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1. Introduction.    We have given a system of differential equations of the form

(1) x = h(x) + as,

where the dot stands for differentiation with respect to the time t, where the un-

known x is an n-vector, where h is an n-vector function of x, and where a is a

constant nonzero n-vector. h(x) is assumed to be of class C, at least. As for the

scalar e, this is a bounded not necessarily continuous function which is to be

chosen in such a way that a solution starting with given initial conditions will

be steered as quickly as possible to the origin x = 0. Evidently, e can be regarded

as a function of x.

Also, without essential loss of generality, we can take the bound for | e j to be 1.

Otherwise we would modify the vector a by multiplying all of its components

by the bound.

From the "bang-bang" principle it is known that time optimality may be achiev-

ed in a wide variety of cases by limiting e to its extreme values +land — l.This

is the case, for instance, when h(x) is linear and when the system is controllable.

It is also true in most cases when h(x) is nonlinear, but the precise conditions are

awkward to specify. We therefore merely assert that a generally significant problem

is to determine how a solution may be steered to the origin by limiting the values

of e to the two values +1 and — 1. This is known as "bang-bang control."

Thus, we can regard (1) as representing two systems of continuous differential

equations, namely,

(la) x = F(x),      where F(x) = h(x) + a,

corresponding to e = + 1, and

(lb) x = G(x),      where G(x) = h(x) - a,

corresponding to e = — 1. We now formulate the problem by asking how it is
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possible to steer a point x into the origin by making it move first along a solu-

tion of the system (la) (or (lb)) and then along a solution of (lb) (or (la)), and

then, again, along a solution of (la) (or (lb)), and so forth, until the origin is

reached. The problem is to determine at what points, x, we should switch from

system (la) to (lb), or vice versa. These points are known as switching points;

and point sets consisting of switching points (corresponding to all bang-bang

control paths using a minimum number of switches) are known as switching

manifolds, even though these point sets need not be closed manifolds in the

strict technical sense, whereby each point of the set has a neighborhood whose

intersection with the set is homeomorphic to a simplex of some dimensionality

— 1 and < n. In fact most of the switching manifolds, or at least the parts of them

referred to later as "leaves," will turn out to have certain boundary points which

will constitute switching manifolds of lower dimensionality. Broadly speaking,

our problem is to determine equations for these switching manifolds and to

develop certain inequalities which must also be satisfied by points lying on the

switching manifolds. These inequalities are necessary because the switching

manifolds are not completely determined by the equations. This is connected

with the fact just mentioned that the switching manifolds are not closed.

It should be stated that our method of constructing the switching manifolds,

as given in §3, is, in general, local. In the event that bang-bang control is time-

optimal our method yields the switching manifolds for time optimal control.

However, there are even some controllable linear two-dimensional systems, in

which the bang-bang control is, in the large, not unique and in which the origin

may be reached by a bang-bang control which is not time optimal. But invariably

our procedure yields a local bang-bang control that brings points in the con-

trollable region to the origin in a finite time.

The result in §2 is of a subsidiary nature. We understand from the referee's

report that it is well known to a number of people but has apparently not been

published.

We are greatly indebted to R. W. Bass for having introduced us to the problem

of determining the switching manifolds of linear plants as well as for having made

suggestions as to how this might be accomplished. In particular his method of

working backward in time was actually adopted. He also suggested the use of

certain first integrals but in a manner quite different from that which we have

adopted in this paper.

2. Comments on linear plants. Consider the so-called case of a controllable

linear plant, whereby ft(x) = Ax, A being an n x n constant matrix, and where the

nxn matrix D, whose columns are the vectors, a, Aa, A2a,---,A"~1a, is nonsingular.

This definition of the controllability of a linear plant was introduced by Kaiman

and is designed to insure that every point in some neighborhood of the origin

can be steered into the origin in the indicated manner. From this fact it is obvious
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that controllability is invariant under nonsingular linear transformations of the

vector x. Indeed it is easy to verify that if x is replaced by Lx, L being an n x n

nonsingular constant matrix, A must be replaced by LAW \ a by La and D by

LD. And, of course, LD is nonsingular, if both Land D are.

These facts make it possible to perform a preliminary normalization, so that

the components of a may be assigned any special values not all zero. For instance,

there is no loss of generality in assuming that the ith component of a is Sa.

We next turn to a more far-reaching reduction of the form of a controllable

linear plant. We introduce a new unknown vector y = D~1x, whose n compo-

nents it will be convenient to denote by y0,yu---, y„-i (rather than by yuy2,- ".jO-

Then evidently x = Dy and, from the original equations of the linear plant,

which we recall are

(2)

we find that

x = Ax + ae,

y = D   1x = 0   \Ax + ae) = D ^Dy + D'^E.

Suppose that the characteristic polynomial of A is X"— Zj?=¿PtA*. Note also that

x = Dy = Zü=o Akayk by definition of D. Hence

ADy = Z Ak+1ayk = Anayn^1+n'Z Ak+1ayk.
k=0 k=0

By the Cay ley-Hamilton theorem A"= T,kZoPkAk. Hence

(»— 1 \ n— 1

Z pkAk )ay„-1 +  Z A'ay,-!.
k=0 I (=1

Therefore

Dy = ADy + ae = D

Po

Pi

Pn-lJ

yn-i + D

o
y0

yi

iyn-

+ as.

Multiplying by D \ we thus get the following equations for the linear plant

when expressed in terms of y0, •■■,ytt_i.

h = Poyn-i + O + V,

¿i  = Piyn-i + yo + b2e,

(3)

}f Pkyn-i + yk-i + bk+is,    k = l,2,—,n-l.
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Here we use by, b2,---, bn to represent the components of the n-vector b = D ia.

This means that Db = a, so that

(4)

at    "L Aua¡     Z Affii
i i

a2    D A2iai       Z-4(2^a¡

I Anlüi       Ha (2),

b2

la.

where we have used A¡k) to represent the element in the ith row and j'th column

of Ak. From Cramer's rule, it is clear that (4) implies that bl = 1, while

b2 = fe3= •■• = bn = 0. Hence, from (3), we see that any controllable linear plant

can be written in the prepared form

(5)

J>o = Po-Vn-i + e»

À  = PfcK.-i + y*-i»       /c = l,2,---,n-l.

Notice that it is easy to eliminate y0,yu •••,yn_2 from these equations, the result

being

(6) y£i
n-l

fc = 0

n v(k)
P*Jn-l

After (6) has once been integrated the functions yn-2,yn--¡,---,y0 can be found

successively without further integration from the last n — 1 equations in the

system (5).

This is a major conclusion: A controllable linear plant consisting of a system

of n first order differential equations can always be expressed as a single nth

order differential equation of the form (6). The converse proposition is also

true. For, if (6) is given a priori, we can form the system (5), which is certainly

controllable, since the matrix D pertaining to (5) may be seen by a short calcula-

tion to be merely the unit n x n matrix. Of course, this means that not every

system (2) is controllable. For an example we need only to choose A so that it

has a pair of equal characteristic roots with simple elementary divisors.

3. General method for obtaining switching manifolds. We now are in a position

to return to the problem previously posed with regard to the linear or nonlinear

plant represented by (1) or by (la) and (lb). In considering these systems of

differential equations we employ three sets of variables as follows:

The first set of variables are the components of the original n-vector x, in

which we have the system (la) in the form,

(7) jc = F(x)

and the system (lb) in the form,
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(8) x = G(x).

The second set of variables are the components of an n-vector .v, obtained

by a one-to-one transformation of class C from x in such a manner that the

system (la) appears in the simple form

(9) $i = ôn,       i = 1,2, •••,«,

while the system (lb) appears in a possibly much more complicated form such as

y = Kiy).

The third set of variables, components of an n-vector z, on the other hand,

leave the system (la) in a possibly very complicated form such as

i = Liz)

but have the virtue of reducing the system (lb) to the simple form,

(10) ¿¡ = <5,i,       ¿ = 1,2,-,«.

It is assumed that we have equations of transformation leaving the origin

invariant, and valid in a neighborhood of the origin, which enable us to pass

freely from any one of these three systems of variables to either of the other

two. The possibility of obtaining such transformations with the desired properties

is well known, at least if F(0) ^ 0 and G(0) j= 0, as we hereby assume.

Suffice it to say that any transformation of the form y = w(x), where

Wj(x) — t, w2(x), •••, w„(x) are independent first integrals, will produce the desired

result. The developments of the next two sections use a particular case of such

a procedure.

As a point is successfully steered into the origin, it must, after its last switching,

be on the half-trajectory of (la), or of (lb), which terminates at the origin as t

monotonically increases and approaches a certain terminal value T. Of course,

if the point was originally on either one of these half-trajectories, it can be

trivially steered into the origin with no switches whatsoever. Any other point

must first be steered to one or the other of these two half-trajectories before it

can reach the origin and must therefore experience a switching at some point

of these half-trajectories. Moreover, this switching may occur at any point of

the half-trajectories depending upon the initial position. Hence these half-tra-

jectories constitute a one-dimensional switching manifold Rt. It has two "leaves,"

Rlfl, the half-trajectory of system (la), and R12, the half-trajectory of system

(lb). R^Rj.iURj,.

For the sake of brevity, we will describe in detail only Rltl and the leaves

of switching manifolds of higher dimensionality on whose boundary R1¡t lies.

Similar considerations may be supplied by the reader for R12.
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From (9) it is obvious that Rlt when expressed in terms of the >>'s consists

of those points for which yt < 0 and y¡ = 0, for i = 2, 3, ••-,«. When we make

a transformation to the z's, these conditions take some such form as

h*(z) < 0, h*(z) = 0, for i = 2,3, •■•,n. We next write these conditions in a more

suitable form, by eliminating zx from all but one of these n conditions; the one

remaining condition is the one which expresses zx as a function of z2,---,zn,

hereafter briefly denoted by the (n — l)-vector z. Assuming that this elimination

can be effected, we obtain (in terms of the z's) conditions of the form,

(11) K(z)<0,   z1 = Ä2(f),   n,(z) = 0,       ¿ = 3,4,-,n,

as both necessary and sufficient that the point zeRltl.

Now any point (not initially on RÍ3Í) being steered successfully into the origin

via R1A must have been proceeding along a trajectory of (lb) just before its

last switching. Hence the locus of all half-trajectories of (lb) which terminate

on Rl>t must constitute a "leaf" R2A of a two-dimensional switching manifold.

The detailed substantiation of this statement about R2 t is similar to what was

stated above in substantiation of the fact that Rltl was part of a one-dimensional

switching manifold. From (10) and (11) it is clear that a point on R2 t is charac-

terized by the conditions

(12) ht(z) < 0,   Zi< h2{z),   h¡(z) = 0,   i = 3,4, ■••, n.

When we make a transformation to the y's, these conditions take some such

form as <p*(y) < 0, <j)*(y) < 0, 4>*(y) = 0, i = 3,4,---,n. We next eliminate yt

from all but one of these n conditions ; the one remaining condition is the one

which expresses yt as a function of y2, •••,)>„, hereafter denoted by the (n — 1)-

vector y. Assuming that this elimination can be effected, we obtain (in terms of

the y's) conditions of the form,

(13) <^1(v)<0,   02(JO<O,    Vi^aÜO,   <A¡(J) = 0,       £ = 4,-,n,

as both necessary and sufficient that the point yeR2li-

Now any point being steered successfully into the origin via R2,i an^ ^1,1

(assuming that it did not start on R21), must have been proceeding along a

trajectory of (la) just before switching onto Ä2jl. Hence the locus of all half-

trajectories of (la) which terminate on R2tl must constitute a "leaf" R31 of

a three-dimensional switching manifold. From (9) and (13), it is clear that a

point on R3tl is characterized by the conditions

<l>1(y)<0,   (¡>2(P)<0,   yi<4>i(y),   UP) = 0,   i = 4,-,n.

This process may be continued by induction, yielding, for any positive integer

k < n, a "leaf" RkA of a fc-dimensional switching manifold. This leaf is charac-

terized by n conditions, k of which are inequalities and (n-k) of which are
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equalities. These latter may be expressed by equating to 0 certain time-inde-

pendent first integrals of (la), if k is odd, and of (lb), if k is even.

One of the purposes of this paper is to carry this procedure out in detail for

the case of the linear plant of order 4 in the special case in which all eigenvalues

of the matrix A vanish. In other words, the system considered can be presented

in the form (5) or (6) in the special case p0 = pi = p2 = p3 = 0 (n = 4). This

example should give a good idea of the general behavior of such systems even

when the p's are not all zero, and our results obtained from a study of this simple

example should approximate the results to be obtained when the p's are small.

The reason for this is roughly as follows :

Our methods are based on certain transformations between the x's, _y's, and z's.

These transformations depend continuously upon certain systems of first inte-

grals of (la) and (lb), which are written down in terms of the initial value solu-

tions of the differential systems (la) and (lb). Now, if these systems depend

continuously on certain parameters, such as the p's, it is well known that the

intial value solutions likewise depend continuously on the same parameters.

Hence our results will be but slightly affected by small deviations of the p's from 0.

4. On the availability of involutory transformations in the computation of the

switching manifolds. The process described in the preceding section for developing

the equations and inequalities, which characterize the control manifolds of

various dimensionalities, makes repeated use of the transformation from the y's

to the z's and back again. It is therefore useful to observe that, in the important

linear case (cf. (2)), this transformation may be set up in such a way as to be

its own inverse. In fact, the purpose of this section is to prove more generally

that, whenever the system (la) is carried into the system (lb) by means of an

involutory transformation on the x's, then it is always possible to choose the

variables y and z in such a manner that they also are related to each other

by means of an involutory transformation.

We have already assumed in the preceding section that F(0) # 0. Without

loss of generality we may assume further that F^O), the first component of F(0),

is not zero. As in the rest of this proof we have adopted the following conventions :

The first component of any n-vector v will be denoted by vt and its last (n — 1)

components will be thought of as an (n — l)-vector, denoted by v. Moreover,

if A = A(i, v), is any scalar or vector function of the scalar t and the n-vector v,

we use the notation A(a, ß, y) to denote the value of A when t takes on the scalar

value a, when v1 takes on the scalar value ß, and when v takes on the (n —1)-

vector value y. A similar convention is made in instances when the t and a are

absent from the above statement.

We suppose that the transformation x' = </>(x) is involutory, so that 4>i4>ix)) — *>

and that it carries the system (la) into the system (lb) and vice versa. Let

x=/(i,x0) be the solution of (la) such that/(0,x0) = x0 and let x = g(i,x0)



1964] CONTRIBUTIONS TO THE THEORY OF OPTIMAL CONTROL 239

be the solution of (lb) such that g(0,xo) = x0. Then <£(/(i,x0)) is a solution of

(lb) and when / = 0 it reduces to <¡>(x0). Hence, we see that

(14) (t>(f(t,x0)) - £(f, <«*o)).

It is clear that/(—t,x) is a first integral of (la) in the sense that when x is

replaced by a solution x(i) of (la), /( — t,x(t)) is independent of f. Similarly

g(—t,x) and, hence (¡>{g{ — t,x)), are first integrals of (lb). We next define the

scalar functions t and a of the n-vector x in such a manner that

(15) /1(-t(x),x) = 0,       t(0) = 0,

and

(16) <^.1[g(-(7(x),x)] = 0,       <t(0) = 0.

Since both/( —1,£/) and <¡>\_g{—t, £)] are, for any fixed n-vector ^, solutions

of x = — F(x), and since F^O) # 0 by hypothesis, it is obvious from the

implicit function theorem that the definitions of t(x) and cr(x) just given are

effective, at least in a neighborhood of the origin.

The transformation x -> y is now defined by the equations,

(17) yt = <x),

(18) y   - /(-t(x),x).

The reader may verify that (dx/dx)F(x) = 1 and that/(—t(x),x) is a first integral

of (la). Hence the transformation defined by (17) and (18) does indeed carry (la)

into (9) as required. Moreover we see, from (15), (18), and (17), that

(19) x=f(x(x),0,y)=f(yuO,y),

which gives the transformation y -» x.

We now define the transformation x -» z by the equations

(20) zt = ff(x),

(21) z = £[>(-<r(x),x)].

Here again the reader may verify that (do/dx) G (x) = 1 and that <j>[g(—<r(x),x)]

is a first integral of (lb). Hence the transformation defined by (20) and (21) does

indeed carry (lb) into (10) as required. Combining (16) and (21), we find that

(¡)(0,z) = g(-a(x),x)

and, hence, from (20) we have 0(0,z) = g(-z1,x). This means that

x = g(zu(¡)(0,z)). Thus, from (14), we find that
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(22) x = ^.[/(z1,0,z-)]

which gives the transformation z -> x.

From (19) and (22) we have

/(J'i,0,j) = ^[/(z1,0,z)],

which, because of the involutory character of <j>, is equivalent to f(zt, 0, z)

= <l>[f(yi,0,y)~] and shows that the transformation y-*z is itself involutory.

Actually a somewhat more refined calculation along these lines yields the fol-

owing explicit formulas for this transformation,

*i = (rlF(yi,0,y)l

z = F{-o{Fiyu0,y)l ^[F(y1,0,JO]},

as well as the further information that t(x) = ct(^>(x)) and r(</>(x)) = <r(x).

The results of this section hold equally well for any two systems x = P(x) and

x = G(x) which are transformed into each other by means of an involutory

transformation and not merely when F — G = 2a as is the case in (la) and (lb).

The significance of this section is that, whenever we have an involutory trans -

formation from (la) to (lb), we may choose variables y and z in such a manner

that it is sufficient to compute one leaf only of each switching manifold. The

companion leaf would then be obtained by a mere change of y's into z's or

vice versa.

5. The equation.   xav) = Sgn [<r].    The equation

d4x
(23) w - e,      £ =  ± 1

is equivalent to a system of four simultaneous linear equations, namely:

(24) Xy   =   £,       X2   =   Xj,       X3   =   X2,       X4   =   X3.

We denote the system (24) by Sc.

It is easily seen that Se has the following independent first integrals

EXi — t = const.,

x2 - ifix? = const.,

x3 — £x2X! + jx? = const.,

x4 — £X3X! + \x2x\ —\ex\ = const.

The transformation
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yi = xi>

y2 = x2 - i*î>

(25) ,   3
^3   —   *3 — *2X1 + 7xi,

i 2        14
J 4.   —   X4 — X3XÍ + ■JX2X1 — g-Xj,

reduces the system S+1 (that is, equations (24) with s = +1) to the form

(26) j1 = l,   y2 = 0,   ¿3=0,   j/4 = 0.

The inverse of (25) is

*i = yu

,21s x2 = y 2 + iyî>

*3 = y 3 + y2yi +$y\,

x* = y a + y3yi + iy2y\ + &&

On the other hand, if we introduce the variables

2i  =  — xi

«m z2   =   ~ \x2 + Ï xl)>

Z3    =   — (X3 + X2Xi   +  jXy),

z4 = — (x4 + x3xt + \x2x^ 4-gXj),

the equations of S_t are transformed into

(29) ¿a = l,   ¿2 = 0,   ¿3 = 0,   ¿4 = 0.

The inverse of (28) is given by

Xj     =      — Zy,

x2 = - (z2 + iz?),

(30)
X3    =   -  (Z3  +  Z2Zy +   \Zy),

x4 = - (z4 +ziZi + \z2z\ + ^zt).

Finally, the transformations which give (>'i,3'2,y3,y4) in terms of (z1,z2,z3,z4)

and vice versa are

3;i = -z1, z1 = -y1,

,   Ji = -(z2 + zî). *a - - (^2 + jfo
(31)

3>3 = - (z3 + 2z2zt + z\), z3 = - (y3 +2^2^! + y?),

y4 = -(z4 + 2z3Z! + 2zaz? + -f2zí),     z4 - -(y4 + 2y3yx + 2y2yf+ -lyf).
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We are now in a position to compute the closed form equations of the three-

dimensional switching surface R3. In view of the preceding section it is sufficient

to compute R3 v In order to obtain R3A we shall first compute the lower di-

mensional switching surfaces R1A and R2 t.

The set R1¡± is obtained by moving backwards (with respect to time) from

the origin along the (unique) solution of system S+l which passes through the

origin. Using (26) we characterize the set Rltl by the relations

Ä1.1 : Vi < o, y i = o, y3 = 0, y4 = 0.

These relations may be expressed in terms of (zuz2,z3,z¿) as follows:

(Zy     >    0,

z2  + z\ = 0,

(32) «Li

z3 + 2z2zl + z\ = 0,

.z4 + 2z3zt + 2z2Zi + \zz\ = 0.

Elimination of zx between the first two equations in (32) yields

z3 + z2zx  = 0,

whence Rltl may be characterized by

(33) Rn

-2-   <   0,
z2

z3    +    Z2ZIi*i -■= o,

= o,

112z4 + lz\ = 0.

z\ + z\

It is now easy to compute Ä2>1. One simply solves (29) in negative time starting

on Rx i (equation 33). The result is:

R2.1

or, in terms of (yi,y2,y3,y4),

< 0,

.5iï
Z2

z\ + z\ = 0,-3 -r ¿2

12z4 + 7z2 = 0,
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(34) R

y3 + 2.v2yi + y? < o,

yi >

y 2 + y\

y3 + 2y2yy + y\

yi + y\

y2y\ + 2v3y! + y\y\ + 4y3y2yy + iy23 - y\) = 0,

10y2y\ + 2Ay3yy + (12y4 - ly\) = 0.

We may use the last two equations of (34) to obtain two linear equations in

yy. The algebra is somewhat tedious but straightforward. One gets

(35) Ay y + B = 0,

(36) Cy1 + D = 0,

where

A=  12y3{-i5y32 + U0y2yA-96y¡},

B = 836y2y2 + 95y25 - 1440y4y23 + 720y2y42 - 576y4y32,

C =  -6340y23y32 + 23,040y2yiv4 + 7200y^y4 - 3600y^y^ - 475y25 - 13,824>>t

D =  -6960y3y3y4 + I0,080y 2y3y¡ - 6912y33y4 + 630y^y3 + 4032y22y33.

Equations (35) and (36) are two simultaneous linear equations in yx. Hence

the determinant of their coefficients vanishes identically. That is

Let

E =

AD-BC = 0.

-,   B    (BV
y> - 2y2A  - (A)

y2 +
(*)"

The equations of R21 now become

R,

r£ < o,

'<-¥

Ayy + B = 0,

[AD - BC = 0.
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We note that the expression AD — BC does not contain yt ; neither does E.

The equations of R3 t are now immediate. Using (26), one has

(37) *3.1

E < minin(0,-|),

B
vk-t

AD - BC = 0.

The equations of J?3>2 are identical in form with (37). One simply replaces

y i by z¡ throughout. These equations may also be written in terms of the original

state variables (x1,x2)x3,x4) by using (25) and (28).
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