever yespcq ~ cylZspcq.
From (5) and (6) weinfer
0= [ [Cr(x U y)Apdxvdy.

Step 5. If p € m e measuretic, ..a'p4’ =0, A = cylA’spcmthen ..a’'mA = 0.
Proof. For some S;ezrcpmp, S,enilsetp, S;ezrVimap and S, €Join”
nilcylinder p,
A'cS;US,US;US,.

Since cyl S, spcm enilcylinder m, cylS,spcm enilset m, cylS;spcm e€Join” zr
Vimam cylS,spcm € Join” nilcylinderspcm we infer ..a'mA = 0.

StEP 6. If 0€m € m € measuretic, ¢ = .a’'m, ¥y = .a*m, pu=.a'pp =
.a’(m ~ p) then mbl’ § Unilcylinder m e bsc¢ and .¢A= [ [Cr(x U y) 4 pdxvdy
whenever A € mbl’ { U nilcylinder m.

Proof. Use Step 1, 3.4.2 and 3.4.4 to learn

mbl’ y Unilcylinder m € bsc ¢
and then use Step 3 to learn
94 = YA = [[Cr(xUy)A4 .a*pdx .a*(m ~ p)dy
= [ [Cr(x U y)Audxvdy

whenever A embl’y.

Using Step 4 completes the proof.

From Step 6 we infer semiproductivea’ = measuretic with the aid of 6.10.
From Step 5 and 6.13 we infer productivea’ = measuretic.

PART 5. responsivea’ = measuretic.

Proof. We see this to be a consequence of 6.20 and the statement: If
m € measuretic, K e factorform, m’ = factormeasuretic then:

1 zrcpmm’ = zrcpmm,

.2 nilsetm’ = nilsetm,

3 zrVimam' = zrVimam,

.4 nilcylinderm’ = nilcylinder m.

6.25. THEOREM. responsivecm = measuretic = productivecm and cm = mc
harmony cm.
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Proof. Suppose m emeasuretic, y = .startproductioncpm, 6 =cpmm,
¢ = .productioncpm, ¢’ =.cmm, 3 =zr Vimcpm, N = nilsetm and J = nil-
cylinder m. Then, by 6.24.1 we have

Y = knsr 0 3.
Also,

¢= knsry (RUJ)

knsrknsr03 (N v J)

knst (N IJu J).

However, since each 4 = 3 is contained in some Be<J,

knst (MU IuU 3) =knst0(NU J),

and since ¢’ = knsr (N NJ) we conclude
¢’ =¢.

The desired conclusion now follows immediately from 6.22, 6.24.2 and 6.24.3.
6.26. DEFINITION. harmon « = fun m e measuretic EB < spcm [0= [ [Cr
(xU y)B .apdx .a(m ~ p)dy whenever 0 € p € m].

6.27. THEOREM. If o’ = mcharmona and both responsive o and productivea
are equal to measuretic then responsivea’ = measuretic = productive a’ and
o’ = mcharmonyo’.

Proof.

PART 1. harmon « is « Harmonious.

Proof. It suffices to show that if 0 € p € m € measuretic, A’ e harmonap’,
A =cylA’spcm then 4 €.harmonam. Suppose 0 € p € m, p=.ap, q=m ~ p,
v=.aq,and q'=m~p’. Let Z=Ey’'espc(qp’)[..«(pp’)sctn A’y’ > 0]. Since
A’ € .harmonap’ we are assured that ..a(gp’)Z =0 and consequently that
w(cylZspcq)=0.1If yespcq~cylZspcq,y=y'Uy",y’' espc(qp’), and y” espc(qq’)
then . .x(pp’) sctn A’'y’ = 0. Consequently .u(cyl sctn A’y’ spc p) = 0. Since
cylsctn A’y’spcp = sctn A y we infer, .u(sctn A y) = 0 whenever y espcq ~ cylZ
spcq to conclude

0= [ [Cr(x Vy)Zudxvdy.

Since p was arbitrary, we infer 4 €.harmonam.
PArT 2. productive «’ = measuretic.
Proof. Use Part 1 and 6.14.
PART 3. responsive a’ = measuretic.
Proof. Suppose m € measuretic, K € factorfor m, and m’ =factormeasuretic Km
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Clearly, .harmonam’ = .harmonam and zr .am’ =zr .«m. We are assured by
3.4.5 that

zr o'm = UAezr .am UBeharmonamsb(A UB)

and
zr oa'm’ = UAezr am’ UBeharmonocm’sb(A U B),

and thus conclude that zr .a’m’ = zr.a’'m. We use 6.20 to complete the proof.
Starting with a, = cm we should like to employ 6.27 to secure by induction
a sequence «; of functions for which productivea; = measuretic and oy,
= mcharmon «;. However, since the very first, cm, is a class which is not a set, we
encounter here a bit of a snag. It is indeed possible, by what strikes us as need-
lessly circuitous reasoning, to arrive at a definition of hmsn below which does
not employ our next theorem. This theorem is an instance of a modification,
suitable to our needs, of the classical theorem on definition by induction.

6.28. THEOREM. There is one and only one relation R such that
dmnR =, vsR0O=cm, and vsR(n + 1) = mcharmonvsRn whenever new.

6.29. DEFINITIONS.

.1 Rhm =the relation R such that dmnR=w, vsRO=cm, and
vsR(n + 1) = mcharmonvsRn whenever n € w.

.2 hmsn = vsRhmn.

.3 hmgm = fund cspcm infnew ..hmsnmA.

.4 hm = funm e measuretichmgm.

.5 Hrm = fun m e measuretic EA cspcm [for each p, if 0 € p € m then
0= [ [Cr(x Uy)Ahmgpdxhmg(m ~ p)dy].

There seems to be little reason to hope, in general, that hmgm € Msrspcm
whenever m € measuretic. However, for m e fnt it turns out that hmgm behaves
very well indeed.

6.30. THEOREMS.
.1 If mefnt Nmeasuretic then hmgm = .mcHrm m.
.2 fnt N measuretic c responsive hm.

Proof. We infer .1 and .2 from Parts 1 and 2 below.

ParT 1. If new then:

.3 hms(n + 1) = mcharmonhmsn;

.4 responsive hms n = measuretic.

Proof. Use 6.25, 6.27 and mathematical induction.

PART 2. If 0 # m e measuretic, m has exactly n members, ke w, and k 2n—1
then

5. hmgm = .hmskm = .mcHrmm.

Checking first that .5 holds when n =1, we turn to mathematical induction
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and suppose N ew and that .5 holds whenever n < N. Suppose now that
m’ € measuretic and m’ contains exactly N elements. Using 6.26 and the inductive
hypothesis, namely that if 0 ¢ p ¢ m’, kew and k= N — 1 then hmgp = .hms
(k—1)p and hmg(m’ ~ p) = .hms(k—1)(m’ ~ p), we infer that

.harmon hms (k — 1) m’ = Hrmm',
and using .3, infer that
(6] hmskm’ = .mcHrmm'.

Noting that .harmonhmsjm’ < .harmonhms(j + 1)m’ whenever jew we infer
from .3 thatif A = spcm’ then ..hms(j + 1)m’ A < ..hmsjm’ A and consequently
observe that

2 .hmgm’'A = . hms(N — 1)m’ A,

With (1) and (2) we complete the inductive step and hence the proof.
6.31. DEFINITIONS.
.1 pm = production hm.
.2 prmm = .pmm.

6.32. THEOREM. responsivepm = measuretic = productivepm and pm = mc
harmony pm.

Proof. Use 6.30 and 6.24.

The remainder of this section is devoted to finite products and the relationship
between our final product measure prm m and the fundamental product measure
considered in PM. In so doing, we recast several definitions and theorems from
PM in the setting of a (rlmyu UUrlmv) product space in place of the
rctrlmurlmo space used in PM.

6.33. DEFINITIONS.

.1 Bscrctuv = Productmbl’pmbl’v.

.2 Nilpv = EA < (rlm g U Urlmv) [p € Measure, v € Measure,

[ JCr(x U y)Apdxvdy =0= [ [Cr(x U y)Avdypdx].

.3 Baceuv = Bscrct uv U Niluw.

4 Bspv=fundeBacepv [ [Cr(x Uy)Apudxvdy.

.5 Mpruv = mss (Bsuv)(rlmu U U rlmo)(Bace uv).

Our next theorem may either be viewed as a translation of PM 5.14, p. 194,
or as a consequence of 6.11, 6.12 and 6.10 with the intermediate consideration
of

0 = mss(Bs uv)(rlm g U U rlmv) (Bscret uv).

6.34. THEOREM. If 0 G p G m e measuretic, u € Msrspcp, v € Msrspe(m ~ p),
and Y = Mpruv then:
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.1 Product mblymblv « mbly;

2 Nilpw czry;

3 [fzydz = [ [.f(x U y)udxvdy whenever — o £ [.fzydz < o0;
.4 Productmbl’ymbl’'v € approxyy Nmbl'y.

We conclude this section with the

6.35. THEOREM. If mefnt N measuretic, ¢ = prmm, M =Ey[y = Mpr
prm p prm(m ~ p) for some nonempty pcim] and D = ﬂl//eMdmn’zp then:

.1 ¢ = hmgm = .mcharmonpmm;

2 mbl¢ = () ¥ € Mmbly;

3 dmn’'¢ =D and .¢A = .YyA whenever y €M and AeD.

Proof. For .1,let 6 = hmgm. In view of 6.30.2 we infer 0 # bsc6 and then
assert 0 =mssfOrimfdmn’d. But, ¢ =mssOrlmfdmn’6 and consequently
0= ¢. Employing this result in generality we learn from 6.30.1 that
0 = mcharmon pm m. We infer .3 from Parts 5 and 6 below.

Part 1. If Yy € M then zr¢ < zry.

Proof. If .¢C =0 then 6.32 tells us

0 = [ [Cr(xVy)Cprm pdxprm(m ~ p)dy

whenever 0 ¢ p € m. We infer then from 6.34.2 that .y C =0.

PARrT 2. If Yy € M then bscboxm eapproxy Nmbl’y.

Proof. Use 6.34.4.

PART 3. If Yy €M then mbl¢ < mbly.

Proof. Suppose A € mbl¢. In view of Part 2, it will suffice to show T4 e mbly
whenever Tebscboxm. Suppose Tebscboxm and secure such a member B of
Meet”Join" bscboxm that

H(TA~BUB~TA) = 0.
We infer from Part 1 that

WTA~BUB~TA =0
and from Part 2 that Bembly and conclude TA e mbly.

PAarT 4. If y €M and Aembl’' ¢ then ¢4 =.yA4.

Proof. Secure such a countable subfamily & of bscboxm that .¢(4 ~ ¢F) =0
and X Be§ .¢B < 0. Use Part 2 and 6.34.3 to check that .yB = .¢B when-
ever Be{. Thus, by Part 1, .Y(4 ~ 6F) =0 and

VAZY(A~oF) + X BeF YB< 0.
Hence (6.34.3 and 6.30.2) both .4 and .¢A are equal to
J JCr(x U y)Aprm pdxprm(m ~ p)dy
whenever p is such that y = Mprprm pprm(m ~ p) and 0 € p € m.
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PART 5. If Ae®D and Y € M then .90A = .y A.
Proof. Let a and b be such functions on M that if 6 € M then:

) .afembld NspA and .0.a0 = .04;
2 .bf € Meet” Join” bscbox m;
3) .0(.af ~ .b6 U .bO ~ .af) = 0.

Take A'=()0eM .af and B=J0eM .b0. Clearly A< 4’, .$B=.6B <
and,
.6(A" ~ B) = 0 whenever 0e M.

Thus, A’ ~ Be .harmonpmm and in view of .1, .¢(4’ ~ B)=0 and we infer
PA £ .¢(A' ~ B) + .¢B < 0.

Now secure C e mbl¢ Nsp 4 and B’ € Meet”Join” bscbox m for which .¢A=.¢C
and .¢(C ~ B’ UB’ ~ C) =0, and note, in conclusion, that
.9A @B = YB' < W(AB') + Y(A~B') = Yy(4B') + 0
< WA 2 WC = .¢C = A
PART 6. dmn’'¢ = D.
Proof. Observethatif A edmn’¢then.¢pA=.9A’ forsome A’ embl¢p NspA.

Now use Part 4 to infer dmn’ ¢ = D and Part 5 to complete the proof.
Conclude our proof by inferring .2 from Part 3 and

@ If Ae( |y eMmbly then Aemblg.

Proof. If Tebscboxm then .YyT = .y(TA) + y(T~ A) < co whenever y e M.
Thus, using Part 5 we infer .¢T=.¢(TA4) +.¢(T~ A) and employ 3.3.1 to
conclude, since T was arbitrary, that 4 e mbl ¢.

7. Topological measures.
7.1. DEFINITIONS.
Topology = EB[JoinB U Meet’'B < B].
Closed 8 = cmplB.
topologetic = Et [t is a function and rngt = Topology].
Spct = Prfuniedmnta.ti.
opnbox t = Prt.
.6 topologicalbaset = EA [A =cylPrXSpct for some t'efnt Nsbt and
X eopnboxt'].
.7 tprt = Join topologicalbase t.
.8 opencylindert = EA [A = cyl BSpct for some t'efntNsbt and
Betprt'].
.9 (U7 B) = Join Product UB.

[T TR S
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7.2. THEOREMS. If tetopologetic, B =tprt, t'ct, B’'=tprt’, and
B" = tpr(t ~ t') then:
B € Topology and ¢B = Spct;
Product B'B” = B;
Product Closed B’ Closed B” = Closed B;
If Ae®B and BeClosed B then prjAcB’' €B’, and prjBoB’ e Closed B’;
B =(B'oB").
7.3. THEOREM. If t ecbl Ntopologetic then tprt = Join” opencylindert.

[T R SN

In 7.4 below, .1 is equivalent to PM 6.2 p. 195, .2 and .3 are, respectively,
reproductions of PM 6.4.1 and 6.4.2 p. 196, .4, .5, and .6 are the coordinatewise
extensions for measuretic functions of .1, .2, and .3.

7.4. DEFINITIONS.
.1 Core8B = E¢ € Msra®B [B € Topology, B = mbl¢, and

inf Be(Closed®B NsbA4) .Wy(4~B) =0

whenever  esms¢ and A €B].

.2 Lind®B = E¢ e MsraB [B e Topology, corresponding to each y esms¢
and each § = B for which ¢ = 0B there is a countable subfamily ® of § for
which

Y(©@B ~ a®) = 0].

3 Clin8B = Core B NLind B.

.4 coret = Em € measuretic [t e topologetic, dmnm = dmn, and .mi € Core.ti
whenever i edmnt].

.5 lind¢t = Em € measuretic [t € topologetic, dmnm = dmn¢t, and .mi € Lind..ti
whenever i edmnt].

.6 clint = coret Nlindt.

As an immediate consequence of PM 7.7, p. 209, is the

7.5. THEOREM. If X is a function 0 ¢ Y ¢ X, S=PrX, S'=PrY¥,
S"=Pr(X ~Y), %B’'eTopology, ¢B'=S’, B"eTopology, ¢B" = S”,
B=(B'=7B"), ueClinB’, veClinB’, and ¢ =Mpruv then ¢eClinB.

7.6. THEOREM. If mefnt Nclint then prmm eClintprt.

Proof. We employ mathematical induction on the number of elements in m.
Since the result is immediately obtainable when m has exactly one element, we
suppose the result known whenever m contains less than n elements and proceed
to examine an meclint which contains exactly n elements. Let ¢ = prmm,
B =tprt,and M = Ey [y = Mprprm pprm(m ~ p) for some nonempty pc m].
From the inductive hypothesis, 7.5 and 7.2.5 we infer that

.1 Y € Clin B whenever y € M.

Referring to 6.35.2 we deduce immediately from .1 that
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.2 B cmblg.

We also learn from 6.35.3 that if @ esms¢ then @esmsy for each Yy e M,
and this with .1 assures us of the desired conclusion, namely

.3 ¢eCoreB NLind B.

7.7. THEOREM. If mecbl Nclint then prmm eClintprt.

Proof. Suppose ¢ =prmm, S =spcm and B = tprt. We know from 7.3 that
1) B = Join” opencylindert.
Employing 7.6 and 6.32 to learn opencylinder ¢t < mbl¢, we infer
2 B < mbl ¢.

Suppose .¢T < o, ¥ =sct¢ T and let § be such a countable subfamily of
bscboxm that '

3) $(69) < © and .¢(T ~ 6$) = 0.

To complete our proof we infer ¢ € Clin®3 from Parts 1 and 2 below.

PART 1. If A€ then infCeClosed B NsbA4 .Yy(4~ C)=0.

Proof. Let & be such a countable subfamily of opencylinder ¢ that 4 = 6.
Suppose r >0 and noting (3) let & be such a finite subfamily of & that

Q) B(0H N (4 ~of)) = r[3.
We secure next a finite subfamily §’ of § for which

®) B(oH ~ D) = r[3.

Let B=08’ and note that Beopencylindert. Thus for some pefnt Nsbm,
uct, and B’ we have dmnp=dmnu, B=cylB'S and B’'etpru. Let
B’ =tpru, p=prmp, v=prm(m ~ p), D' =prjcH’rimp, D"=prjcH’'rimo,
D = (D’ VU D") and check that D’ edmn’yu, D" edmn’v, and 6§’ = D. Suppose
for the moment that .wD” > 0 and use the 7.6 fact that ueCoreB’ to obtain
C’ eClosed B'sb B’ for which

6) MD"'N(B' ~C") = (r/3-.vD").
If wD" =0 take C’' = 0. In either case we infer

@) (D' N(B'~C")VUD") < r[3.
Let C =cylC’S and notice

®) D NB~C) s rf3.

Hence, using (4), (5) and (8) we obtain
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YA~ C) H(TN(A~CQC)

| $(@H N (4~ C)

$(0H N (4~ B)U(B ~C))

$(@H N (4 ~ B)) +.¢(cH N (B ~ C))

r/3 +.¢((6H' Ve ~6H)N(B ~ C))
r/3 +.9(6H' N(B~ C)) +.¢(6H ~ 69')
r/3+.¢(DN(B~C))+r/3

Sri3+r3+rj3=r

IA A A DA TN TA

and recalling the arbitrary nature of r we infer the desired conclusion.

PArT 2. If § =B and o = S then there is such a countable subfamily &
of § that .Y(S ~ a®) = 0.

Proof. The conclusion is inferred from Step 2 below.

Step 1. If pefnt Nsbm then there is such a countable subfamily ® of & that

(S~ |JA4€6 cyl (prj Aspcp)S) = 0.

Proof. Suppose p=prmp, uct, dmnu =dmnp, B' =tpru, S’ =spcp,
T = U AeFsngprjAS’ and §H' = UB €$HsngprjBS’. Since oF =S we are
assured that o' =S’. Using 7.2.4 we learn §' < B’. Noting that ueClin B’
and $’' < dmn’p we can and do select such a function w on §)’ that for each
Ae$’, .wAecblNsbF' and .u(4 ~ 6.wA)=0. We let ®’ = U Ae$’.wA and
check that &’ ecbl Nsb§F’ and

0 = .uoH' ~06") = .ulJA4eH' (4~ 06"
< wlUA4€9' (4~ o.wa)
S Y AeH' wA~c.wd) =0.
Hence, taking ® = EA € F(prjAS’' €6’) and B=|J AeGcylprj4S’S we have
0 < .Y(S~B)=.4(T~B)
S H((6HVT~eH) ~ B)
S .p(cH~B) + .¢(T~ 09
< .¢(cylo$’'S~B) + 0
P(cyle$'S ~ cyle®’S)
= .¢(cyl(cH’' ~ a®")S) = 0

and our proof is complete.
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STeEP 2. There is such a countable subfamily ® of & that .Y(S ~ o) =0.
Proof. Let P =fnt Nsbm, note that P e cbl, and using Step 1 secure a func-

tion f on P for which .fpecbl Nsb{ and .Y(S ~ U A€ fpcylprjAspcpS)=0
whenever p € P. Taking ® = U PEP .fp we employ 5.9 to learn

6® =() peP cyl ptj 66 spc pS.
Hence,
S ~a® = | JpeP(S ~ cylprjo®spc pS)
and we infer
0S WS ~a®) = X peP Y(S ~ cylprjo®spc pS)
< X peP .Y(S ~ cylprjo.fpspcpS)
X peP Y(S ~|JA e fpeylprjAspe pS)
0.
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