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1. Introduction. In accordance with Schwartz's [9] generalization of

Delsarte's [2; 3] original definition, an entire function (h is mean periodic with

respect to a complex plane measure p of compact support if for all complex z

(1) \(f>iz + w)dpiw) = 0.

(Actually in Schwartz's terminology </>( —z) is mean periodic with respect to p.)

If the entire function of exponential type /(z) = JVwdp(vv) has the series ex-

pansion Z„" 0anzn, and if <p is entire, then (1) is equivalent to the infinite order

differential equation Z"=0 a„<j>{n)iz) = O.An exponential monomial zAeCr is a solu-

tion of (1) if and only if £ is a zero of/ of order at least h + 1. Let B denote the

set of all such exponential monomial solutions. Among other results, Schwartz

establishes an earlier corollary of Valiron [11, p. 38] to the effect that each solution

of (1) can be expressed as a series of linear combinations of elements of B, the

series converging uniformly on compact subsets of the plane. For (1) to have

meaning for z in a region (open) R, it suffices to have cj> analytic in a region

including all points of the form z + fc where z is in R and fc is in the smallest

closed convex set containing the singularities of the Borel transform [1, p. 73]

Fiz) = J(z - w)~ldp(w) of/. In particular, (1) has meaning for z in R if <p is

analytic in the sum R + P where P is the conjugate indicator diagram of/, i.e.,

the closed convex hull of the singularities of F. In this case, (1) is equivalent to

fc0(z + w)Fiw)dw = 0 when c is a properly chosen curve about P. For such <¡>,

(1) is not in general an infinite order differential equation [4, p. 59]. We will say

that a function <p which is analytic in R + P and satisfies (1) for z in R is mean

periodic with respect to / in R. The purpose of the paper is to determine con-

ditions on /and/or on mean periodic <j> that yield a representation for <j> in R + P

as a series of linear combinations of elements of B, the convergence being uni-

form on compact subsets.

In order to state our results we introduce some notation : If T is a region,

AiT) will be the complex linear space of single-valued functions analytic in T
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with the topology of compact convergence, i.e., uniform convergence on compact

subsets of T. B(T) will denote the subspace of A(T) generated by the elements

of B. If U and V are sets of complex numbers and ö ^ 0, the sum U + V is the

set of numbers of the form u + v with u in U and v in V, while U © ö is the sum

of U and the disk | z | ^ <5. N(a, ô) will denote the neighborhood | z — a | < 5

i f Ô > 0, and Pj, will denote the convex hull of P and I/.

If K is the set of all functions which are mean periodic with respect to / in R,

then K is a subspace of A(R + P) and contains B and B(R + P). Our problem

is to find sufficient conditions to insure the totality of B in K yielding K = B(R +P).

Briefly, such a conclusion is justified if there exists a sequence of closed contours

tending to infinity on which for all p in P, epz\f(z) is of minimal exponential

growth, i.e., for each e > 0 and all p in P, eventually |e_,,z/(z)| > exp(—e|z|)

for z on the contours. This is a special case of the general result to the effect

that if for some t ^ 0 and all s in a set S, there is a contour sequence on which

eventually | e~"f(z) | > exp[-(r + ¿) \ z |], then K n A(R + Ps © t) c B(R + S).

Choosing S as P, it is always possible to take t as the length ô of the longest diameter

of P yielding the result : K n A(R + P © <5) c B(R + P). In each of these cases

the expansions of the mean periodic functions are given explicitly. Expansions

of a mean periodic function tj> in regions RL + P and R2 + P whose union is

not of the form R + P are in general distinct. This is the case, for example, in

the Fourier expansions (when p is the difference of the Dirac measures at 0 and

1) of cot nz in the upper and lower half planes.

If /is an exponential polynomial T$=1P£z)exp(a>iz) where the P, are poly-

nomials, then (1) is a difference-differential equation, and it has been shown in

[4, p. 49] that B is total in K by constructing a contour sequence on which

| e~pzf(z) | is uniformly bounded from zero for all p in P and z on the contours.

If / is of exponential type a, then (1) is an infinite order differential equation

on A(R © a). In this case it has been shown (see [5, p. 13] and [4, p. 61]) that

K n A(R®2o) c B(R), and, more generally, that for t ^ 0, K n A(R®(o+t)) c B(R)

if there is a contour sequence on which eventually |/(z)| > exp[—(t + e)|z|].

These results are special cases of the results of this paper. General results on entire

mean periodic functions and the totality of sets of exponential polynomials in

analytic function spaces are found in the papers of Schwartz [9] and Kahane

[6] and in the expository article by Leont'ev [8].

In §2 the definition of mean periodicity is rephrased, and the implications

of the Hahn-Banach theorem are discussed together with the relation of this

problem to the study of differentiation invariant subspaces of a space A(T).

Also in §2, an operator having K as kernel is introduced along with contour

sequences that will be used for summing series of linear combinations of elements

in B. §3 contains general expansion theorems in which the expansions depend

on the existence of such summing contours. The existence of such contours is

considered in §4, and specific expansion theorems are obtained from the theorems
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of §3. In §5 the uniqueness of expansions of mean periodic functions is examined,

yielding special representations for functions that are mean periodic with respect

to more than one function of exponential type.

2. Preliminaries. If A*iT) denotes the dual of A'T), then A*(T) may be

identified [7, p. 37] with the set of entire functions of exponential type whose

Borel transforms have all their singularities in T. If v e ^4*(T) and g(z) = jYM'dv(w)

has Borel transform G, then J*$(w)dv(w) = (27ti)_1 \c4>iw) Giw)dw where c is

a simple closed curve in T with its interior in T and containing the singularities

of G. If T contains the conjugate indicator diagram Pig) of g (as is the case if

T is convex), then c may be taken as a curve about Pig). These observations will

make it possible to write (1) in a more convenient form.

If g is entire, the spectrum s(g) of g will be the set of zeros of g, each being

counted according to its multiplicity. We will write (£, h) e s(g) to indicate that

£ is a zero of g of order at least h + 1./, F, P, K, and B will be used throughout

as introduced in the introduction. All curves will be rectifiable and simple closed

curves positively oriented.

Definition 2.1. (p in AiR + P) is mean periodic with respect to/in the region

R, if for each z in R, fc(z)<£(z + w)F{w)dw = 0, where ciz) is a simple closed

curve containing P in its interior with z + ciz) in a simply connected subregion

of R + P.

Definition 2.2. The operator & : A (R + P) -> AiR) is defined by

#"[<KZ)] = i2ni)~1 $c(z)<t>iz + w)Fiw)dw where ciz) is as in Definition 2.1.

The kernel K of & is then the set of functions which are mean periodic with

respect to / in R. In a straightforward manner it can be shown that !F is a con-

tinuous linear operator. To establish the injectivity and continuity of #" it is

helpful to note that if H is a compact subset of R and H © b cR, then for all

z in H, c'z) may be chosen as the boundary of P © ô.

Consider momentarily the problem of determining conditions under which B

is total in K when R + P is convex (modifications in paths of integration yield

a similar discussion in the nonconvex case). Then ^4*(R + P) may be identified

with the set of entire functions g of exponential type with conjugate indicator

diagrams Pig) in R + P. If Pig) © e c R + P, one may define with g an operator

'S mapping ^4(R + P) into j4(JV(0, e)) in the same way !F was defined with /. It

is easily shown that since zH~1eiz is in B whenever zVz(A = 1) is in B, the func-

tional in A*iR + P) corresponding to g annihilates B if and only if S does; and

that this occurs if and only if s(/) c sig), i.e., if and only if g/fis entire. Denoting

by A the set of all g with g //entire and Pig) c R + P, it follows from the Hahn-

Banach theorem that R(R + P) is the intersection of the null spaces of all func-

tional arising from g in A. This intersection obviously contains the intersection

of the kernels K(fS) of the corresponding operators 'S. On the other hand, the

continuity of each S? implies that R(R + P) is in each such kernel. Hence
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B(R + P) = f)àK(&). To ask if K c B(R + P) is to ask if each function which

is mean periodic with respect to / in R is also mean periodic with respect to each

g in A in a neighborhood of the origin. A sufficient condition insuring an affirma-

tive reply would be that for each g in A, P(gjf) is in R. For then, if g\f = n

and P(n)©<5 <= R, one may define an operator 3tf from A(R) into A(N(0,Ô))

so that 0 = 3f& on A(R + P) and each element in K is in K(&). A sufficient

condition in order that P(h) be always in R would be that P reduce to a single

point p, for then P(g) = p + P(h). However, such a condition is not necessary

for the totality of B in K as is illustrated in the case in which / is an exponential

polynomial. If P does reduce to a point p, it follows that e~pzf(z) is of

minimal type and there exists a sequence of circular contours tending to infinity

on which eventually |e_pz/(z)| > exp( — e | z |). This is precisely the type of con-

dition used here to insure that K <= B(R + P).

In the same way that we have asked if the differentiation invariant subspace

K of A(R + P) is generated by the exponential monomials in K, we may ask

if a proper differentiation invariant subspace M of some ^4(T) is the subspace

generated by the set BM of exponential monomials in M as is the case when M

is finite dimensional. Considering for simplicity the case when T is convex, the

fact that M is proper implies the existence of an entire function fc with P(k) c T

such that if zVz is in BM, then (Ç, h) e s(k). If A is the set of all g with P(g)

in Tsuch that (£, h)es(g) if zVzeBM, then BM(T)= f)&K(&).Then M = BM(T)

if every element of M is mean periodic with respect to each g in A in some neigh-

borhood of the origin. This related problem will not be investigated here.

If R and T are regions of the complex plane, the definition of & may be ex-

tended to a map #\ of A((R + P) x T) into A(R x T) by defining

&z[4>(z,t)]   =1   [     <p(z + w,t)F(w)dw.

SPz is a continuous linear operator when the spaces are equipped with the topology

of compact convergence. ^rz[<p(z,t)]\z~tt will be denoted by &rz=a[<p(z,t)]. The

Borel transform of tf>(z, t) with respect to z will similarly be denoted by Lz[<p(z, t)].

In order to expand a function <¡> in K in a series of linear combinations of

elements in B, we first define some linear functionals on A(R + P) that will pro-

duce with B a biorthogonal system which in turn will suggest a suitable coef-

ficient for each function in B. Then we define a sequence of contours associated

with / that will enable us to group together the proper linear combinations of

these exponential monomials in an attempt to produce a series that converges to <p.

Definition 2.3. Let Çkes(f); let ck be a circle about Çk containing no other

zero of/inside or on itself. For each y in region R, each natural fc, and each non-

negative integer n, the functional %khy on A(R + P) is defined by
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where the paths of integration from a to u all lie in the same simply connected

region (connected understood) which contains y + P and is in the region of

analyticity of <p.

We will first show that f$khy is defined for each pair (a, S), where S is a simply

connected region containing y + P in the region of analyticity of cp and a is in S.

Choose N = N(y, e) in R. For u in N + P the bracketed expression in the right

member of the definition is in A((N + P) x T) where T is the whole finite plane

and the path of integration is in S. Hence #"„ maps this into A(N x T) and the

evaluation of this image at u = y yields an entire function of t. Therefore

t5**y[0] exists for the pair (a,S). Suppose now that (a,S) and (a',S') are two

such pairs. Choose q in y + P. Let L be a path in S from a to q, and let L' be

a path in S' from a' to q. Choose c(y) as a curve about P with y + c(y) c S n S'.

For each w on c(y) let L(w) and L'(w) be paths from a and a' to y + w in S and

S', respectively. Let K(w) be the directed segment [q,y + w]. The integral of

<p(s)e~st with respect to s over L(w) — L'(w) is then equal to the integral over

L + K(w) — L' — K(w) or L—L'. Since this integral is independent of w and

entire in t, it follows easily by writing 3Fu as an integral over c(y) that the differ-

ence between [jkhy[(p] with (a,S) and with (a',S') is zero.

It is easy to see that $khy is a continuous linear functional since OF z is continuous.

The following theorem is proved in [4, p. 31].

Theorem 2.1.   If (Cq,p)es(f), then   %khy[zpexp(Çqz)] = h\6kqohp for ally.

Definition 2.4. For t ^ 0 and complex number ß, a sequence of closed

contours E = {Tp}^! is said to be (x,ß) associated with / if the following con-

ditions are satisfied:

(1) Tp is in the interior of rp+1.

(2) Tp passes through no zero of/.

(3) If rp = min | z | and Rp = max | z | for z on Tp, and Xp is the length of

rp; then as p-> oo, rp-> oo, logAp = o(rp), and Rp = 0(rp).

(4) For each £>0 there is a p0 = p0(E,ß) such that if p > p0, then

|/(z)exp(-/?z)| >exp[ —(t + e)rp] when z is on rp.

Definition 2.5. Let S be a set of complex numbers. Then a sequence I of

contours is (t, S) associated with / if and only if I is (t, ß) associated with / for

each ß in S.

If S is (t,S) associated with/, then the p0 in (4) of Definition 2.4 depend on

e and ß for ß e S. It is easy to show by a straightforward compactness argument

that a single p0 = p0(e) may be chosen for all ß e S if S is compact.

Theorem 2.2. // 2 is (x,S) associated with f and S is the convex hull of

set S, then S is (x,S) associated with f.

Proof. Suppose a and ß are in S and y = a + t(ß — a) where 0 < t < 1. Then

in the half plane ^[(j?-a)z] ^0, |/(z)exp(-yz)| = |/(z)exp[-i(/?-a)z-az]|
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^\fiz)expi-az)\.ln^[iß-a)z]>0,

|/(z)exp(-7z)| = |/(z) exp[(l-f)(J?-a)z-j?z)] | > |/(z)exp(-/?z)|.

By considering z on Tp n{z\ae[iß-a)z] = 0} and on rp r\{z\at[iß-a)z] > 0}

where Tp e £, the result follows from the fact that a and ß are in S.

It is to be noted that rp rather than | z | is used in the lower bound in property

(4) of Definition 2.3. Suppose that a sequence E of contours satisfies the first

three conditions ofthat definition with lim supp_ 00Rp/rp= p. Suppose also that for

each e> 0 itis true, for large p and z on rp, that|/(z)exp(—pY)|>exp[—(e+r/p)|z|].

Then for p large and z on Tp, |/(z)exp(—ßz)\ > exp[—(e + r/p)(p + e)rp]

= exp[—(r + sie + p + r/p))rp], and £ is (t,/?) associated with/. This indicates

that for (t, ß) association the annuli containing the rp may increase in difference

of radii with p if a compensatingly better lower bound can be found for

|/(z)exp( — ßz)\ on the contours.

Definition 2.6. A series whose terms are linear combinations of elements of

B is called an exponential series relative to /.

Definition 2.7. Let E = {Tp}"= x be (t,S) associated with/; let region R

contain y and </> eAiR + P); let Zt be the set of zeros of/inside F y and Zp be

the set of zeros inside Tp but outside rp_! for p > 1; let mk + 1 be the order of

the zero Çk off. The series

I      I     fl   Mz')  e^
« = 1   CxeZ,     \h = 0 h. I

is called the exponential series of <p relative to (/,Z, y).

3. General expansion theorems. In preparation for the convergence theorems,

we first establish some lemmas. Recall that Ps is the convex hull of P and set S;

in particular, P0 is the convex hull of 0 and P.

Definition 3.1.

f'iz) if z = Í.

Lemma 3.1. Let hid) be the indicator function off. Then for each e>0

there is a K = X(e) such that \gireie,t)\ = |/(f)| + Kexp[(/i(0) + e)r].

Proof. Since limsupr_00r_1log|/(re'e)| = n(0) and the limit is uniform in 0,

it follows that if |re'8-f|_l, then there is an My = M^e) such that

| girew, t) | < |/(f) | + My exp {r[hi&) + e]}. We assert that there is an M2 = M2(e)

such that if \rew- t\ < 1, then |g(rei8,f)| < M2exp{r[A(0) + e]}. Since n(0) is

uniformly continuous, there is a 5 > 0 such that | n(öt) - n(02) | < e/2 when

| ffy — ö21 < ô. The indicator diagram of /' is a subset of that of / and so

limsupr^00r_1log|/'(re,9)| _ hid), the limit being uniform in 0. Hence there is an

ry = ryie) > 1 such that | í | > ry -1 implies |/'(f) | < exp{| í | [n(argi) + e/2]}.

gi*,t)
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Choose r2 = r2(e) so that if r > r2 and | reli — t \ < 1, {then |arg/ - 0| < 5 for

some choice of arg t. Let r0 = max {r1, r2}. Then if r > r0 and | re'9 — 11 < 1;

(1) \t\>r0-l^r1-l so |/'(t)|<exp{|i|[n(argt)+e/2]}, and (2) r > r2 so

| arg í - 01 < S and | n(arg i) — h(6) | < e/2 for properly chosen arg t. Together

these yield |/'(i)| <exp{|f| [h(9) + e]} < exp{(r + l)[h(6) + e]} if r>r0 and

| re'9 — /1 < 1. Since |/'(i) | is bounded for 11 | ^ r0 + 1, it follows that for some

M2 = M2(£),|/'(O|<A*2exp{r[n(0)+e]} when |rei9-i|<l. Therefore if

|rei9 - t\ < 1, and c = [t,reie], \g(rew,t)\ = \rew - t\~l | fc f'(w)dw\

^ M2exp{r[h(0) +¿]}, the inequality obviously holding when t = re'e. This

establishes the assertion. Choosing K as max {M1,M2} establishes the lemma.

It is a corollary of this lemma that for any fixed f, the conjugate indicator

diagram of g(z, l) is a subset of P. The same is true for zmg(z,t) if m is a non-

negative integer.

Lemma 3.2. If m is a non-negative integer, then for z in the complement

of P0 and for all t,

Proof. Let U and V denote respectively the left and right members of the

identity. Let t be fixed. For each «5 > 0, the bracketed function in U is analytic

in the pair (u, z) for u in the interior of P0 © 5 and z in the complement of P0 © <5.

Since P0 © ô ZD N(0, (5/2) + P, the image of this function under SP~U when evaluated

at 0 is analytic in z for z in the complement of P0 © 3. Since ô may be chosen

arbitrarily small, U is analytic in z for z in the complement of P0. Fis also analytic

in the complement of P0 since the conjugate indicator diagram of zmg(z,t) is a

subset of P, which is in turn a subset of P0. To establish the identity it will suffice

to show that it holds for real z > a where / is of type o.

For z > <T, V= $™xmg(x,t)e~zxdx where the integral converges absolutely

since g(x, t) is of exponential type o in x for each t. Let c be the circle | w | = (<r + z)/2.

A straightforward calculation shows that

g(x,i)=-L    [ ewtF(w)   reix-')sdsdw.
2ni   Jc Jo

Substituting this expression for g(x, t) in the last expression for V, we obtain

V   = ^-.    [ ewtF(w)  CxTe-"   f e(x~,)s dsdxdw
2m   Jc Jo Jo

= _L   f e*"F(w)   fVs'    f  xme(s-z)x dxdsdw.

The first change in the order of integration is justified by observing that for each

w on c, the integral with respect to s is of exponential type less than z in x yielding

the absolute convergence of the first integral with respect to x. The second change
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follows from the fact that the last integral with respect to x converges absolutely

for each s in [0, w] since ¿% (z — s) > 0. Noting that the last integral with respect

to x is m\l(z — s)m+l, it follows that this last expression for Fis equal to U.

Theorem 3.1. // Z is (t,0) associated with f, y is in region R, and

<peK nA(R + P0©r), then the exponential series of (p relative to (f,H,y)

converges to <p in A(R).

Proof. The first part of the proof will be devoted to establishing the uniform

convergence of the series to <p in a neighborhood of y. Then convergence will be

established elsewhere in R by showing that the series relative to (f,"L,y) and

(/,Z,y') are the same if y' eR and y' ± y.

Let limsupp^oo Rp\rp = p and £ = n/(p + 7). Convergence will be established

in N = N(y,s). Using the notation of Definition 2.7, let Z = {r„} and choose

a to be in R + P0 © x with the paths of integration from a to u in the same

simply connected subregion of R + P0 © x containing y + P. Let Sp(z) denote

the pth partial sum of the series. In Sp(z) the sum of the integrals over the ck

may be replaced with an integral over Tp. The upper limits on the sums over n

may be changed from mk to infinity because the terms so introduced are zero

by Cauchy's theorem. Then,

Since the %khy[<p] are independent of the pair consisting of a and the simply

connected region containing y + P, so is Sp(z). Since N + P0 is a convex and

simply connected subregion of R + P0 © x containing y + P, and since zeN + P0

when zeN, we may write z for a and integrate with respect to s over straight

line paths when considering this expression for Sp(z) when zeN. In the first

part of the proof, we consider only z in N and assume that the substitution of

z for a has been made in Sp(z).

For each p, choose m = m(p) so that m = [(x + h — 2e)rp], i.e., m is the largest

integer not greater than (x + h — 2e)rp. For each p with m 2£ 1, integration

of )"<p(s)e~stds by parts m times, together with the fact that ^u = y[(pm(u)] =0, yields

For m ^ 1, the second term of the right member is split into two terms, Qp(z)

and Tp(z), by replacing the integral from z to u by integrals from z to y and from

y to u, respectively. Each of these will be shown to approach zero uniformly

as p-> oo.

Let C be the curve formed by the boundary of P0 © 3e. Then for p with m § 1,

QP(z) = ¿j ÍVm)(s) Jp e<z-*rmdtds.
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The inner integral is (z -s)m lHm-ï)\. Writing $<m)(s) as a Cauchy integral

over y + C,

Let M = max | </>(£) | for £, on y + C, and let L be the length of C. For z in N,

s in [z, y] and £ on y + C, we have | z — s | < e and | £ — s | > 2e. Hence

|Qp(z)| = MLm/(7te2m+2). Asp->co, m->oo and so Qpiz)-*0 uniformly. (In

[4, p. 64] a similar term should be o(l) rather than zero.)

We now consider Tpiz). Let D and E be the curves formed by the boundaries

of P0 © e and P0 © (t + A). We first rewrite the image of !FU evaluated at y

that appears in Tp(z). Write #"„ evaluated at y as an integral over D and

(¡>(m\s) as a Cauchy integral over y + E. A change in order of integration com-

bined with two translation changes of variables shows that

By Lemma 3.2,

(2) w = gssf liS? I *(C+^B"«(C,0]«*.
Next we obtain a bound for |L;[£mg(£,i)] | for £ on E. Consider such a £ and

any fixed t. The conjugate indicator diagram of zmgiz,t) is a subset of P, and

the support function of P is n(-0) where A(0) is the indicator function of/. If

£ is on £, then £ is in the complement of the closed convex set P0 © (t + h — e).

This set has support function max {0, n( - 0)} + x + h — e. Hence for each £

there is a ^ = i¿>(£) such that #(£«>"''*) > max{0,n(-i¿»} + r + h - e. Let

*P —e~*. In general, if a function v of exponential type has indicator function

n„ and Borel transform V. then F(w/,P) is given in the half plane áP(w) > hvi-i¡/)

by *P /"«(x'P)«!- "'dx. In our case, if £ is on £ and \¡i = iK£) is chosen as indicated,

we have áü(£«F) >hi~\¡i) and

^[C"í(C,0] = »P Tx^^íx^Oc-^dx.

Using Lemma 3.1 together with each of the lower bounds for ^(£^), there is a

K = Kit) such that

(3) \Lr[Cgit,t)]\ ÍÍK+ |/(f)|)m!/(t + h - 2e)m+1.

Choose p0 sufficiently large so that if p > p0, then : m _■ 1, t + A — 2e

- [(t + A - 2e)rp] /rp<e, Xp < exp(erp), Rp< (p + 1) rp, |/(f) | > exp[-(r + e)rp]

when  f is on rp, and m!/mm<(87tm)1/2e"m. Let M'= max|^>(£+y)| for
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C on £ and L' be the length of £. Then if z e JV and p > p0, it follows from

(2) and (3) that

| Tp(z)| ^ L'M'(K + l)(x + h- 2E)-ll2r„ 1/2exp(-erp).

Therefore, as p -* oo, Tpiz) -* 0 uniformly in JV. Hence Spiz) -» <p(z) uniformly

in JV.

To complete the proof of the theorem it suffices to show that if y' eR and

y' # y, then the series relative to (/,Z,y) converges uniformly to (j> in some neigh-

borhood of y'. By what has been shown, the exponential series of cp relative to

(/,E,y') converges uniformly to <p in a neighborhood of y'. Hence it will suffice

to show that the series are the same. This will be done by showing that

A = %khy[<P~l - <WM = 0. In the definitions of &„,[</>] and gtt,'I>] choose

a as y and y', respectively. Let A be a curve in R from y to y'.Choose 5 > 0 suf-

ficiently small so that z + P0 © ô <= R + p0 for all z on A, and let c be the curve

formed by the boundary of P0 © ¿. If z is on A and w is on P0 © <5, then [z, z + w]

is in R + P0 since the endpoints are in the convex set z+ P0@ô. Let g(r) be a

parametrization of A where g(r0) = y and g(r'0) = y' and r0 < r¿. For each w

on c, let Lw and L'w be the directed segments [y,y + w] and [y',y' + w], and

let Kw be the curve with parametrization g(r) + w, r0^r ^ r0'. Now

A + L¿ — iCw - Lw is homotopic to a point curve in R + P0. Since (p e A(R + P0),

the integrals of c/>(s)e~st with respect to s over Lw — Lw. and A — Kw are equal.

Writing !FU as an integral over c, A may be expressed as

<¿>> J,(-7ir •fF(wK" JL **""**"'■
The part of this expression arising from the integration over A is zero by Cauchy 's

theorem; while the part due to integrating over -Kw may be written, after a

translation of variables, as

Since #ru=s[<p(u)] = 0 for all s on A, A = 0. This completes the proof of the

theorem.

Theorem 3.2. J/ Z is (x,S) associated with f, y is in region R, and

(¡)eKriA(R+Ps(Bx), then the exponential series of </> relative to (/,S, y)

converges to tp in A(R + S).

Proof. Upon noting that compact convergence of the series to <f> in every

ß + R where ß is in S implies compact convergence to cp in S + R, it suffices

to prove the theorem when S is a single point ß. This case will follow from the

last theorem by a translation.
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Let g(z) = e~fzf(z). Then the conjugate indicator diagram P' of g is P — ß,

and P'0 = Pß- ß. Let the Borel transform of g be G(z) = F(z + ß). Since S is

(x,ß) associated with /, it is (x,0) associated with g. Let R' = R + ß. Let the

operator <$:A(R' + P')^A(R') and the functionals <Skhy on A(R' + P') be de-

fined with g as !F and \^khy were defined with/.

(peA(R + Pß@x) implies that <peA(R' +P¿©t). It is easy to verify that

&„=z+ß[<p(u)] = ^u=z[(p(u)]. Hence if z' = z+ßeR' and (peK, then

^(z')] = ^u=I.[</»(u)] = ^=z+/)[0(u)] = ^u=z[</»(u)] = O. By the preceding

theorem the exponential series of (p relative to (g,£,y + ß) converges to <p in

A(R'). But this is the same as the series relative to (/, £,y) as can be verified by

showing that (Skhy+ß[<p] = &»y[</>].

Corollary 3.1. If E is (x,P) associated with f, y is in region R, and

<peKnA(R +P©t), then the exponential series of <p relative to (/,2,y) con-

verges to (p in A(R + P).

In particular this corollary states that K n A(R + P © x) <= B(R + P) if such

(t, P) associated contours exist. If (0, P) associated contours exist, then

K=B(R +P).

4. Specific expansion theorems. In this section the existence of sequences of

contours that are (t, S) associated with a general / will be established for certain

choices of x and S. These results will then be used together with the theorems

of the preceding section to give expansion theorems.

If/is of exponential type a, it follows from a well-known theorem (see [1

p. 43] and [10, p. 277]) that there exists a sequence of circular contours with

center at the origin that is (a, 0) associated with /. The theorem asserts that for

each e > 0 there are circles of arbitrarily large radius on which |/(z)|

> exp { — (a + e)| z |}. (<r,0) associated contours may be constructed by choosing

rp for each p as a circle on which |/(z)| > exp{-(<7 + l/p)|z| } and such that

the radii rp-+ co while rp<rp+1. This is a special case of the next theorem.

Definition 4.1. If P is the conjugate indicator diagram of/ and ô ^ 0, Ss

is the set (~]ßeP { z | | z - ß | ^ <5}. That is, S is the set of all points z having the

property that the closed disk with center at z and radius 5 contains P.

Definition 4.2. If d(s, p) is the distance from s to p, and set S # 0, then

o(S) = supd(s,p) over (s,p)eS x P.

Theorem 4.1. // <5 2: 0, Sô j= 0, and Sô is the convex hull of Sd, then there

exists a sequence of circular contours with center at the origin that are (o,S¡)

associated with f.

Proof. In view of Theorem 2.2, it will suffice to construct (<5, Sö) associated

contours. Suppose aeS. Then/(z)exp(-az) has conjugate indicator diagram
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P — a and is of type ax — ô since P — a is contained in the closed disk of radius S

with center at the origin.

First, we assert that for each e > 0, there is an r0 = r0(e) such that if | z | > r0,

then |/(z)exp( —az)| <exp{(<5 + e)|z|} for all aeS„. Suppose not; then for

some e > 0 and each natural n there are z„ and a„ with | z„ | > n and a„ e S„ for

which |/(z„)exp( — anz„)\ _ exp{(<5 + £)|z„|}. The sequence {a„} has a con-

vergent subsequence, which we suppose to be {an}, converging to some ß in S„

since S0 is nonempty and compact. Choose N sufficiently large so that if n > N,

then|a„ — ß\ < e/2.Combining inequalities,|/(z„)exp(—/?z„)| = exp{(<5 + 6/2)|z„|}.

Since |z„| may be taken arbitrarily large, this contradicts the fact that

/(z)exp( — ßz) is of type aß _ <5. This proves the assertion.

Next, it will be shown that for each e > 0, there are circles of arbitrarily large

radius on which |/(z) exp ( —az)| > exp {—(¡5 + e)|z|} for all ae S„. We may assume

/(0) = 1. Let {£„} be the zeros of/ with | £„ | = pn and p„ = p„+1 and let $(z) =

nB°°=i(l+z/p2)- Titchmarsh [10, p. 277] shows that lim supP_ œr ~l log |<H-r2)|

= 0. Hence there is a sequence of r„-*co, for which log |#( — r2) | _ — er„/2.

Since |/(z)/(-z)| = \<f>i-r2)\ where r = \z\, |/(z)/(-z)| = exp(-8r„/2) for

\z\ = rn. By our assertion, there is an r0 = r0(e) such that if \z\ > r0, then

|/(z)exp( —az)| < exp{(¿+£/2)|z|}. These two inequalities show that for

Iz| = r„ > r0, |/(z)exp(-az)| > exp{-(¿ + e)r„}.

By choosing Fp as a circle on which |/(z)exp( — az)\ >exp{ — (<5 + l/p)|z|}

and such that the radii rp-> oo while rp < rp+1, the lemma is established.

Corollary 4.1. If S is a bounded, nonempty set with convex hull S, then

there exists a sequence of circular contours with center at the origin that are

(<r(S), S) associated with f.

Proof. The theorem says there exists a sequence of (<r(S), §a(S)) associated

contours. These are also (<j(S),S) associated since S c Sff(S). The desired con-

clusion follows from Theorem 2.2.

Corollary 4.2. // ô is the length of a longest diameter of P, then there

exists a sequence of circular contours with center at the origin that are (¿,P)

associated with f.

Proof.   This follows from the fact that P c S}.

These facts on associated contours together with the results of §3 give the

following theorems, of which the second is the most general. Each of these theo-

rems could be stated in a slightly stronger way by noting that each solution is

expansible in an exponential series relative to / in which the terms involving the

exp(£^z) appear in an order of non-decreasing |£t|. This has not been done for

the sake of simplicity.

Theorem 4.2.   K n A(R + P0 © a) c B(R) if f is of exponential type a.
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Proof. This follows from Theorem 3.1 and the remarks at the beginning

of this section.

Theorem 4.3. Ifô ^ 0, S c §s, andS¿ 0, then K n A(R +PS © Ô) <zB(R+S.)

Proof. This follows from Theorem 3.2 and Theorem 4.1 since (ô,Sô) associa-

tion implies (S,S) association.

Theorem 4.4. // S is a bounded, nonempty set, then KnA(R + Ps®o(S))

<=B(R + S).

Proof.   This follows from Theorem 3.2 and Corollary 4.1.

Theorem 4.5. // ô is the length of a longest diameter of P, then

KnA(R+P®ö)czB(R+ P).

Proof.   This follows from Theorem 3.2 and Corollary 4.2.

5. Coefficient uniqueness and some consequences.

Theorem 5.1. If R is a region containing y and (peB(R +P),then in any

expansion of tp in a series relative to f, the sum of the coefficients of zh exp((kz)

is  dkkyWIhl

Proof.   Suppose <p = E^Uj where

Ui(z) = S     I ciqA e^z   .
7 = 1     \<J=0 /

Then, since ^khy is a continuous linear functional on A(R + P),  it follows from

Theorem 2.1 that &*,[£]= E°-i8kM- *! 2£i<*„.
Application of this theorem together with earlier expansion theorems will now

be made for the purpose of characterizing functions that are mean periodic in

a region with respect to two functions of exponential type. Generalizations to

more than two functions are obvious. In this direction, let/j and/2 be two func-

tions of exponential type. Subscripts will be used in an obvious way on the nota-

tions developed for / in the preceding sections. In particular, Pi and P2 will

denote the conjugate indicator diagrams of/i and/2 in this section.

Theorem 5.2. Let sequences of contours 'Ll and E2 be (x,Pt) and (x,P2)

associated withf\ andf2, respectively. Let R be a region with yteR + P2 and

y2e.R +Pt. Let <p in A(R + P^ +P2@x) be mean periodic with respect tofx

and f2 in (R + Px) KJ(R + P2). Then the expansions of <p relative to (f1,'L1,y1)

and (/2,£2,y2) in R + Pt + P2 are identical and contain only terms arising

from the common zeros of f^ and f2, multiplicity of zeros taken into account.

Proof. It follows from Corollary 3.1 that the two series in question converge

to<pinA(R +Pj +P2).Let/=/1/2.ThensinceP1 +P2 =>P,R +Pt +P2 =>R+P

and <p e B(R + P). By the preceding theorem if y e R, then the coefficient of
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z''exp((fcZ) in each series must be 5kA),[0]/ft!. If C* is a zero offi of order greater

than h but not a zero of/2 of order greater than h, then the coefficient of zAexp(£fcz)

in the series relative to (/i,Zi,yi) must be zero since the coefficient of this term

is zero in the expansion relative to (/2, Z2,y2). Similar remarks apply interchanging

the roles of /t and /2.

Corollary 5.1. Let ô be the larger of the lengths of the longest diameters

of Pi and P2. Let Rbe a region. Let <p in AiR + Pt + P2 © 5) be mean periodic

with respect to ft and f2 in iR + Pi) U(R +P2). Then cf> is representable in

A(R +Pi + P2) as an exponential series relative to the g.c.d. of fi and f2 in

which the terms containing the exp(^z) appear in an order of nondecreasing

u
Proof.   This follows from the theorem and Corollary 4.2.

In particular, if fy and f2 have only a finite number of common zeros, then

any function which is mean periodic with respect to /j and f2 is an exponential

polynomial (with polynomial coefficients) in its region of analyticity. In any

case, a function of exponential type that is mean periodic with respect to fi

and f2 must be an exponential polynomial, the exponent coefficients being the

common zeros offx and/2 in the conjugate indicator diagram of (p. In fact, every

vertex of the polygonal conjugate indicator diagram of 0 is a zero of the g.c.d.

of fi and/2.
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