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1. Introduction. Our purpose is twofold. First, we desire to associate with

any indexed (countable or uncountable) collection of (outer) measures free from

any finiteness or a-finiteness restrictions, an associated product space and a

product measure which retains and generalizes the intuitive precepts of product

measure. Secondly we wish to extend to countable products, some topological

results obtained in an earlier paper Product measures^) for a binary product

of measures.

In the classical theory, the formation of an infinite product of measures is

undertaken only when all except a finite number of the component spaces have

unit(3) measure. As a first attempt to bypass this restriction, we substitute in

place of the traditional covering family of measurable cylinders, the more fun-

damental family of rectangles having all sides measurable and for which the

product of the measures of sides is finite. This product is used to gauge the measure

of such a rectangle, and with this the resulting product measure faithfully agrees.

There is, however, a defect in this first product measure. Under this measure,

for uncountable products, our fundamental rectangular sets may not be measur-

able. By suitably modifying this first product measure we obtain a second one

not sharing this defect, and for it, a Fubini theorem for the integrable functions

under any binary decomposition of the product. The modification consists of

requiring to be of measure zero each set which is contained in some union of

cylinders in the product space over null sets of component subspaces. For the

convenience it offers, but not of necessity, we also require to be of measure zero

each cylinder in the space over some null subset of some subproduct space.

Fortunately, these modifications do not disturb the measure assigned to a fun-

damental rectangular set.

Our second objective is obtained through an additional modification of our

product measure. In finite products, much as in PM, we further require to be

of measure zero each set whose characteristic function integrates iteratively to
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zero under each binary decomposition of the product. We extend this third

version of product measure from finite to arbitrary products by means of a rather

general procedure embodied in Definition 6.15.9 and Theorem 6.24 which we

employ to good advantage twice in the present paper.

The topological features enjoyed by our third product measure are given in

Theorem 7.7 and may be informally described as follows. Suppose that each

measure in a countable product is so related to the topology on its space that

(1) open sets are measurable, and relative to each set of finite measure: (2) each

open set is equal in measure to the upper bound of the measures of its closed

subsets ; and (3) from each covering of the space by open sets a countable sub-

family can be extracted which covers almost all the space. Then our associated

product measure, defined free of topological considerations, is related to the

product topology in this same way.

In §2 we assemble, for the convenience of the reader, our special notations

and definitions which are common to the remainder of the paper.

In §3 we present the basic measure theoretic results that are needed for con-

structing measures or proving the measurability of given sets. In this connection

we suppose the reader has a knowledge of measuie theory such as might be

acquired from reading H. Hahn, Theorie der reelen Funktionen, Vol. 1, Berlin,

1921, pp. 424-432.

Using the theory of limits and Runsi4), we develop in §4, for our needs, a

theory of unordered infinite numerical products rather analogous to the theory

of unordered numerical summation.

In §5 we present definitions and theorems relating to product spaces, that

set the scene for our treatment of product measures which follows in §6.

Topology enters our paper for the first time in §7, which concludes with the

previously described Theorem 7.7.

2.    Preliminary definitions and notations.

2.1. Definitions.

.1 sb^4 = subset A = EB (¿5 c i) = the family of sets B such that B c A.

.2 A G B if and only if A c B and A ̂  B.

.3 spA = superset A = EB (B => A).

.4 sng y = singleton y = Ex (x = y).

.5 fnt = finite = EA iA is a finite set).

.6 cbl = countable = EA iA is a countable set).

.7 o% = (J Ae%A = Ex (x e,4 for some ,4eg).

.8 Tig = f}Ae%A = Ex (x e ,4 for each 4 e 5).

.9 Join g = EA iA = <j£j for some §> <= g).

. 10 Join ' g = EA iA = o-§ for some § e fnt O sb g).

The   reader   may   find   it   more   to   his   taste   to   read   statements   like

(t) H. Kenyon and A. P. Morse, Runs, Pacific J. Math. 8 (1958), 811-824.
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"§ e fnt Osbg" as "£ is a finite subset of g" rather than "§ belongs to the

intersection of finite and subset 5".

. 11   Join" 5 = EA (A = <t§ for some <rj e cbl n sb g).

.12   Meet'g = E4 (A = o% nn$> for some <rjefnt Osbg).

We should like to remind the reader that in case § is the empty set, n$r) is the

universe and consequently a^eMeet'Ç-

.13   Meet" 5 = EA (A = a% n n§> for some $ e cbl n sbg).

.14   cmplg = complement g = E.4 (A = «rg ~ # f°r some B e g).

.15   co = the set of non-negative integers.

We assume that the integer 0 and the empty set are the same and also that

the integer 1 is equal to sngO.

.16   CrxA = 1 or 0 according as x is or is not a member of A.

.17   rct^B = Ex,y [xeA and ye$~].

.18   \sAx = verticalsection of A at x = Ey [(x,,y)e^4].

In the interest of improving the readability of expressions like "[/(x)](y)"

we abandon the traditional "/(x)" notation for a function value and substitute

that defined in 2.2.1 below. We also introduce in 2.2.5 and 2.2.6 the function

makers which we find so convenient.

2.2. Definitions.

. 1 ./x = the value off at x = the y such that (x, y) ef.

Thus, if / is a function valued function (operator) then . .fxy is the value of the

function Jx at y.

.2   dmn/ = Ex \(x,y) ef for some y\.

.3   dmn'/ = Ex e dmn/ (| Jx | < oo).

.4   rng/ = Ey \_(x,y) ef for some x].

.5   fxxnxeAP = Ex,y \_xeA and y = P].

.6   funx c AP = Ex,y \x <=■ A and y = P].

In .5 and .6 we allow"P"to be replaced by expressions like"crx"or"./(xnj)"etc.

3. Measures. We present in this section certain well-known definitions and

theorems (without proof) concerning (outer) measures. We cast these in a form

convenient to our purposes.

3.1. Definitions.

. 1   <p measures S if and only if <p is such a function on sb S that :

0^.(¡)A whenever AczS; and .<f>A^ ZBe^f .cj>B whenever gecbl and

A <= cr^ c S.

.2   MsrS = E<f> (0 measures S).

.3   rlm$ = realm 0 = a dmn cj).

.4   Measure = E<p \jp measures rim <p~\.

.5 mblcj) = measurable<j> = E/ledmn^ [0eMeasure and .<j)T = .<£(Tj4)

+ .(/>(T~.4) whenever Te dmn 0].



248 E. O. ELLIOTT AND A. P. MORSE [February

.6   mbl'tf) = mb\<j) ndmn'f

.7   zi(f> = zero<£ = EA(.(pA = 0).

.8   set <p T = section <£ T = fun .4 e dmn </> .0(T O A).

.9 sms $ = submeasure <p = Ei/f [0 e Measure and i¡/ = set </> T for some

Te dmn' <£].

.10   cblcvr§y4 = countablecover§^4 = E© ecbl nsb§ (A <= o-©).

.11    mssgS£ = fun^c: S (inf© ecblcvr§ A iBe© .gB).

Thus, if 0 = mssgS§ and Acz S then .<£A is the infimum of numbers of the

form

lie® .gB,

where © is a countable subfamily of $ which covers A.

In this connection we should like to remind the reader that the infimum of

the empty set is oo.

.12 approx^ = approximater <p = Eg [$e Measure, <rg crímtj) and corres-

ponding to each ,4 e dmn'<£ and r>0 there exists Cezrtfi and ©ecblcvrg

(A ~ C) for which

Eße© 4B ^ .(¡>A + r].

.13 bsctj) = basic^ = Eg c Join"mbl'0[0e Measure and <j> = mss0rlm</>g].

.14 cnsr^il = conservative<j>R = fun^4edmn<£infCeft .<p (A ~ C).

.15 knsr^ft = cnsr</>Join"Jl.

.16 sp'tpA = EBc rlm<¿ (4(A ~B) = 0).

3.2. Theorem. // g is a non-negative real-valued function, §c=dmng,

aS^aS, and </) = mssgS§ then:

.1   <f>eMsrS;

.2   .<j)A^ .gA whenever Ae§;

.3   each Aedmn'tj) is so contained in some member B of Meet" Join" $

that .<j)A = .<j)B;

A   if A e $ and E B e © .gB ̂   . g A whenever® ecblcvr$ A then .<¡>A = .gA.

3.3. Theorems.

.1 If geapprox^, Acilmtj), and .</>T = .<¡>{TA) + .<f> (T~A) whenever

Teg, thenAembl<¡>.

.2 If geapprox<£ nsbmbl<£ rnen corresponding to each ^.edmn'^» there

exists such a $ measurable set Besp.4 that ,<j>B = .(¡>A.

3.4. Theorem. If\¡/ e Msr S, ^ = mss i/r S§, a<rj c S, aft c S and <£ = knsr ^ ft

then'.

.1   corresponding to each Aearati'<j> there is such a member C of Join"ft

that .<¡>A = .\¡f (A~C);

.2   <j) = mss(t>S (§Uft)eMsrS;
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.3 ,(pA :£ ,\¡/A whenever Ac S;

.4 mbl \¡i a mbl <p ;

.5 Join"Ä<=zr^=   (J ^6zr^(jReJoin"ftsb(^UB);

.6 <p = cnsT\j/zi(p.

3.5. Theorem. If g e approx <p, g <= mbl'</> and ^ = mss^Sg then <f> = cnsr

i¿>zr</> and g U zr <£ e bsc (¡>.

4. Numerical products. In keeping with 4.2 of PM we shall assume in the

present paper that for each x,

0-x = x-0 = 0.

We shall make use of Runsi*) especially pp. 822-823. It should be noted that

in Theorem 6.9 of Runs it is understood that 0* co is not a real number whereas

in the present paper 0 • co = 0.

4.1. Definition. clsnM = Ea,/?[oc c /Jefnt OsbA]. Evidently clsn'A is a

run for each A. Informally we agree that

UieA -ai

is the numerical product, as j traverses A, of .aj. More formally we accept the

axiomatically definitional

4.2. Theorems.

.1   ri/'eO .«; = !.

.2   If — co ■_ .ak ■—as then \\j e sngfc .aj = .ak.

.3   If A r\B = 0, Au Be fnt, and -co =. aj ^ co  whenever j e Au B,  then,

l\jeAuB = (n/eA .aj} - (l\jeB .aj}.

.4   IX/6A -aj = lmaclsn'v4]^/ea .aj.

.5   If .aj = .bj whenever je A then \~[j e A .aj = \~[j e A .bj.

From these and limit theory we infer the rest of the theorems in this section.

4.3. Theorem. // ^4efnt and — co^.a/iSoo whenever je A, then

- co ̂ l\je A .aj^ co.

4.4. Theorem. If A efnt and —cc—^.aj=co and — oo^.bj—^co whenever

je A then,

YljeA .aj} ■ (ftjeA .bj} = \\jeA (.a; • .bj).

4.5. Theorem. If Ar\B = 0 and -co^.aj^co whenever je Au B, and

if — co £ p - Y\j e A .aj ^ co, and —co^q = ]Jje B .aj - co, and

r = Y\j 6 (A U B) .aj then :

(
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.1    if |p| + |q[ < oo then p-q = r;

.2   if p-q ^ 0 then p-q — r.

4.6. Theorem.   If -co ^ .aj ^ oo and — co^.bj^co whenever j e A, and

if — oo ^ p = Y[j eA.aj^ao,   — ao^q = f\j eA .bj ^ oo  and

r = ]JjeA {.aj- .bj)

then:

.1    if \p\ + \q| < oo then p-q = r;

.2   if p-q ¥=0 then p-q = r.

4.7. Theorem.   If 0^ .aj ^ 1 whenever je A then

O^Y[ieA -ai = infaefnt nsbi4jljea .aj^í.

4.8. Theorem.   If 1 ¿Í .aj ^ oo whenever je A then

1 ̂  Y\j eA .aj = sup a e fnt O sb A JTj ea-aj ^ oo.

4.9. Theorem,   fl/e^l = 1.

4.10. Definitions.

.1 pslx = Sup(sngl Usngx).

.2 nglx = Inf(sngl Usngx).

Thus

psl x = x and nglx = 1 whenever x 5:1,

ngl x = x and pslx = 1  whenever x&l,

and

x = pslx • nglx whenever  — co^x^oo.

For measure theoretic purposes we feel satisfied with the

4.11. Definition.    ~[+jeA .aj = (Y\jeA psl .aj) • (JJjeAngl .aj).

4.12. Theorems.

.1   If .aj = .bj whenever je A then Yl +JeA .aj = Y\ +JeA .bj.

.2   If 0 ^ .aj ^ oo whenever j eA and if

0<Y\jeA .aj < oo

then

1 á Y\)f e^4psl .aj < oo.

.3   If 0^ .aj i£ oo whenever je A and if

0 <Y[ +i^A. .aj < oo

then

1 ̂  Y\i e A psl .aj < oo.
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.4   If 0 — .aj ^ co whenever je A and if

\~[j e A psl .aj < co

then

0 = f] +j e A .aj = \[jeA .aj < co.

.5   If 0 i£ -aj Û °° whenever je A and if

YlJeA .aj < co
then

O^Y[+jeA .aj = \~\jeA .aj < co.

.6   If 0^ .aj i£ co whenever je A then

O^W+jeA .aj= oo.

.7   //4nß = 0 and 0 ^ .a/ ^ oo whenever jeAuB then

(I] +jeA .aj) ■ iU +jeB .aj) = ]J +je(4uß) .aj.

.8   If 0 ^ .aj ^ .bj ^ oo whenever je A then

0£\~\+jeA .aj^\~\+jeA .bj £ao.

.9   If    0 ^ .aj ^ oo     and     0 ^ .bj ^ oo      whenever    je A,     and     if

\ + j eA .aj + \~[+jeA .bj < oo then

fi + jeA (.aj • .bj) = (Il +;'6A .aj)   (R+jeA .bj).

.10   If 0^ .aj ^ oo w/ieneuer j 6 A, and if r > 0 and

0<\~[ +jeA .aj < oo

then there exist A'efnt nsbA and A'ecbl HsbAfor which

If] +jeA .aj - n+JeA' .aj| < r

and

.aj = 1 whenever j eA~ A".

5. Product spaces. The product of two spaces A and B is generally taken to

be ret A B. The product of a multiplicity of spaces .Xi, ¿edmnX, however, is

customarily taken to be the set of functions defined in 5.1.1 below. In the setting

of this latter product space, we explore in this section the operations of forming

rectangles, cylinders, projections and sections, and state, without proof, a number

of orientational and useful theorems.

5.1. Definitions.

.1 VrX = Ex\_X is a function, x is a function, dmnx = dmn.Y, and

.xie.Xi whenever iEdmnX].

.2   sbmb/1 = submember.4 = Ey[ycx for some xeA].
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.3 (A UUB) = Ez [z = x Uy for some xeA and some yeB].

.4 (A nnB) = Ez [z = x n y for some x e /4 and some y e B].

.5 cyl /IS = cylinder in S over A = Ez e S [x c z for some xei],

.6 sctn^x = section of A at x = Ey [x n y = 0 and x U y e A].

.7 sliced ¿=  \^j x e A sng .xi.

.8 prj^B = projection of A onto B = [(4 O OB) nB].

.9 Product g© = EC [C = (Au UB) for some 4eg and some Be©].

5.2. Theorems.

.1   (AU UB) = (BUUA) and (AnnB) = (Bn nA).

.2   04UU(BUUC)) = ((AuuB)uuC)and04nn(Bnnc))

= pnnß)nnC).
.3   (AUUl) = A and (AUKJO) = (AnnO) = 0.

A   IfA^Othen(Annl)=l.

.5 // A'<=A and B' cB inen (4' UUB') <= (A UUB) and (A' HOB')

<=(,4nnB).

5.3. Theorems.

.1   04UUcr©)=   (jBe©(AUUB)and(^nna©)=(jBe©(/ln HB).

.2   (AU U7t©)c p)Be© (^UUB)and(^nn7i©)<=P)Be© (innB).

.3 (/1UUC)~(BUUC) = P~B)UUC) and (AnnC) ~ (B nnC)

c((/i~B)nnC).

.4   cyl(7©C = IjBeScylBC and cyl7t©Cc: p|Be@cylBC.

.5   cyM(T©=   (JCe©cyMC and cyUTt© c p)Ce©cyMC.

.6   sctn<r©x=   (Jße©sctnBx and sctn7i©x = p)Be©sctnBx.

.7   prj a® A =   (Jc e © prj CA and prj ti©A c Q C e © prj CA.

.8 cyMC~ cyl BCc cyl (A ~ B)C, sctn Ax ~ sctn Bx = sctn (A ~ B)x, and

prj CA ~ prj D^.<= prj (C ~ D) A.

5.4. Theorems.

.1   (4 nOB) c: sbmb4, and i/B#0/nen 4c sbmb(zlUUB).

.2   If A<=.B then sbmb/lc: sbmbB.

.3   If (A nnB) = I then (sbmbAnnsbmbB) = 1.

.4   If x' czx, y' <r y, x H y = 0 and x' U y' = x U y í/ten x' = x and y' = y.

.5   If (A nnB) =1, xeA, yeB, x'eA, y'eB and x'Uy' = xUy then

x = x' and y = y'.

5.5. Theorem. J/(i'nnß') = l and C" = (A' UUB') i/ien:

.1 cyl7t©C= P)Be©cylBC whenever C c C and <7©<=B';

.2   prj n©/4 = Q C e © prj C/l whenever A<= A' and er© c C ;

.3   cyl04 ~ B)C = cyl AC ~ cylBC whenever A a A', B c A' and C c C.

5.6. Theorems.

.1   PrO = 1.
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.2   If   X    is    a   function    then     [Pr(XT) n nPr(X ~ 7)] = 1     and

PrX = {Pr'XY) UUPr(X ~ Y)].

.3   slice Oi = 0.

.4   If Oit A = PrX then slice Ai = .Xi whenever iedmnX.

5.7. Theorems.

.1 cylcylA BC ccyliC.

.2 //4c sbmbB and B c sbmbC inen cylcyl ABC = cyl AC.

. 3 prj prj CRvl <= prj CA.

.4 If Ac sbmb B and B c sbmb C inen prj prj CBA = prj C4.

5.8. Theorems.

.1    (Jx e A [sctnBxU Usngx] c B.

.2   If B = cy\AB then B = \JxeA [sctnBx UUsngx].

.3   If x n y = 0 inen sctn .4 (x U y) = sctn (sctn Ay) x.

A   IfiAr\C\B)cl then [sctn Ax U U sctn By] c sctn(A UUB) (x U y).

.5   1/ A'c A, B'cB, (y4nnß)cl,  xesbmbA,  and ye sbmb B then

[sctn A 'x UU sctn B'y] = sctn (A' UUB')(x Uy).

5.9. Theorem. // X is a function, 0 j= X, Ac Pr X = S and

% = EYcX [0# Yefnt] then A = p| Ye gcyl(prjAPr Y)S.

6. Product measures. If m is an indexed collection of measures then in 6.1.1

we call m measuretic and we define for m, in 6.1.8, our first product measure

\¡/ = cpmm. Our second and third product measures are defined in 6.15.11 and

6.31.2 and if <j> is one of these, then (¡> = cnsripzitp and we think of (¡> as being

a conservative modification of </>.

6.1. Definitions.

.1   measuretic = Em [m is a function and rngm c Measure].

.2   spcm = Pr fun i e dmn m rim .mi.

.3 boxer m = EX [me measuretic, X is a function, dmnX = dranm, and

.Xic rim .mi whenever iedmnm],

.4   bx m = EA [A = 0 or, A = Pi X for some X e boxer m].

.5   box m = E.4 e bx m [slice Ai e mbl ./w whenever i e dmn m].

.6 vim m = the function V on box m such that .70 = 0 and

.KA = n + iedmnm ..mi slice Ai whenever 0 ^ Aeboxm.

.7   bscboxm = dmn' vim m.

.8   cpmm = mss(vimm) (spcm) (bscboxm).

.9   cp = fun m e measuretic cpm m.

.10 nilfunction m = EX £ boxer m \.Xieix .mi whenever iedmnm].

.11 nilsetm = The family of sets of the form

^iedmnm Exespcm i.xie.Xi),

where X e nilfunction m.
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.12 nilcylinderm = EA c spcm [A = cyl B spc m for some pcm and

Bezr cpmp].

6.2. Defects of cp. Suppose J = Ei [0 ^ t ^ 1] and suppose .S? is Lebesgue

measure restricted to J. Let m = f\inteJ3? and X = f\xnteJ {./~sngl}.

Suppose \¡i = .cp m = cpm m and A = Pr X. Now A e bscbox m yet A $ mbl ^

since it is not hard to check that .\¡/A = 1 and .t/^spcm ~ A) = 1.

Fairly evident and essential is our first

6.3. Theorem. If 0 £ p dm emeasuretic, q = m ~ p,I = dmnm, S' =spcp,

S" = spcg, S = spcm, 93' = bscboxp, 33" = bscboxq, 93 = bscboxm, V = vlmp,

V" = \lmq,   F=vlmm,  3T = nilsetp,   91" = nilset(Z,  and  3l = nilsetm   then:

.1   // 0 ^ S then slice Si = rim .mi whenever i el;

.2   S e box m ;

.3    if 0^^ czbxm and  X = funiel C\Ae^ slice  Ai then X e boxer m

ana 71$ = Pr X e bx m ;

.4   ¿/Be box m, Ne 31, A = B ~N then Ae box m and .VA = .VB;

.5   .FA = (.V prj AS') • (. V" prj AS") whenever A eft;

.6   23 = Product93'23" uProduct box p zr V" UProduct zr Vboxg;

.7   Meet" 93 = 93;

.8   Join"  3t= 31;

.9   cylA'Se31 whenever A'e3T;

.10 ifAellthen A = (A' UU S") U(S' UU A")/or some A'e3T and A"e9t";

.11 cylinder A'Se nilcylinder m whenever A'e nilcylinder p.

Since our methods for obtaining product measures will be variable in what

follows, we shall let them enter our definitions and theorems explicitly as a vari-

able. Thus, in 6.4 and elsewhere, a may be thought of as a function which re-

presents a method for obtaining product measures, i.e., if m e measuretic n dmn a

then cp = .am is the a associated product measure on spcm.

6.4. Definitions.

.1    approximative a = Em emeasuretic [bscboxm eapprox .am].

.2   semiproductive   a   =   Em e approximative   a[. .am A   =   .vim m A   and

A e mbl .am whenever A e bscbox m ;

J./z .am dz =     J"./(xU)>) .apdx .a(m~p)dj

whenever 0 £ p £ m and — oo <| J./z .am dz ^ oo],

.3 mblproductive a = Em e semiproductive a [if 0 £ p G m then

Product mbl .ap mbl .a(m ~ p) c mbl .am].

.4 productive a = Em e mblproductive a [cyl B spc m e zr .am whenever 0 £ p

£ m and Bezr .ap].

.5   me H = fun m e measuretic knsr cpm m .Hm.
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.6   harmony a = fun m e measuretic zr .am.

.7 H is a Harmonious if and only if: H is a function on measuretic; produc-

tive a = measuretic; and zr .am <= .Urn,

cyl B spc m e .Hm,

0 =      JCr(xUy)/4 .ocpdx .a(m ~p)dy,

whenever: m e measuretic, 0 <Lp dm, Be.Hp and Ae.Hm.

Thus, if a represents such a method of producing product measures that

productive« = measuretic then, for any m e measuretic, if (j) = .am we are assured

that:

(1) members of bscboxm are <j) measurable and the (¡> measure of such a

box is its volume,

(2) the family bscbox m U zr $ is 0 basic,

(3) the Fubini equality holds for the <¡) integrable functions under any binary

splitting of the product space,

(4) a rectangle of measurable sets is <¡> measurable,

(5) a cylinder over a set of underlying measure zero has tf> measure zero.

Aided with 3.5 we infer at once from 6.4.3 and 6.4.6 the following

6.5. Theorem. // productive a = measuretic and H = harmony a then

H is a. Harmonious and tx = mcH.

6.6. Theorem. // m e measuretic, i/^eMsrspcm, <p = knsr ip nilsetm,

B e bscbox m, and . \¡/A = .vim m A whenever A e bscbox m, then .<j)B = .vim m B.

Proof. Referring to 6.3.8 and 3.4.1 we secure such a member N of nilsetm

that .<t>B = .\jj(B ~ N). Observe (6.3.4) that B~Nebscboxm and that

.vim m(B ~ N) = .vim mB. From these two equalities we infer .<¡>B = .vim mB.

Fundamental to our theory is the

6.7. Theorem. // me measuretic, </> e Msr spc m, bscbox m e approx <j),

nilset m c zr <p and .<pA = .vim m A whenever A e bscbox m then bscbox m c= mb\'tf>-

Proof. Let ft = EA [A = cyl Bspc m for some (i, X) e m and B e boxsng(i, X)~\,

observe that

.1 Meet"ft = E.4 [y4 = cylBspcm for some pecblnsbm and Beboxp],

and divide the remainder of the proof into two parts.

Part 1.   ft <r mbl<£.

Proof. Suppose /left, Te bscbox m and check that TA and T~ A are both

members of bscboxm. Also, notice that

.vim mT = .vim m (TA) + .vim m (T~ A).

Hence, .(¡>T = .<f>(TA) + .<?(T~A), and employing 3.3.1 we infer Aemb\<¡).
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Part 2.   bscboxm e mbl<j>.

Proof.   Suppose A and Tare both members of bscbox m. Thus TA e bscbox m.

If .<piTA) = 0 then

.<t>T = 4ÍTA) + .<piT~ A) = 0 + .<piT~ A) = .<pT

and we conclude

(1) .<pT= .<¡>iTA) + .(¡>iT~A).

We assume below that 4iTA) > 0. Thus, 4>iTA) = .vim m iTA) and employing

4.12.10 we select such countable subsets m' and m" of m that

.mi(slice(TA)i) = 1 whenever iedmn(m ~ m')

and

.mi(slice T i) = 1 whenever i edmn(m ~ m").

Let p = m'Um", B = cyl (prj Aspe p) spcm, and

N = U w e (m ~ p) cyl (prj Tspc sng w ~ prj A spc sng w) spc m.

Observe that

. .mi (slice Ti ~ slice Ai) = 0 whenever i e dmn(m ~ p)

and infer ¿Venilsetm.

Notice also that B e Meet" R, and calculate,

T~A =  T~ p| wem cyl (prj A spc sng w) spc m

=  \^J wemiT~ cyl (prj A spc sng w)spcm

=  [J wep(T~ cyl (prj Aspe sngw) spcm)

U U w e (m ~ p) (T ~ cyl (prj A spc sng w) spc m)

c U w e p(T ~ cyl (prj B spc sng w) spc m)

U [J w e {m ~ p) cyl (prj Tspc sng w ~ prj A spc sng w) spc m

=  T~BUJV.

Thus, using Part 1 to check that B e mbl <h, we note

.0T ^ 4ÍTA) + 4<T~A)

= 4ÍTB) + .(piT~BuN)

= 4ÍTB) + 4iT~B) + 4N

= 4ÍTB) + 4iT~B) + 0 = 4T.

Aided again by 3.3.1 we conclude that Aembl$.
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6.8. Theorem. // memeasuretic, 0 <Zp (im, q = m~p, ¿teMsrspcp,

ueMsrspcg, nilsetp <= zip, nilsetg c zrv and JVenilsetm then

J" JCr(x Uy)Npdxvdy = 0.

Proof. According to 6.3.10, JV = (JV UUrlmv) U(rlm/i UUJV") for some

JV' enilsetp and JV" e nilsetg. Note that if y e rlmu ~ JV" then sctnNy = N' and

hence,

J"Cr(xUy)JVpdx = 0.

Since .vN" = 0 we are assured that

J JCr(x Uy)Npdxvdy = 0.

6.9. Theorem. // 0 Cp c m e measuretic, q = m~ p, pemsrspcp,

v eMsrspcq, .pA = .ylmpA and A embl p whenever A ebscboxp, .vB = .vlmgB

and Bemblu whenever Be bscbox a, then

.vlmmC= J JCr(x \J y)C pdxvdy whenever Ce bscboxm.

Proof. Suppose Ce bscboxm, A = prjCspcp, and B = prjCspcq. Thus,

C = (A UUB) and assuming first that A ebscboxp and Be bscbox g we obtain

with the aid of 6.3.5 and PM4.4, p. 182, that

.vimmC = (.vimpA) • (.vimqB)

= (¡OrxApdx) ■ (¡CryBvdy)

=   J(JCrx^[/idx)CryBvdy

=   J" JCrx/lCryBpdxvdy

=   J* JCr(x Vy)Cpdxvdy.

If A $ bscbox p then .vB = 0 = .vim m C. Also if B £ bscbox q then .pA = 0 = .vim

m C. In either case, clearly

0 =   J JCrx/4CryB/xdxvdy

=   J" JCr(x \Jy)Cpdxvdy

and we are assured of the desired equality.

We state the following theorem without proof. It is a one sided version of the

useful 5.3 in PM (p. 189). Aside from the transfer of setting from the space

ret rim p rim v to the space (tlmp UUrlmu), the proof of the present theorem

is contained in that of PM 5.3.

6.10. Theorem. // memeasuretic, ^eMsrspcm, gebsc^, 0 dp Zm,

/teMsrspep, ueMsrspc(m ~ p), .(¡>A= J JCr(x Uy)/ljudxudy wheneverA eg,

and -oo :£ ¡.fz<j>dz ̂  co then  ¡.fz^dz- J" J\/(xUy)pdxvdy.
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6.11. Theorem. //OGpC memeasuretic,S = spcm,S' = spcp, S"=spc(m~p),

peMsrS', veMsrS",

g = fcnB c S I ¡CtixUy)Bpdxvdy,

5 = Product mbl'¿i mbl'u and \¡i = mssgSg then:

.1   peMsrS;

.2   Product mblpmblvcmbl^;

.3   4A = .gA whenever Ae^r-

Proof. We know .1 as a consequence of 3.2.1. For .2, suppose

A = (A'UUA"), A'emblju, A"embl*>, and let Ry = [(S' ~ A') UU A"] and

R2 = [S'UU(S"~A'')]. Now check that

(1) S = AURi UR2, S~A<=R1UR2   and   RjR2 = 0,

and divide the remainder of the proof of .2 into two parts.

Part 1.   If Beg then

.gB = .giBA) + .giBRy) + .giBR2).

Proof.   Suppose B e 5, then in view of (1) we are assured that

Cr(x Uy)B = Cr(x Uy)iBA) + Cr(x Uy)iBRy) + Cr(x Uy)iBR2)

whenever xeS' and yeS". Hence,

,gB =   J JCr(xUy)B/idxudy

=   J* J*{Cr(xUy)(BA) +Cr(x Uy)(BRi) + Cr(x Uy)iBR2)}pdxvdy

=   J{ JCr(xUy)(RA)/idx + ¡CrixUy)iBRy)pdx + fCr(xUy)iBR2)pdx}vdy

=   J JCr(x Uy) iBA)pdxvdy + JJCr(xUy)(BR1)Judxudy

+ J" JCr (x U y) iBR2) pdxvdy
= .giBA) + .giBRy) + .giBR2).

Part 2.   Aemblxj/.

Proof. Suppose Tedmn't/>, r > 0, and secure such a family © ecblcvrgT

that

S Be© .gB = 4T + r.

Using .1, (1), 3.2.2., and Part 1 we infer

4T = 4ÍTA) + 4iT~A)

= 4iTA) + 4iTRy) + 4iTR2)

= Z Be© .^(BA) +  L Be® 4iBRy) + ÜBe© 4iBR2)

= I Be© .giBA) + I Be© .giBRy) + I Be© .g(BR2)

á £ Be© {.g(BA) + .gíBRO + .g(BR2)}

= £Be© .gB = 4T + r.
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The arbitrary nature of r assures us

4T = 4(TA) + .iKT~ A).

For .3, suppose A eg, r > 0, and choose such a family © ecblcvrg/1 that

,\¡iA + r£ I Be© .gB.

Notice that for each z,

O^CrzA ^  Iße©Crzß

and hence that

.\¡/A + r^ T,Be(5.gB=   E Be© J |Cr(x Uy)B/tdxi>dy

=   JE Be©  J Cr(x\Jy)Bpdxvdy

=   S JE Be©Cr(xUy)B/idxvdy

^   J JCr (x U y) ,4 pdxvdy

= .g¿ ^ .^.

Since r was arbitrary we are assured of the desired equality.

6.12. Theorem.   7/0 €p c memeasuretic,/teMsrspep, veMsrspc(m ~p),

mbl'^ebsci^,

.i//A =  \' ¡Ct(xU y) A pdxvdy whenever Aembl'i]/,

31 <= sbspcm, <j) = knsri/'îl and

0 = J JCr(x U y)Bpdxvdy whenever B e 9t,

then :

.1    ^eMsrspcm;

.2   mbl i¡/ cz mbl $ ;

.3   .(¡)A = .t/Ml wnenetw Aembl'i/j.

Proof.   For .1 and .2 use 3.4.2 and 3.4.4. For .3, suppose Aembl'^ and

secure such a countable subfamily © of SI that

4A = 4(A ~ cr©)

and such a member 4' of mbli/f nsp(yl ~ a©) that

.illA' m 4(A~o<S).

Notice that for each z,

CrzA' + E Be©CrzB £ CrzA

and hence
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.<¡>A = .\¡/A = J" J"Cr(x Uy) A'/tdxudy + 0

=   / JCr (x U y) A ' pdxvdy + E B e © J* J"Cr (x U y) B pdxvdy

=   J JCr(x U y) A 'pdxvdy + J E B e© /Cr(x U y)Bpdxvdy

=   $ ${Cr(xUy)A' + EBe©Cr(xUy)B} pdxvdy

^   J" JCr(x Uy) A pdxvdy = .\¡/A ̂ 4 A.

6.13. Theorem. 7/0 £p C memeasuretic, peMsr spcp,veMsrspc(m ~p),

bscboxp Uzrpebscp, bscbox(m ~ p) Uzrvebscu, </>eMsrspcm, bscbox m Uzr

<j)ebsc(j), and .^(TOcylBspcm) = 0 whenever .<j>T< oo and Bezrp or Bezxv,

then

Product mbl p mbl v e mbl $.

Proof. Suppose A'emb\p, A"emb\v, A = (A'UUA"), Te bscboxm,

T' = prjTrlm/i, T" = prjTrlmv, and secure such sets B'eMeet"Join"bscboxp

and B" e Meet" Join" bscbox (m ~ p) that

(1 ) -p(T'A' ~ B') = .«(B' ~ T'A') = 0

and

(2) .v(T"A" ~ B") = .v(B" ~ T"A") = 0.

Let B = (B' U U B") and note

(3) TA~B = (T'A' U U (T"/i" ~ B")) U ((T'A' ~ B') U U T"A")

and

(4) B ~ TA = (B' U U (B" ~ T"A")) U ((B' ~ T'A') U U B").

From (1), (2), and the fact 4(TA) < oc we learn from (3) that 4(TA ~ B) = 0.

Checking that B e Join" dmn' <£, we learn from (1), (2) and (4) that 4(B ~ TA) = 0.

Since clearly B e mbl <j> we conclude TA e mbl </>,

4T = .¿(TA) + .(T~ A),

and employ 3.3.1 in reaching the desired conclusion.

6.14. Theorem. If H is a Harmonious, and a' = mc/i then productive a'

= measuretic.

Proof.    We infer the desired conclusion from Parts 1, 2, and 3 below.

Part 1.   If memeasuretic, <p = .a'm, and \¡i = .am then:

.1   <j> = knsri/f .Urn;

.2   mbl \j/ <= mbl <p ;

.3   4A = .i/fA whenever Aembl'i/^;

.4    J .fz(j)dz= \.fzx\idz whenever — oo ^ J .fzij/dz ^ oo.
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Proof. For .1, let © = zr .am and use 6.5 to check that [¡/ = knsrcpmm©.

Thus, since © c ,Hm,

4>   = knsr cpm m .Hm

= knsr cpm m (© U .Hm)

= knsr knsr cpm m © .Hm

= knsr i¡/ .Hm.

For .2 and .3, assume 0 £ p Em, and let p = .ap and v = .aim ~ p). Now,

employ 6.12 taking 9t = .Hm. Finally, .4 is a direct consequence of .2 and .3.

Part 2. IfOCp £ m e measuretic, <p = .a'm, ip = .am, p = .a'p,v = .a'im ~p)

then:

.5.   .Hm U bscbox me bsc$;

.6   4 A = J JCr (x U y) A pdxvdy whenever A e .Hm U bscbox m ;

.7   cylBspcmezr^» whenever Bezrpor Bezxv.

Proof. For .5 use Part 1 and 3.4.2. For .6, let £ = .ap and n = .a(m ~ p),

check that

4A= J JCr(xUy)A|dxj/dy

whenever Ae.Hm Ubscboxm, and use .4 in checking, for r\ almost all y,

(1) JCr (x U y) At, dx = JCr (x U y) Apdx.

Use .4 again to learn from (1) that

J JCr(x Uy)A^dxndy = J JCr(x Uy) A pdxvdy.

For .7, suppose ./iB = 0 and 3.4.5 split B into By e zr .ap and B2cDe Join" .iip

so B = Bt U B2. Thus, cyl Bj spc m e zr .am and cyl B2 spc m c cyl D spc m e Join"

.Hmczr .a'm and therefore Bezi<j). The case Bezrv is similar.

Part 3.   If 0 £ p £ m e measuretic then

Product mbl .a'p mbl .a'(m ~ p)c mbl .a'm.

Proof.   Use .7 and 6.13.

A family of sets more general than bscboxm is introduced in 6.15.5. It replaces

the family of cylindrical sets of the classical theory of infinite product measures,

and can be described as follows. Suppose m e measuretic, p e fnt n sb m, A' c spc p,

A" e bscbox (m ~ p), then A = (A' U U A") is one of these sets. If p is the smallest

subset of m for which A can be so represented, then we call p the stand of A,

m ~ p the tower of A, A' the foot of A and A" the top of A.

6.15. Definitions.

. 1 stand m A = nEp e fnt n sb m [A = (A ' U U A") for some A' c: spc p and

some A" e bx(m ~ p)].
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.2 tower m A = m ~ stand m A.

.3 ft m A = prj A spc stand m A.

.4   tpmA = prj A spc tower m A.

.5   frame m = EA <=. spc m [me measuretic, stand mAe fnt, and

tp m A e box tower mÄ].

.6   Vim a m = fun A e frame m.

[. .a stand m A ft m A • .vim tower m A tpmA].

.7   harmonil = fun m e measuretic [nilset m U nilcylinder m].

.8   startproduction a m = mss (Vim a m) (spcm) (dmn'Vim a m).

.9   production a = fun m e measuretic

knsr (startproduction a m) (.harmonil m).

.10   cm = mc harmonil.

.11   cnmm = .cmm.

In 6.15.9 above, we have defined a general method for extending finite products

of measures to infinite products. Suppose a represents a method for obtaining

a product of a finite number of measures, i.e., fnt n measuretic c dmn a. Then

a' = production a is the extension of that method to arbitrary products and

dmn a' = measuretic.

Useful in 6.17 is

6.16. Theorem. // p e fnt n sb m <= mblproductive a, q e fnt n sb m, p C\q = 0,

p = .ap, v = .aq, <p = .a(p Uq), Ac spcpebscboxp, and B c spcqebscboxq

then

.<t>iA U U B) = .pA • .uB.

Proof.   Use 3.3.2, 6.4.3 and 6.4.2.

For our purpose, we give a general version of the well known

6.17. Theorem. // m e measuretic, .X rim A = 1 for each X e rngm,

fnt nsbm c mblproductive a, 5 =U? enit ^sbmsbspcq, g is the function on

5 which assigns to each Ae^r the value ..aqA where q is that subset of m for

which Aaspcq, ©ecblHsb^, and spc m = cyl <x© spc m then

Z Ae© .gA ̂  1.

Proof. First note that spcpebscboxp and hence that .gspcp= 1 whenever

pe fnt nsbm. Now, employ the countability of © to secure such a sequence r

of members of fnt n sb m that

(1) 0 = .r0c ,rn c .r(n + 1) whenever n eco,

and

(2) A c sbmb spc a rng r whenever A e ©.
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Let ß = spcorngr, R = fun ñeco spc .rn, and

b = funneco [.JRn~cyltr© .Bn].

Suppose ne03 and use 5.7.1 and (2) in calculating

cyl .bn .R(n + 1) = cyl .Rn .R(n + 1) ~ cylcyla© .Rn .R(n + 1)

=> .R(n + 1) ~ cylff© .R(n + 1) = .¿>(« + 1).

Thus, we infer

(3) .b(n + 1) = cyl .bn .b(n + 1) whenever new,

and divide the remainder of the proof into six steps.

Step 1.   If A e g, B e g, and A = cyl B A then .gA ̂  .gB.

Proof. Suppose p cr m' efnt Hsbm, Be spep and A c spem'. Then either

A<=B or p £ m' and A ccjlBspcm'. For the latter alternative we employ

6.16 to infer

.gA ^ .g(cy\B spem') = .gB ■ 1 = .gB

and hence, for either case, conclude .gA g .gB.

Step 2. If A e g, Beg, A = cyl BA, and x e sbmbB then sctn Ax e g,

sctn Bx e g and sctn Ax = cyl sctn B x sctn Ax.

Proof. Let p', p, and g be those subsets of m for which x eispcp', B c spep

and A c speg, and notice that p' czpaq.

Suppose y e sctn Ax. Then x n y = 0 and x u y e A. Let z = x U y. Since

A = cyl BA there exists a member t of B which is a subset of z. Let s = z~t

and secure such y'espc(p~p') and y"espc(q~p) that y = y'Uy". Now,

z = (x U y') U y" = t U s and infer with the aid of 5.4.5 that x U y' = t. Thus,

y ' e sctn Bx and we infer y ecyl sctn Bx sctn Ax. Since, cyl sctn Bx sctn Ax c sctn Ax,

we conclude the desired equality. Obviously sctn Bx c spc (p ~ p') and

sctn Ax c spc (a. ~ p) and our proof is complete.

Step 3. If fceco, xe.bk, and lim^^.g (sctn .bnx)>0 then there exists

such an x' e.b(k + 1) Ospx that

lim,.-,» .g(sctn.bnx')>0.

Proof. The choice of x' is clear when .r(k + 1) = .r(k). We henceforth assume

.r(k + 1) / -rk and use (3), Step 2 and Step 1 in ascertaining that

(4) if ne<a and n > k then .#(sctn .b(n + l)x) ^ .g(sctn .bnx).

We are now assured of the existence of such a number s > 0 that .g(sctn .bnx)> s

whenever new and n > k. Let p = spc(.r(fe + 1) ~ .rk), p = .ap, co* = En

e co(n > k + 1), and d = fun n e co* Ei e spep [.gsctn .bn(x U()> s/2].

Use (3), Step 2 and Step 1, as above, in checking .g(sctn.i>(n + 1) (x Ui))

^ .g(sctn .bn(x U /)) whenever n e co*, wherefrom we learn
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(5) .din + 1) c .dn whenever n eco*.

Suppose now that n eco, m' = .rn ~ .rk, q = m'~p, and secure Aembl .am'

Ospsctn.bnx for which .gA = .g(sctn.bnx).

Let D = Efespcp [.g sctn At > s/2] and check that .pD = .p.dn and

D e mbl p. Thus,

.gA =    f J"Cr(uUi)A .crqdupdt

=   j.gsctnAtpdt

=   J\CrrD +Cr i(spc p ~ D)) . g sctn Atpdt

=   ¡CvtD.gsctnAtpdt + J"Crí(spcp ~ £>) .gsctnAí/idí

^   ¡CxtDpdt + jis¡2)pdt

= .pD + s/2.

Hence, .pD ^ .gA — s/2 ^ s — s/2 = s/2, and we infer

(6) .p .dn ^ s/2 whenever n e co*.

From (5) and (6) we learn .pp|n eco* .dn > 0 and O^Q n e co.dn. Since clearly,

for each neco*, .dn c sctn .b(k + l)x, we are assured of the existence of such

a point iesctn.b(fe + l)x that .g(sctn.bn(x Ui))> s/2 whenever neco*. Taking

x' = (x u r) realizes our objective.

Step 4.   0= C\neœcyl .bnQ.
Proof.   Use (2), 5.3.5 and 5.7.2 in checking

Qnecocyl ,bnQ= Q ~ (Jneco cyl (cylaGspc .Rn)Q

= Q ~cyli[Jneco cylaGspc .Rn)Q

= Q~cylcyloG [J neco spc .RnQ

= Q~cylcGQ = 0.

Step 5.   limn-> oo .g.bn = 0.

Proof. The alternative to our assertion, in view of the (3), Step 2, Step 1

monotonie nature of the numbers .g.bn for n eco, is that

(7) lim "„-.oo -g-bn > 0.

Let us tentatively assume (7) in order to reach a contradiction in (8) below.

Using Step 3, and noting 0 e .bO = 1, we may inductively obtain a sequence y

with the following properties: for each neco,

.1   .yne.bn and .yn c .yin + 1), and

.2   limfc-» oo ,g (sctn .bk .yn) > 0.

Let z = {Jneco.yn, suppose neco and notice that .yne.bn, z~.ynespc

(orngr ~ .rn) and hence that z ecyl .bn Q. Thus,
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(8) zeQ necocyl .£>nß

in contradiction to Step (4). We conclude therefore that limn-> oo .g .bn = 0

Step 6.   lg E Ae© .gA.
Proof.   Suppose s > 0, and employ Step 5 to secure such an n e co that

(9) .g.bn < s.

Let p = .rn, p = .otp, S = spep, ®' = EAe© [0 ^ cyl AS] and observe that

(10) S = .bn u \J Ae(S>'cyl AS.

Hence,

I = .pS ^ .p .bn +   E Ae©' .pcylAS

^ s +   E Ae&'.gA

^ s +   T Ae&.gA

and exploiting the arbitrary nature of s we infer

1 ^   lAe® .gA

completing both the proofs of Step 6 and our theorem.

6.18. Theorem. // m e measuretic, .A rim A = 1 for each Aerngm,

fnt Osbm <= mblproductive a, © ecblsbframem, and <r© = spem then

E Ce© .VlmamC ^ 1.

Proof. Let g = [J q e fnt n sb m sb spc q and let g be the function on g

which assigns to each A e g the value . .otqA where q is that subset of m for which

A c spc g. Suppose S = spem and divide the proof into two parts.

Part 1. If r > 0 and C e frame m then there is such a member A of g that

CccylAS and

.gA ^ .VlmamC + r.

Proof. Let p' = stand mC, q' = m ~ p', A' = ft m C, B' = tp m C and

/ = .gA'. Thus, A' eg, C c cyl A'S, and our conclusion is immediately inferred

when /= 0. Suppose therefore, that f> 0 and employ 4.12.10 to secure such a

finite subset q of q' that

(1) |.vlmcj'B' - n + ¿edmncj..mi slice B'i| ^ (rjf).

Let  B = prj B' spc g  and  A = (A' U U B). Thus  ] 1 + ¿ e dmn g. .mi  slice B' i

= MmqB = .gB and we learn from (1) after multiplication by/that

(2) |.VlmamC -/• .gB\ ^ r.
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Using p'U^efnt and 6.16 we readily infer that .gA=f- .gB, and using (2)

complete our proof with the observation that C c cyl A S and A e g.

Part 2.    Z Ce© .VlmamC = 1.

Proof. Suppose r > 0 and employ Part 1 to obtain such a countable sub-

family §> of g that

<t© c\J A e§cyl AS

and

£ Ae£ .gA ^   Z Ce© .VlmamC + r.

Use 6.17 to infer

Z Ae§ .gA ^ 1

and then conclude, in view of the arbitrary r, that

Z Ce© .VlmamC ^ 1.

6.19. Definitions.

.1   weight Km = Y\ + ie dmn m .Ki.

.2 factorform = EK [K is a function, dmn m <= dmnK, 0 gi .Ki — oo when-

ever iedmnK and 0 < weight Km < co].

.3   factormeasureticK m = fun i e dmn m (.Ki • .mi).

.4 responsive a = Em e mblproductive a [for each Ke factorform, .a fac-

tormeasureticK m = (weightKm) • (.am)].

6.20. Theorem. If M c mblproductive a, and zr .am = zr .am', m'eM

whenever m,K and m' are such that meM, Ke factorform and m' = factor-

measureticK m, then M c responsivea.

Proof. Suppose meM, K efactorform, m' = factormeasureticK m, k =

weight Km, <p = .am and <p' = .am'.

Step 1. bscboxm' = bscboxm and .vim m'A = k ■ .vim m A whenever A

e bscbox m.

Proof.   Use 4.12.9, 6.19.3 and 6.19.2.

Step 2.   If .<f>A < co then 4'A ^ k - 4A.
Proof. Suppose r > 0 and secure such a countable subfamily 3 of bscbox m

that

4iA ~ ag) = 0 and .0A + (r//c) ̂   I B eg .<j>B.

Thus,

.(/.(A)^   .0'(A~<7g)   +.</>'(<Tg)

g 0 +   ZBeg .tf>'(B)

= ZBe3r/c-.(/.(B)

= k ZBeg .0B

<; k ■ 4A + r.
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Since r is arbitrary we infer .(p'(A) g k ■ .<pA.

Step 3.   If .<p'A < oo then k- .<¡>A <L .<p'A.

Proof. Suppose r > 0 and choose g e cbl sb bscbox m for which .<p'(A ~ erg) = 0

and .<p'(A) + kr^ I Beg .<p'B. Then

.<t>A ̂ .<p(A ~ erg) + .<p(o%)

^ 0 +   Z Beg .<hB

^   ZBegfc-1 .(p'B

= k~l   ZBeg .<p'B

g k~l 4'A + r.

Thus, k • .chA ̂  .0'A

From Steps 2 and 3 we infer

.<t>A = k • .(p'A whenever A c spcm

and conclude m e responsive a and therefore

M a responsive a.

6.21. Theorem. // m emeasuretic, fnt O sb m c responsive a, Be bscboxm,

g e cbl n sb frame m and B c dg then

Z Ceg .VlmamC ^ .vlmmB.

Proof. The conclusion is obvious if .vim m B = 0. We therefore suppose

.vim mB > 0 and proceed by letting m' = fun ¿ e dmn m[fun a a sliceBi. .mia].

Suppose a' is that function on sbm' which assigns to each p' c m' the measure

fun A c: (prj B spcp) (. .apA),

where p is that subset of m for which dmnp = dmnp'.

Verify that

(1) fnt n sb m' c responsive a'.

Let K = fun í e dmn m (1/.. mi slice Bi),

m" = factormeasureticKm',

and check that

(2) (weightKm') • .vlmmB = 1,

and

(3) . .m"¿rlm .m"i = 1 whenever ¿edmnm".

Next let g' = U Cegsng(C nß), check that spcm" c trg', and employ 6.18

to ascertain that
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(4) E C'eg' .Vlma'm'C ^ 1.

SupposeC eg, C = C nB,p" = standm"C',p' czm',pcz m, dmnp" = dmnp'

= dmnp, A0 = ftmC and A1 = tpmC. Then,

.VlmamC ^ .VlmamC

= ..apA0 • .vlm(m ~ p)Ax

= ..a'p'A0 • .vlm(m' ~ p')At

= ..a'p'A0 • weightXm' • .vlmmB • .vlm(m' ~ p')Al

= (. .a'p'A0 weight Kp') -(weight X(m'~p').vlm(m '~p') A,) -.vim m B

= {(..a'p"A0) • .vlm(m" ~ p")Aj .vlmmB

= .Vlma'm'C- .vlmmB.

Hence, for each Ceg

(5) .VlmamC £ .Vlma'm'(C nß) • .vlmmB

and we conclude

E Ceg .VlmamC ^ .vlmmB •  E Ceg .Vlma'm" (Co B)

^ .vlmmB •  E Ceg' .Vlma'm'C

^ .vlmmB.

6.22. Theorem,   fnt n measuretic c responsive cp.

Proof. Let R = En, m [n e co, me measuretic, and m contains no more than

n elements].

Thus, if ne co then vsBn is the class of measuretic functions each of which

contains n elements or less. It is evident that

(1) vsRlc responsive cp.

Suppose JV e co and that we know

(2) vs R JV c: mblproductive cp.

Our proof is completed with the aid of mathematical nduction by demonstrating

below that

(3) vsjR(JV + 1) c responsive cp.

Proof. Suppose me\sR(N + 1), 0 ç pd m, q = m ~p, S = spem, p =cpmp,

v = cpm q, i¡/ = cpm m,
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g = fun B c S  J JCr (x U y) B pdxvdy,

g = Product mbl 'p mbl' v and </> = mssgSg.

We are assured by (2), 6.9, and 6.11.3 that

(4) 4T = .vim m T whenever Te bscbox m.

Consequently, \¡/ = mss^Sbscboxm and with 3.2.4 we infer that

(5) 4T = .<pT = .vimmT whenever Tebscboxm.

We establish next that

(6) 4A ^ 4A whenever A eg.

Proof. Assume A = (A'UUA"), A'embl>, A"embl'?;, and r > 0. Let

k = .pA' + .vA" and let t be such a number that 0 < t < r/(2k) and t2 < r/2.

Now select such families © ' e cblcvr bscbox p A ' and ©" e cblcvr bscbox q A" that

.pA' + t= Z B' e©' .pB' and .vA" + t= Z B'e©" .vB".

Let © = Product©'©" and use summation by partition in ascertaining

4A   <;   Z Be© .vimmB

=   Z B' e©' Z B" e©" .vimmiB' U U B")

=   Z B' e©' Z B"e©" ÇpB' ■ .vB"))

=   Z B'e©' i.pB'  Z B"e©" .vB")

Ú   Z B'e©' i.pB'i.vA" + t))

= i.vA" + t)  ZB'e©' .pB'

= i.vA" + t)i.pA' + t) = .pA' - .vA" + ti.pA' + .vA") + t2

< .pA' .vA" + r- + ~-   * 2     2

= 4A + r.

Our proof of (6) is completed by recalling the arbitrary nature of r.

Suppose Aembl0, Tebscboxm, and r > 0. Note 6.11.3 and secure such

members © and $ of cblcvrg(TA) and cblcvrg(T~ A), respectively, that

Z Be© 4B + r/2 ^ 4ÍTA),

and

Z Be§ 4B + r/2 = .</>(T~ A).

Thus, using (6),
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4T   = 4(TA) + 4(T~ A)

^ E Be© .<f>B +  Eße§ .<pB + r

^ E Be© 4B + I, Be$ .\¡/B+ r

^ 4(TA) + .i/r(T~A) + r

^ 4T + r = .c/>T + r.

Inferring therefrom that

4T = .iKTA) + 4(T~ A)

we conclude with 3.3.1 that Aembl^.

We learn from 6.11.2 and 6.3.6 that

(7) bscboxm cr Product mbl p mblv cr mblc6 cr mbli/r.

Our proof that vsR(N + 1) cr mblproductive cpis completed with reference to

(5), (7), and 6.10.

Suppose me \sR(N + 1), K e factorfor m, m' = factormeasuretic Km and use

the fact bscboxm = bscboxm' and vlmm = k-vlmm' in checking that

zr cpm m ' = zr cpm m.

Clearly m' e vsB (JV + 1) and from 6.20 we infer vsB(JV + 1) cr responsive a

to complete our proof.

6.23. Theorem.   If me measuretic, A e bscbox m then

. .cpm mA = .vim mA.

Proof.   In 6.21 take g = bscbox m and employ 3.2.4 and 6.22.

6.24. Theorem. If fnt O measuretic cr responsive a, a'= startproduction a, and

a' = production a then:

.1   .a'm = knsrcpmmzrVlm .am whenever m emeasuretic;

.2   responsive a' = measuretic = productivea';

.3   a' = mcharmonya'.

Proof.   Let a* = fun m emeasuretic knsr .a'm nilsetm.

Part 1. If m e measuretic, \¡i = .a'm, and A e bscbox m then if/ = knsr cpm m

zrVlmam and 4A = .vim m A.

Proof. Since \¡i = mss Vim a m spc m dmn'Vim a m we may employ 6.21 and

3.2.4 to learn

(1) 4B = .vlmmB whenever Be bscboxm.

Let Í2 = knsrcpmmzrVlm am, suppose .iiT< co and secure such a countable

subfamily 3 of zr Vlmam that .Í2T = .cpmm(T~ ct3). Now suppose r > 0 and

secure  35 ecblcvrbscboxm(T~ <t3) for which
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.cpmm(T~(r3)^ E Be£> .vlmmB - r.

Thus,

.ÇlT+r ^   EBeD .vlmmB

=   E BeD .VlmamB + 0

=   E Beî).VlmamB + E Be3 .VlmamB

^   E Be(Du3) .VlmamB ^ .i^T

and, using the fact that r is arbitrary, we conclude

(2) .QT ^ 4T whenever .QT < oo.

Suppose. \¡/T > co, 0 < r < co and secure such a member ©ofcblcvr dmn'Vim amT

that

4T + r ^  E Be© .VlmamB,

and secure such a function B on © that, 0 < .RB whenever Be®, and

r=T,Be® .RB.

Let 3 = ® n zr Vim a m and noting mblproductive a contains fnt n measuretic,

secure such a function F on © ~ 3 that if B e © ~ 3 then :

.FB e cbl sb bscbox stand m B ;

..astandmß(ftmB - cr.FB) = 0;

E Ce.FB .vim stand mBC ^ ..astandmBftmB + .RBj .vim tower m Bip m B

Consequently, if B e © then :

((ft mB ~o .FB) U U tp m B) e frame m ;

.Vim a m ((ft mB ~ o .FB) U U tp mB) = 0 ;

(C U U tp m B) e bscbox m whenever C e .FB ;

and E Ce.FB .vim m (C U u tp m B) ^ .Vim a m B + .RB. Letting

3= IjBe© (J C e.FB sng(C UUtp m B)
and

3' = 3u(Jße©sng((ftmß~(T.FB)UUtpmB)

we infera ecbl n sb bscbox m, 3'e cbl OsbzrVlmam, Eße^.vlmmß ^ .xj/T + r

and Tc cr3 u cr3'. Clearly,

.QT^ .cpmm(T~ff3')

^   E Be% .vlmmB ^ .i/^T + r.
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Again r is arbitrary and we conclude

(3) .ÍYT <; 4T whenever .\j/T < oo.

Taking (3) and (4) together we conclude

(4) a = *,

and our proof is complete.

Part 2.   semiproductive a* = measuretic.

Proof. Use Part 1, 6.6, 6.7, 6.8, 6.9, 6.10, after checking approximative a* =

measuretic.

Part 3.   mblproductive a* = measuretic.

Proof. Suppose 0 £ p £ m e measuretic, p = .a*p, q = m ~ p, v = .a*q,

¿; = cpmp, n = cpmq, </> = .a*m, i¡/ = cpmm, 9t'= nilset p, 3' = Join'zrVlmap,

5R" = nilset q, 3" = Join" zr Vim a q, 91 = nilset m and 3 = Join" zr Vim a m.

Let A'embl/i, A'emblv, A = (A'UUA"), T'e bscboxp, T"e bscboxq, and

secure such sets B' e Meet" Join" bscbox p and B" e Meet" Join" bscbox q that

.piB'~ T'A'UT'A'~ B')  = 0

and

.viB"~ TA" U VA"~ B")   = 0.

Use 3.4.5in obtaining Q' ezr£, R' e 9t', S' e3', Q" ezr»j, R" e W,and S" e3"for

which

B'~ T'A'ur'A'-B'cQ'uR'US'

and

B"~ T"A" U TA"~ B" cQ"uR"U S".

Let T = (T" U U T"), B = (B' U U B") and note that

B~TAurA~Bc[(Q'uR'uS')UU(T"UB")]u[(T'UB')UU(ß"UR"US")].

Now,

(ß'UU(T"UB")]ezri^,   ((T'UB') UUQ")ezr^,   (R' UUspcq)e%

(spcpUUR")eSR, (S'UUspcg)e3, and (spcp UUS")e3, and we conclude

B ~ TAUTA ~ Bezr<¡)

and infer the (p measurability of TA from that of B. Consequently,

4T = 4ÍTA) + 4iT ~ A)

and referring to 3.3.1 we learn A e mbl <p to complete the proof.

Part 4. productive a' = measuretic.

Proof. Step 1. If m e measuretic then .a'm = knsr .a*m nilcylinder m.
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Proof.

.a'm = knsr ,a"m (nilset m UnilcyUnder m)

= knsr (knsr .a"m nilset m) nilcylinder m

= knsr .<x*m nilcylinder m.

Step 2. If memeasuretic, \¡i = .a*m, tp = .a'm and .xj/T < co then .</>T = .\¡/T.

Proof. Let ft be such a countable subfamily of nilcylinder m that

4T = 4(T~ o-ft). Suppose Beft, B = (ß'UUß"), perm, B'ezrcpmp,

q = m~p, B" = spcq, p = .a.*p, v = .a*q and secure such a member T' of

mbli/r n sp T that .uVT' = .^T. Thus T'B e mbl>. Noting that for each x e spc p

and y espec;, 0 ^Cr(x Uy)(T'B) iS CrxB', employ Part 2 in obtaining

0 rg .iA(T'B) =   j JCr(x U y)(T'B)/tdxvdy

2S   //CrxB'pdxvdy

=   jTjvdy = 0.

Thus 4(T'B) = 0 whenever Beft. Hence,

0 ̂  4(To&) ̂  4(T'oS{) ̂ E B eft.i^(T'B) = 0

and  .xj/T ̂  .^(Terft) + 4(T~ crft) = 0 + .<¡>T ^ .i/^T.

Step 3. If memeasuretic, x¡/ = .<x*m, ci> = .a'm, and — oo ̂  \.fz\\idz ^ oo

then   j.fz(j)dz = j.fz\¡idz.

Proof. Use Step 2 and the 3.4.4 fact that mbl\¡i cr mblci». (Note. Actually, in

view of Step 2, it is clear that mbl <6 = mbl \ji.)

Step 4. If 0 € p (ime measuretic, and A e nilcylinder m then

0= JJCr(x Uy)A.a'pdx.a'(m~ p)dy.

Proof. Suppose A = cylA'spcm, p' c m, A' ezrepmp', p = .a'p, q = m~ p,

v = .a'q and a/ = m~ p'.

Let

Z = Ey' e spc(czp') [.. a*(pp')sctnA'y' > 0].

Since ..a*p'A' = 0 we are assured that ..<x*(qp')Z = 0. Thus, for some

Zj e zr cpm (qp'), Z2 e nilset (qp') and Z3 e Join" zr Vim a(qp') we have

ZcrZjUZjUZj. Since cyl Zt spc q e nilcylinder q, cyl Z2 spc q e nilset q, and

cyl Z3 spc ci e Join" zr Vim a q we are assured that

(5) .u(cylZspcg) = 0.

Now, if yespcq ~ cylZspcc/, y = y' Uy", y'espc(cjip'), y'espc(gg') then

..a*(pp')sctnA'y' = 0

and for some S1ezrcpm(pp'), S2 e nilset (pp') and S3eJoin" zr Vim a (pp') we



274 E. O. ELLIOTT AND A. P. MORSE [February

have

sctn A'/ czS1 US2US3.

Since cyl Sj spc p e nilcylinder p, cyl S2 spc p e nilset p, and cyl S3 spc p e

Join" zrVlm ap we infer 0 = .p(cylsctn A'y'spcp) and noting

cyl sctn A 'y ' spc p = sctn A y

we conclude

(6) .p(sctn A y) = 0 whenever y e spc q ~ cylZ spc q.

From (5) and (6) we infer

0 = / JCr(x U y)Apdxvdy.

Step 5.   If p c m e measuretic, ..a'pA' = 0, A = cyl A'spc m then ..a'm A = 0.

Proof.   For  some  S^zrcpmp,  S2e nilset p, S3ezrVTmap and S4eJoin"

nilcylinder p,

A' c Si W S2 U S3 U S4.

Since cyl Sx spc m e nilcylinder m, cyl S2 spc m e nilset m, cyl S3 spc m e Join" zr

Vlmam cyl S4 spc me Join" nilcylinder spc m we infer ..a'm A = 0.

Step 6. If 0£ m £ m e measuretic, <¿> = .a'm, \j/ = .a*m, p = ,a'p,v =

.a'(m ~ p) then mbl' t/f U nilcylinder m e bsc (/> and .</>A= J JCr(x U >>) A pâx^ây

whenever Aembl' \¡i U nilcylinder m.

Proof.   Use Step 1, 3.4.2 and 3.4.4 to learn

mbl ' i¡/ U nilcylinder m e bsc cp

and then use Step 3 to learn

.<pA   = .0A =   J JCr(xUy)A .a*pdx .a*(m ~ p)dy

=   J JCr (x U y) A pdxvdy

whenever Aembl'^.

Using Step 4 completes the proof.

From Step 6 we infer semiproductive a' = measuretic with the aid of 6.10.

From Step 5 and 6.13 we infer productive a' = measuretic.

Part 5.   responsive a' = measuretic.

Proof. We see this to be a consequence of 6.20 and the statement: If

m e measuretic, K e factorfor m, m'= factormeasuretic then:

.1   zrcpmm' = zrcpmm,

.2   nilset m ' = nilset m,

.3   zrVlmam' = zrVlmam,

.4   nilcylinder m ' = nilcylinder m.

6.25. Theorem, responsive cm = measuretic = productive cm and cm = mc

harmony cm.
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Proof. Suppose m e measuretic, i¡/ = .startproduction cp m, 0 = cpmm,

</> = .production cp m, </>' = .cm m, 3 = zrVlmcpm, 91 = nilset m and 3 = nil-

cylinder m. Then, by 6.24.1 we have

i/> = knsr ff 3.
Also,

<f>= knsri/r (91 u 3)

= knsrknsrÖ3(5Ru3)

= knsr0(9tu3u3).

However, since each A <=3 is contained in some Be3,

knsr0(9tu 3u 3) = knsr0(9tu 3),

and since </>' = knsr 0(91 n3) we conclude

</>' = «/,.

The desired conclusion now follows immediately from 6.22, 6.24.2 and 6.24.3.

6.26. Definition, harmon a = fun m e measuretic EB c spc m [0 = J JCr

(xu y)B .apdx .aim ~ p)dy whenever 0 £ p £ m].

6.27. Theorem. If a' = mcharmona and both responsive a and productivea

are equal to measuretic then responsivea' = measuretic = productive a' and

a' = mc harmony a'.

Proof.

Part 1.   harmon a is a Harmonious.

Proof. It suffices to show that if 0 £p £ m emeasuretic, A' eharmonap',

A = cyl A'spc m then A e.harmon am. Suppose 0 £ p £ m, p = .ap, q = m ~ p,

v = .aq, and q' = m ~ p'. Let Z = Ey' espc(qp')[. .a(pp')sctnA'y' > 0]. Since

A'e.harmon ap' we are assured that ..a(oj>')Z = 0 an<i consequently that

.v(cyl Z spc q) = 0. If y espc q~ cyl Zspc q, y = y' Uy",y' espc(qp'), and y" espciqq')

then . .a(pp') sctn A'y' = 0. Consequently ./¿(cyl sctn A'y' spc p) = 0. Since

cylsctnA'y'spcp = sctn Ay we infer, ./¿(sctn Ay) = 0 whenever y espcq ~ cylZ

spcg to conclude

0 = J JCr(x Uy)Z pdxvdy.

Since p was arbitrary, we infer A e.harmon am.

Part 2.   productive a' = measuretic.

Proof.   Use Part 1 and 6.14.

Part 3.   responsive a' = measuretic.

Proof. Suppose m e measuretic, K e factorfor m, and m '=factormeasuretic Km
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Clearly, .harmonam' = .harmonam and zr .am' = zr .am. We are assured by

3.4.5 that

zr .a'm =   (jAezr .am (J B e harmon a m sb ( A U B)

and

zr .a'm' =   \jAezr .am' IjBeharmonam'sbiA UB),

and thus conclude that zr .a'm' = zr.a'm. We use 6.20 to complete the proof.

Starting with a0 = cm we should like to employ 6.27 to secure by induction

a sequence a¡ of functions for which productive a¡ = measuretic and ai+1

= mcharmon a¡. However, since the very first, cm, is a class which is not a set, we

encounter here a bit of a snag. It is indeed possible, by what strikes us as need-

lessly circuitous reasoning, to arrive at a definition of hms n below which does

not employ our next theorem. This theorem is an instance of a modification,

suitable to our needs, of the classical theorem on definition by induction.

6.28. Theorem. There is one and only one relation R such that

dmn B = co, vsB0 = cm, and vs R(n + 1) = mc harmon vsB n whenever neco.

6.29. Definitions.

.1 Rhm = the relation R such that dmnR = co, vsB0 = cm, and

vsB(n + 1) = mc harmon vsBn whenever neco.

.2   hmsn = vsRhmn.

.3   hmgm = fun Ac spc m inf neco ..hmsn m A.

.4   hm = fun m emeasuretic hmgm.

.5 Hrm = fun m e measuretic EAcrspcm [for each p, if 0 £ p C£ m then

0= J JCr(x Uy)Ahmgpdxhmg(m ~ p)dy].
There seems to be little reason to hope, in general, that hmgmeMsrspcm

whenever m e measuretic. However, for m e fnt it turns out that hmg m behaves

very well indeed.

6.30. Theorems.

.1   If me fnt n measuretic then hmg m = .mc Hrm m.

.2   fnt n measuretic c responsive hm.

Proof.   We infer .1 and .2 from Parts 1 and 2 below.

Part 1.   If neco then:

.3   hms(n + 1) = mc harmon hmsn;

.4   responsive hms n = measuretic.

Proof.   Use 6.25, 6.27 and mathematical induction.

Part 2.   If 0 =£ m e measuretic, m has exactly n members, k e co, and k ^ n — 1

then

5.   hmgm = .hmsfcm = .mcHrmm.

Checking first that .5 holds when n = 1, we turn to mathematical induction
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and suppose Neco and that .5 holds whenever n<N. Suppose now that

m' e measuretic and m' contains exactly AJ elements. Using 6.26 and the inductive

hypothesis, namely that if 0 £ p £ m', k eco and fe _ iV — 1 then hmgp = .hms

(fe — l)p and hmg(m' ~ p) = .hms(fc—l)(m' ~ p), we infer that

.harmon hms (fe — l)m' = .Hrmm',

and using .3, infer that

(1) .hms fern' = .mcHrmm'.

Noting that .harmonhmsjm' c .harmonhms(j + l)m' whenever jeco we infer

from .3 that if A c spcm'then ..hms(j + l)m'A _ ..hmsjm'A and consequently

observe that

(2) ..hmgm'A = ..hms(N - l)m'A.

With (1) and (2) we complete the inductive step and hence the proof.

6.31. Definitions.

.1   pm = production hm.

.2   prmm = .pmm.

6.32. Theorem, responsive pm = measuretic = productivepm and pm = mc

harmony pm.

Proof.   Use 6.30 and 6.24.

The remainder of this section is devoted to finite products and the relationship

between our final product measure prm m and the fundamental product measure

considered in PM. In so doing, we recast several definitions and theorems from

PM in the setting of a (rlm/i UUrlmv) product space in place of the

rctrlm/irlrm) space used in PM.

6.33. Definitions.

.1   Bscrct/tt) = Productmbl'/imbl'?;.

.2   Nilpv = EAc (rimpUUrimv) \_peMeasure, veMeasure,

¡ JCr(x U y) A pdxvdy = 0= J JCr(x U y)Avdypdx~].

.3   Bace/iv = Bscrct/ivUNil/iv.

.4   Bs pv = fun A e Bace pv J f Cr (x U y) A pdxvdy.

.5   Mprpv = mss (Bs/w)(rlmu UUrimv)(Bacepv).

Our next theorem may either be viewed as a translation of PM 5.14, p. 194,

or as a consequence of 6.11, 6.12 and 6.10 with the intermediate consideration

of

0 = mss(Bs/«/)(rlm/i UUrlmt;)(Bscrct/iv).

6.34. Theorem. If 0 £ p £ m e measuretic, p e Msr spcp, v e Msrspc(m ~ p),

and \¡/ = Mprpv then:
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.1 Product mbl/imblvcr mbl^;

.2 Nil/iu cr zri/f;

.3 J Szij/dz =  J J./(x Uy)pdxvdy whenever — oo ^ ¡.fz\¡/dz^ oo;

.4 Product mbl 'p mbl'v e approxi^ n mbl'i/'.

We conclude this section with the

6.35. Theorem.   If me fnt n measuretic,   c6 = prmm,   M = E\j/\jj/ = Mpr

prmp prm(m ~ p)/or some nonempty pClm] and Î) = n^eMdmn'^ then:

.1    c6 = hmgm = .mc harmon pm m ;

.2   mblc6 = Q i^eMmbl^;

.3   dmn'ci = í> and 4A = .\j/A whenever \j/eM and AeX>.

Proof. For .1, let 6 = hmgm. In view of 6.30.2 we infer 0 ^ bscö and then

assert 0 = mssörlmödmn'0. But, c/> = mss0rlm0dmn'0 and consequently

0 = <p. Employing this result in generality we learn from 6.30.1 that

0 = mcharmonpmm. We infer .3 from Parts 5 and 6 below.

Part 1.   If ij/eM then zrc/> cr zr\j/.

Proof.   If 4C = 0 then 6.32 tells us

0=  J JCr(x Uy)Cprmpdxprm(m ~ p)dy

whenever 0 G p G m. We infer then from 6.34.2 that .\j/C = 0.

Part 2.   If \j/eM then bscbox m e approx \j/ n mbl' \¡i.

Proof.   Use 6.34.4.

Part 3.   If \p eM then mblc/> cr mbli/f.

Proof. Suppose A e mbl <j>. In view of Part 2, it will suffice to show TA e mbl \p

whenever Te bscboxm. Suppose Te bscbox m and secure such a member B of

Meet" Join" bscbox m that

.c>(TA~BUB~TA) = 0.

We infer from Part 1 that

4(TA~B\JB~TA  = 0

and from Part 2 that B e mbl ij/ and conclude TA e mbl \p.

Part 4.   If ipeM and Aembl'c/» then .c/>A = 4A.

Proof. Secure such a countable subfamily g of bscbox m that .</>(A ~ erg) = 0

and E Beg .c6B < oo. Use Part 2 and 6.34.3 to check that .\]/B = 4B when-

ever Beg. Thus, by Part 1, 4(A ~ erg) = 0 and

4A ^ 4(A ~ ffg) + E B eg 4B < oo.

Hence (6.34.3 and 6.30.2) both 4A and .c6A are equal to

J JCr(x Uy)Aprmpdxprm(m ~ p)dy

whenever p is such that \j/ = Mprprmpprm(m ~ p) and 0 G p Cm.
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Part 5.   If A e T> and i/r e M then .<pA = .\¡/A.

Proof.   Let a and b be such functions on M that if 0 e M then :

(1) .a0embl0nspA and .9.a9 = .9A;

(2) . b9 e Meet" Join" bscbox m ;

(3) .0(.a0 ~ .b0 U M ~ .a9) = 0.

Take A' = f]9eM .a9 and B = [J9eM .b9. Clearly A c A', .0B = .9B < oo
and,

.0(A' ~ B) = 0 whenever 0eM.

Thus, A' ~ Be.harmonpmm and in view of .1, .(¡>(A' ~ B) = 0 and we infer

.0A ^ .0(A' ~ B) + .(fiB < oo.

Now secure C e mbl <p n sp A and B' e Meet" Join" bscbox m for which .(¡>A = .(j)C

and .</i(C ~ B' U B' ~ C) = 0, and note, in conclusion, that

4A   = .<¡>B' = .\¡iB' ̂  .i//(AB') + .i¡/(A ~ B') = .lA(AB') + 0

^ .^A ^ .^C = .<pC = .0A.

Part 6.   dmn' <p = X>.

Proof.   Observe that if A edmn'0then.</>A=.</)A' for some A' e mbl <p OspA.

Now use Part 4 to infer dmn' <p c Î) and Part 5 to complete the proof.

Conclude our proof by inferring .2 from Part 3 and

(4) If Aepl^eMmbli^ then Aembltf..

Proof. If Te bscbox m then .\¡/T= .i¡t(TA) + \p(T~ A) < oo whenever \J/ e M.

Thus, using Part 5 we infer .</>T= .<p(TA) + .</)(T~ A) and employ 3.3.1 to

conclude, since T was arbitrary, that A e mbl <j>.

7. Topological measures.

7.1. Definitions.

.1   Topology = E93[Join93uMeet'93<=93].

.2   Closed 93 = cmpl93.

.3   topologetic = Ei [t is a function and rngi <= Topology].

.4   Spci = Prfun ie dmn to.ti.

.5   opnbox t = Pri.

.6 topologicalbase t = EA [A = cylPrZSpct for some í'efntnsbí and

X e opnbox i'].

.7   tpr í = Join topologicalbase i.

.8 opencylinder t = EA [A = cyl B Spc t for some í'efntnsbí and

Betpri'].

.9   (U/C7 93) = Join Product U23.
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7.2. Theorems. 1/ t e topologetic, 93 = tpr i, t'ct, 93' = tprr', and

93" = tpr(í~í') then:

.1   93 e Topology and <x93 = Spci;

.2   Product93'93"c:93;

.3   Product Closed 93' Closed 93" c Closed 93;

.4   1/Ae93 and BeClosed93 then prjAo-93'e93', and prj B<r93'e Closed 93';

.5   93 = (93'£7 93").

7.3. Theorem.   //1 e cbl n topologetic then tpr t = Join" opencylinder t.

In 7.4 below, .1 is equivalent to PM 6.2 p. 195, .2 and .3 are, respectively,

reproductions of PM 6.4.1 and 6.4.2 p. 196, .4, .5, and .6 are the coordinatewise

extensions for measuretic functions of .1, .2, and .3.

7.4. Definitions.

.1   Core 93 = E<j> e Msro-93 [93 e Topology, 93 <= mbl (p, and

infBe(Closed93nsbA) 4iA~B) = 0

whenever )/>esms</> and Ae93].

.2 Lind 93 = E</> e Msr <t93 [93 e Topology, corresponding to each \p e sms $

and each g <= 93 for which 0$ = ff23 there is a countable subfamily © of 5 for

which

.^(£793 ~ tr©) = 0],

.3   Clin 93 = Core 93 n Lind 93.

.4 core t = Em e measuretic [i e topologetic, dmn m = dmn t, and .mie Core ,ti

whenever iedmnt].

.5 lind / = Em e measuretic [i e topologetic, dmn m = dmn t, and .mi e Lind .ti

whenever i e dmn t],

.6   cliní = core/ nlindí.

As an immediate consequence of PM 7.7, p. 209, is the

7.5. Theorem. If X is a function 0£Y£Z, S = PrX, S' = PrY,

S" = Pr(X ~ Y), 93' eTopology, <r93' = S', 93" eTopology, <r93" = S",
93 =(93'¿793"), /ieClin93', veClin93", and (¡> = Mprpv then <peClin93.

7.6. Theorem.   // m efnt ncliní then prmmeClintpri.

Proof. We employ mathematical induction on the number of elements in m.

Since the result is immediately obtainable when m has exactly one element, we

suppose the result known whenever m contains less than n elements and proceed

to examine an me cliní which contains exactly n elements. Let <£ = prmm,

93 = tpr t, and M = E\¡/[i¡/ = Mprprmpprm(m ~ p) for some nonempty p<im2.

From the inductive hypothesis, 7.5 and 7.2.5 we infer that

.1 \¡i e Clin 93 whenever i¡/e M.

Referring to 6.35.2 we deduce immediately from .1 that



1964] GENERAL PRODUCT MEASURES 281

.2   33 cr mbl <p.

We also learn from 6.35.3 that if 0esmsc/> then 0esmsi/' for each \¡/eM,

and this with .1 assures us of the desired conclusion, namely

.3   <t> eCore 93 n Lind 33.

7.7. Theorem.   If me cbl n clin t then prm m e Clin tpr t.

Proof.   Suppose c6 = prm m, S = spc m and 33 = tpr t. We know from 7.3 that

(1) 33 = Join" opencylinder t.

Employing 7.6 and 6.32 to learn opencylinder icrmblc6, we infer

(2) 33crmblc6.

Suppose 4T < co, \p = sct<j)T and let £j be such a countable subfamily of

bscboxm that

(3) 4(<r§>) < oo and 4(T~ off) = 0.

To complete our proof we infer <¡> e Clin33 from Parts 1 and 2 below.

Part 1.   If Ae33 then infCeClosed33 nsbA .i^(A~C) = 0.

Proof.   Let ft be such a countable subfamily of opencylinder t that A = <rft.

Suppose r > 0 and noting (3) let ft' be such a finite subfamily of ft that

(4) .cX<x§n(A~<xft'))g r/3.

We secure next a finite subfamily §' of § for which

(5) .</>(*£ ~ *$>') ̂  r/3.

Let B = oft' and note that B e opencylinder t. Thus for some p e fnt n sb m,

u cr f, and B' we have dmnp = dmnw, B = cylB'S and B'etpru. Let

93' = tpr«, ¿i = prmp, v = prm(m~p), D' = prj<T<?j'rlm¿¿, D"=prj <7§'rlmi>,

J) = (D'UU D") and check that D'e dmn' p, D" e dmn'v, and <t§' er D. Suppose

for the moment that .vD" > 0 and use the 7.6 fact that pe Core 33' to obtain

C'eClosed93'sbB' for which

(6) .p(D' n(B' ~ C)) ?g (r/3 • .vD").

If .vD" = 0 take C = 0. In either case we infer

(7) 4((D' n (B' ~ C)) U U D") ̂  r/3.

Let C = cyl CS and notice

(8) 4(Dn(B~C)) g r/3.

Hence, using (4), (5) and (8) we obtain
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.iKA~C)  = 4iTt~\iA~C))

= .<K<r$n(A~C))

= .<K<r£n((A~B)U(B~C)))

= 4io-$ niA~ B)) + .</.(<j§ n(B ~ C))

= r/3 + .0((c7$' U(7§ ~ co') n(B ~ C))

< r/3 + 4ia$>' niB~ C)) + .</>(<r§ ~ o§>')

= r/3+.0(Dn(B~C)) + r/3

= r/3 + r/3 + r/3 = r

and recalling the arbitrary nature of r we infer the desired conclusion.

Part 2. If 3 c 93 and ag = S then there is such a countable subfamily ©

of g that .iKS ~ ff©) = 0.

Proof.   The conclusion is inferred from Step 2 below.

Step 1.   If p e fnt O sb m then there is such a countable subfamily © of 5 that

4iS ~ (J Ae© cyl (prj Aspep)S) = 0.

Proof. Suppose /j = prmp, uct, dmn« = dmnp, 93' = tpru, S' = spcp,

5'= (J AegsngprjAS' and £>' = (jBe$sngprjBS'. Since <rg = S we are

assured that eg' = S'. Using 7.2.4 we learn g' c 93'. Noting that pe Clin 93'

and 3)' c dmn'/x we can and do select such a function w on §' that for each

Ae§', .wAecblnsbg' and ./z(A ~ ct.wA) = 0. We let ©' = \J Ae§'.wA and

check that ©' ecbl nsbft' and

0 = ./W ~ a©') = ./i(U Ae&iA ~ <7©'))

= ./i(|jAe$'(A~£7.wA))

=   Z Ae£' ./t(A ~ a.wA) = 0.

Hence, taking © = EA eg(prj AS' e©') and B = (J A e©cylprj AS'S we have

0 = 4iS~B) = 4iT~B)

= .<K(<T$UT~<x$)~fl)

= .<K<r£~B) + 4iT~o%)

^ .^(cyl«j§'S~B) + 0

= .(/>(cylo-SJ'S~cyl<T©'S)

= .<p(cyl(o-§'~<7©')S) = 0

and our proof is complete.
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Step 2.   There is such a countable subfamily © of g that 4(S ~ <jg) = 0.

Proof. Let P = fnt n sb m, note that P e cbl, and using Step 1 secure a func-

tion/on P for which .fp e cbl n sb g and . i¡/(S ~ |J A e .fp cyl prj A spc p S) = 0

whenever p e P. Taking © = \J p e P .fp we employ 5.9 to learn

c© = Q p e P cyl prj cr© spc p S.

Hence,

S ~ o-© = IJp eP(S ~ cyl prj cr© spc pS)

and we infer

0g¡4(S~ cr©)   ^   E p e P .i^(S ~ cyl prj cr© spc pS)

S   H peP 4(S ~ cyl prj o.fp spc pS)

=   H peP . \¡/(S ~ y A e./p cyl prj A spc pS)

= 0.
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