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Introduction. Let us denote by l2 complex square-summable sequences {a„},

r= 0,1,2, •••, made into a Hubert space in the usual way, and by A the "shift

operator" on l2: A maps (a0,a,,---) onto (0,ao,a,,---). Beurling [3] posed and

solved the problem of identifying all closed subspaces of l2 invariant with respect

to A. Passing to the "Fourier transform"/(z) = T,™=0anzn the problem becomes

one of pure function theory: Identify all closed subspaces of H2 with the property:

feS implies zf e S. The solution is then given in terms of a product representation

(see below).

For purposes of our generalization we prefer to state the condition of invariance :

/ e S implies (pf e S, for every bounded analytic <f>. Since polynomials span the

bounded analytic functions in the topology of bounded pointwise convergence

almost everywhere, this formulation is equivalent. P. Lax [8] similarly investigated

closed invariant subspaces relative to the semigroup {At} of right translations

in the Hubert space L2(0, oo) where AJ{t) is the function equal to 0 for t < x

and to fit — t) for t _ t (t > 0). Passing to the Fourier transform

Fiz) — lofit)el'zdt (Im z>0) the problem similarly reduces to identifying

closed subspaces of the "Paley-Wiener space" of the upper half-plane which

are mapped into themselves upon multiplication by bounded analytic functions(2).

In this paper we obtain a product representation for the closed invariant (in

the above sense) subspaces of a class of Hubert spaces of analytic functions which

includes both H2 and the Paley-Wiener space of the half-plane. The class of Hubert

spaces in question (which we define axiomatically) is not very general ; however,

a Beurling-type theorem does not seem to be true in much greater generality, as

may be seen by the consideration of certain simple Hubert spaces of analytic

functions which do not satisfy our axioms. Our treatment of the subject will be

based on a systematic exploitation of the notion of reproducing kernel (r.k.).

That the Beurling factorization stands in close relationship with the notion of

Presented to the Society, January 23, 1961 ; received by the editors March 20, 1962.

(') This research was partially supported by Contract Nonr-285(46).

(2) Lax and several other authors consider also extensions to operator-valued functions.

Other proofs of Beurling's theorem have been published by Halmos [6], Helson and Lowdens-

lager [7] and Rovnyak [10].
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r.k. is suggested by features in Lax's proof, which operates however with Fourier

analysis and does not use properties of the r.k.(3).

In §3 we show how, analogously to the discussion in Bergman [2, Chapter VII]

and Garabedian 14], important extremal properties of bounded analytic functions,

generalized Blaschke products, etc., can be based on the r.k. and its properties.

We obtain these results by use of the theorem of §2. Thus the existence of a Hubert

space of analytic functions which satisfies certain axioms can be made to yield

properties of bounded analytic functions which are usually deduced from the

existence of Green's function, or the Riemann mapping theorem. We believe

our approach to have some methodological and computational interest, inso-

far as in certain domains (e.g., circle, half-plane, strip) Hubert spaces satisfying

our axioms and the corresponding r.k. are easily constructed directly.

In §1 we give definitions and preliminary remarks. In §2 we state and prove

our main theorem. §3 contains applications to bounded functions. §4 contains

some concluding remarks concerning a possible extension.

1. Preliminaries.

1.1. Throughout this paper Í2 denotes an open set in the complex z-plane,

with(4) boundary T. We consistently use the letters z,£,A to denote points of £2,

and t to denote points of T. We denote by H a Hubert space whose elements are

functions/(z) analytic and single-valued in £2. The inner product of/and g is

written </, g>. We assume moreover that H satisfies the following axioms:

Al.   For every XeQ. the linear functional L¡J=f(X) is bounded.

A2. (Boundary behavior). We assume that there is given a family of

subsets of T, called negligible sets, with the properties

(i)    An enumerable union of negligible sets is negligible.

(ii)   T is not negligible.

A property enjoyed by all points of T with the exception of a negligible set will be

said to hold nearly everywhere (n.e.). We now assume further,

(iii) To every feH there is associated a boundary function (which we denote

by f(t)) defined and nonvanishing nearly everywhere.

(iv) To nearly every point teF there is associated a nonempty class of sequences

{z„}, z„eQ (called: admissible sequences belonging to the point t) such that for

every feH, the relation lim,,.,^ /(zB) =/(i) holds nearly everywhere.

A3. The norm of/ is uniquely determined by the values of |/(0| nearly

everywhere.

(3) On p. 168 of [8] P. Lax remarks "observe the curious skew-symmetry in the dependence

of Bon ft and z displayed by formula (2.7)." We wish to point out that this is a consequence of

the identity Bß (z) = K_¡¡(z) where K is the reproducuing kernel of the Paley-Wiener Hubert

space; Lax's Bß{z) is not defined in terms of a reproducing property but in terms of orthogonal

projection of the exponential function, which is readily seen to imply this relationship with the r.k.

(4) Added in proof. More generally, T can be the set of "boundary elements" of ii, or "prime

ends" in the sense of Carathéodory ; the theory we shall develop applies also in this generality.
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A4. (Multipliers). There is given a set M of functions {$(z)} (called

multipliers) analytic and single-valued in Q with the following properties:

(i)    ïîfeH, then <pfeH.
(ii) For every four functions fy,f2,gy,g2 eH which satisfy for all <peM the

two relations

(a) </i,<£gi> = </2,</>£2>»

(b) <<t>fi,gi> = <<t>fi,g2>
we have

(c) fiit)giit) -f2it)g2it) = 0 nearly everywhere on T.

1.2. Remarks on the axioms. From Al we infer that H possesses a uniquely

determined reproducing kernel (r.k.) which we write Rç(z) or occasionally

R(z,£). We assume known to the reader the following properties of reproducing

kernels (whose proofs are immediate; the properties in question have nothing

to do with analytic functions and are valid in any Hubert space H of functions on a

space Q. for which Al holds; see [1]):

(1) K¿z)eH, for every  Çeii,

(2) </, K{y =fjQ, for every / e /Y, Ç e ii,

(3) Kriz) = KziO,

(4) for every feH we have the inequality

\M)\2 = K¿o\\f\\2.

From A3 it follows that multiplication by a <p e M for which | $(t) | = 1 nearly

everywhere(5) preserves norms, hence also inner products. It also follows that the

inner product of two functions is uniquely determined by the boundary functions

and that/(z) is uniquely determined by its boundary function.

The axiom A4(i) is necessary for the very formulation of the problem of "invar-

iant subspaces" to be meaningful. A4(i) implies, since the transformation f-+<pf

has a closed graph, that it is bounded, and this is readily seen to imply that the

functions in M are necessarily bounded. A4(ii) is perhaps the only axiom which

does not seem natural ; it ensures a sufficient richness of the class of multipliers.

This purpose could perhaps be achieved with a simpler axiom, but some axiom

of this type is indispensable for Beurling's theorem.

The simplest example of a space H satisfying our axioms is H2, or more generally

the space £2(fi) (see Privalov [9]) where Í2 is a Jordan domain with rectifiable

boundary. Sets of measure zero on T are to be understood as negligible sets.

Boundary functions are the usual nontangential limits. To each boundary point t

where T admits a tangent we may associate any sequence {z„} which converges

nontangentially to t as an admissible sequence belonging to i, and then A2(iv)

holds. The multiplier set M may be taken as the bounded analytic functions in Ci,

(5) Added in proof. For the interpretation of this property when <p is not in H, see the remark

following the statement of Theorem 1.



1964] REPRODUCING KERNELS AND BEURLING'S THEOREM 451

or equivalently, polynomials. Then the key axiom A4(ii) holds since the real

parts of bounded analytic functions are dense in the bounded measurable functions

on T, in the topology of bounded pointwise convergence almost everywhere.

Similar remarks apply to the Paley-Wiener space of the half-plane. If on the

contrary £2 is not simply connected, the axiom A2(iv) (and only this one) fails,

and indeed, Theorem 1 below is false in this case (for further remarks see the

concluding section). However, in the multiply connected case it is possible to

construct Hubert spaces satisfying all the axioms by restricting consideration to

only those functions of E2(ÇÏ), and those multipliers, which are invariant under a

suitably chosen group of mappings of £2 on itself.

We remark finally that analyticity is only used rather weakly in the proof of

Theorem 1, and could be dispensed with at the expense of a further complication

in formulation. The ultimate Hubert spaces to which our method applies are

vaguely suggestive of Dirichlet algebras.

2. Generalized Beurling theorem.

Theorem 1. Let H be a Hubert space of analytic functions as described in

§1, satisfying axioms A1-A4. Let S denote a closed subspace of H with the

property that (pfe S whenever <j>eM,feS. Then S = Hco, where co(z) is analytic

and bounded in £2 and \ co(t) | = 1 nearly everywhere on F. o(z) is uniquely

determined apart from a constant factor of modulus 1.

Since multiplication by such an œ is an isometry of H, it is clear that, conversely,

Hco is always a closed subspace of H which is mapped into itself upon multipli-

cation by every tpeM. Note that the statement |co(i)| = 1 nearly everywhere

on ris here understood to mean that, for nearly every teF, lim tu(z„)exists and

has modulus one for every admissible sequence {z„} belonging to t.

Proof of theorem.

1. Let Kr(z) denote the reproducing kernel of S. We prove first that for every

X,(,eCi

(1) kx(QKx(t)Kr(J) = Kx(Okx(tW&

for nearly all teF.

Indeed, applying A4(ii) with

Mz) = kx(QKx(z),   gl(z) = K,(z),

f2(z) = Kx(Okx(z),   g2(z) = kr(z),

we will have proved (1) if we verify the two relations

(2) kx(0 <Kx,(pKry = Kx(0 <fc„#c>,

(3) kx(Q <<pKx,Kry = Kx(0 (<pkx,k¿y,
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for every cpeM. Using the facts that cf>kíeS,cpkxe S, and the reproducing pro-

perties of the kernels k and K, these relations are equivalent to

(2') kx(0<p(X)Kr(X) = Kx(Ocp(X)kr(X),

(3') k,(0<p(OK,(0 = Kx(Qcp(Ç)kx(Ç)

and these are identities, in the case of (2') because of the skew-symmetry of

reproducing kernels.

Let us now set(6)

(4) *^=¥á
Kx(z)

so that (1) may be written

(5) UO = WWO, nearly all t e T.

In particular, setting X = £ in (5) gives

(6) | U*) I2 = UQ = m. nearly all teT.

We deduce readily from (1.24) with /(z) = k¿(z) that

(7) kx(X) rg KX(X)

and  so  in  particular

(8) |MO |^1, nearly all teT.

Let £ denote an enumerable dense subset of £2. Then (8) remains true except

for t in some fixed negligible set, for all X e E. Thus, given any fixed X e £2, for

all t in a set whose complement is negligible the relations | i¡/x(f) | g 1 as well as

(9) | WO | = 1,   £e£,

(10) WO = MOW),   CeE,

are valid. Choosing such a i-value we then see from (10),

(11) |^(0| = 1,    £e£.

Since \¡/x(z) is meromorphic in fi and bounded on a dense set, if follows that it

is analytic and bounded by one in SI.

2. Next, let us restrict both X and £ to the set £. Then, outside a fixed negligible

f-set all functions ij/x(z) satisfy

(12) ^(0 = ^(0^(0,   ¿e£,   CeE,

and by A2(iv) we can choose a point i0 eT, and a sequence {z„}, such that

(6) Added in proof. Since the set of A for which Kx(z) = 0 is at most countable, y>x(z) is

meromorphic in fl except for a countable set of A.
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(13) lim \j/x(zn) = ipx(t0) exists and is finite, X e E,
n-»oo

(14) MO = «m ^(z„) ^(z„), XeE, CeE.
n-»oo

The point t0 and the sequence {z„} will remain fixed in the remainder of the

discussion. Let now (note that KZn (z) ^ 0 for n large enough):

(15) co„(z) = *,„(*) =^   for n > n0.

Then we have,

(16) | co„(z) | g 1, for n>n0

and, from (13) and (14), by the skew-symmetry of t/^A(z) we have

(17) lim aon(X) = Uto),   ¿eE,

(18) lim©„(2)con(0 = ^(0,    XeE,    CeE.
n-»oo

Thus the sequence offunctionscu„(z)is uniformly bounded by one and converges

pointwise on a dense set. Hence it converges uniformly on compact subsets of £2

to a function co(z) satisfying

(19) MO = co(X) co(0

initially only for X and £ in E, and hence for all X and £ in £2, by continuity. From

(19) we get, setting 1 = (:

(20) ^(A) = | co(X) \2

and also

(21) |^(0|2 = |o>(A)|XO|2;

holding X fixed and letting Ç run through an admissible sequence belonging to the

boundary point t, we see from (6), (20), (21) that | œ(Ç) | -> 1 for nearly all t.

We may express this relationship as follows:

(22) | co(t) | = 1 nearly everywhere.

3. We can now easily complete the proof of Theorem 1. Let S± denote the

closed subspace(7) Hco of H, and note from (19) that

(23) kr(z) = Kr(z)œ(Oœ(z)

as a function of z, is in Sj. Moreover, for every g = cof in Sj we have

(7) Added in proof. It follows from (19) that co(z) multiplies Kcfz) into H. Moreover, it

follows easily from (23) that cu(z) multiplies all of H into H. Since this map is an isometry, Hco

is closed.
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<[g,k¿y= {coiz)fiz),Kriz)coiOcoiz)y

= a>iO<cof,œKry = coiO<f,K;y

= git)-

Hence fc;(z) is a reproducing kernel for St. Since a subspace is determined by its

r.k., Sy = S. Finally, the uniqueness of íü(z) is immediate from (20), which shows

that | a)(z)J is uniquely determined for all z e Í2. Theorem 1 is completely proved.

Corollary. Under the conditions of Theorem 1,S± is precisely the closure

of the linear manifold spanned by the functions

gxiz) m L(z) - -L\Kxiz),for Xett.
L cûiXy

This follows from (23) and the fact that the r.k. of S x is KA\z) - fc2(z).

3. Applications to bounded functions.

3.1. In what follows we assume that M is the class B(fi) of all bounded analytic

functions on Í2, and also impose two restrictions on the Hubert space H:

A5. For every <¡> e B, the map /-»• <j>f is a bounded linear transformation with

norm _ sup | <£(z) |.

A6. No z e Í2 is a common zero of all / e H.

Remark. It is easily deduced that the norm of the transformation /-» <pf

is _ sup | <f>iz) | ; hence it is precisely sup | $(z) | . Indeed, denoting this norm

by M, we have, since <p<z)Kr(z) has norm = MR"C(Q1/2, by (142.)

\<PÍQ\\K¿Q]2^M2[K¿Q]2.

3.2 Let us consider the following two extremal problems in B(f2), whereby

we use || $ I a, to denote sup | <j>iz) | :

Problema. (peBiQ), (¡>ia) = 0, \\ <b \\œ=:i. Maximize |<K0|- (Here

a,Care fixed points of Í2.)

Problem B.   tpeBiCi), (j>ia) = 0,\\ <p \\K = 1.  Maximize  | <f>'ia) \.

The solutions of these problems are of course well known(8) (see for example

Bergman [2, Chapter VII], Garabedian [4]). The extremal is in each case (recall

that we are still assuming Í2 simply connected) the Riemann mapping function

of Q onto | w | < 1 taking a into w = 0. Moreover the solution to problem B is

the same without the assumption </>(a) = 0 since the extremal function in the

wider class must in fact vanish at a. Here however we do not presuppose this

information, as we wish to discuss problems A and B from the standpoint of

Theorem 1.

(8) The reader may also consult the work Hilbertsche Räume mit Kernfunktion of Herbert

Meschkowski, Sprincer. Berlin, 1962.
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Denote by S = S(a) the closed subspace of H consisting of all fe H which

vanish at a. This is an invariant subspace and so, by Theorem 1, and (2.23)

(1) kr(z) = Kr(z)03(Oœ(z)

where feç is the r.k. of S, andXç is the r.k. of//. Hereco(z) e B(£2) and has modulus

one n.e. on F. Moreover co(a) = 0 because of A6. We show that this function

co(z)—ooa(z) is the unique extremal function for problems A and B (we use

the word "unique" to mean: unique apart from a constant factor of modulus

one). Consider first problem A, and let <p be a "competing function" of norm

one. Then tpK^ belongs to S and so

\cp(0\2Kr(02   =   \<<?(z)Kr(z),   kr(z)y\2

= \co(0\2\{<p(z)Kl(z),oo(z)Ki(z)y\2

g   I 00(0 \2Kr(02

by A5 and Schwartz' inequality. This proves the assertion regarding problem

A, the uniqueness following by the condition for equality in Schwartz' inequality.

As for problem B, we have, for/eS:

M) = <f(z),kr(z)y-,

hence

(2) /'(0 = </(z),|fcc(z)>

and from (1) we have

(3) |- kr(z) = Kr(z) W) 00(Z)  +    [^fr(z) ] Oo\0~00(z).

Let us now substitute in (2) <p(z)Ka(z) in place of f(z), and a for £, and apply

the Schwartz inequality:

| <p'(a) \2Ka(a)2 = | co'(a) \2 \<<p(z)Ka(z),oo(z)Ka(z)y \2

g | co'(a) \2Ka(a)2,

and the assertion follows as before.

Now, kr(z) can be expressed in terms of Kr(z) by the formula (here it is con-

venient to write k(z,0, K(z,0 for k,(z), Kr(z) respectively):

K(z,0   K(z,a)

K(a,0   K(a,a)
(4) k(z,0 =

K(a,a)

(4) is evident by the uniqueness of the r.k. since the right-hand side belongs to S

for each Ç> and is a r.k. for S.

Comparing this with (1) gives
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(5)

Setting z = £ gives

(6) «(01

co(Ç)co(z) =

K(í,0
K(a,Q

K(z,0    K(z,a)

K(a,0   K(a,a)

K(z,QK(a,a)

Kit, a)

Kia,a) Kia,C)\
K(C,OK(a,a)

Another formula gotten from (5) is

K(a,a)K(U)

(7)
co(zi) _K(z2,Q

co(z2)      K(z i,0

Kizi,0 K(zua)

K(a,0   K(a,a)

K(z2,0 Kiz2,a)

Kia,0   Kia,a)

in which the right-hand side is actually independent of Ç. We also obtain, clearing

off fractions in (5) and differentiating:

(8)

co'(a)
■-r = a

K(a,a)2

These results may be summarized as

Theorem 2. 77ie common solution (unique apart from a constant factor) of the

extremal problems A and B is co(z) =coa(z), which is uniquely determined from

the formulas (5), (6) once arg co(z) is given at some point. The maximum in

problem A is the right-hand side of (6); the maximum in problem B is the right-

hand side(9) of (8).

3.3. Let us now consider a generalization of problem A.

ProblemA'. (peB, || <p ||œ^l, <piax) = ••• = <t>(a„) = 0. Maximize |<K0|-

Here a%, •••,a„ are distinct points of Q.

Denote by S„ the closed (invariant) subspace of H consisting of all functions

vanishing at a¡, ■•■,a„. Let kn(z,r) denote the r.k. of S„. Then as before,

(1) kn(z,0 = K(z,Oco„(Ocon(z).

Here co„(z)eB, vanishes at z = ax, ■■■,an and has modulus one n.e. on T. Just as

in §3.2 we see that con is the unique extremal function for problem A'. Since, on

(«) When K is the Szegö kernel, the right-hand side of (8) reduces to K(a, a)2. Added in proof:

We remark also that it is easily proved directly from (5) that cu is univalent in ii. Hence it

can be proved without difficulty that co is the Riemann mapping function onto the unit disk.
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the other hand, it is readily deduced that <p(z) = ooa¡(z)---oo„n(z) is an extremal

(where ooa(z) is an extremal for problem A) these functions are identical apart

from a constant factor of modulus one. Hence we deduce, from (1) and 3.2(6):

(2) k„(c,o=K(c,o n n \K(am,0\

K(am,am)K(U)

Moreover, one deduces by the same reasoning as 3.2(4):

K(z,OK(z,at)  -K(z,a„)

KiauOKiauaJ-KiauaJ

(3) K(z,0 =
K(a„, OK(a„,fli) -K(an,a„)

K(ai,ai)-

K(a2,aj)-

K(auan)

K(ai.,an)

K(a„,ai)-.-X(a„,a„)

Substituting z = £ and comparing with (2) gives an interesting determinant

identity (which could also be proved algebraically by simple transformations,

using 3.2(4).) We see from (3), since fc„(C,0 is given as the quotient of two Gram

determinants, that kn(C,0 is the square of the distance d from Kr(z) to the linear

manifold spanned by Kai(z),---,Kan(z). Hence

Theorem 3. d2 is given by the right-hand side of (2). Consequently, the

necessary and sufficient condition on an infinite sequence {am} that there exist

a function in H (equivalently: a function in B) vanishing on the sequence {a,„}

but not identically, is

K(am,0
< 00.

K(am,am)

This condition holds for some £e£2 if and only if it holds for every £.

4. Concluding remarks. It would be of interest to obtain an analogous

theory for a multiply-connected region. If we consider a sequential Hubert

space {an}, — oo < n < oo, the norm of a sequence being defined by

[ £™=-œ|a„|2cosh(2n + 1)<5]1/2, and study closed subspaces invariant with respect

to both left and right shifts, the equivalent function-theoretic problem is that of

closed invariant subspaces (in the sense of the present paper) of £2(^) where £2

is the annulus e~à < | z | < ea, E2 denoting the Hubert space normed by means

of square integral with respect to arc length around the boundary(10). In cases

of higher connectivity, there seems to be no simple interpretation in terms of

"shift operators."

(10) Added in proof. A detailed study of invariant subspaces for the annulus has recently

been carried out by D. E. Sarason in a 1963 dissertation at the University of Michigan,
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In the case of the annulus, the invariant subspace consisting of all functions

vanishing at some point a is not of the type covered by Theorem 1, but consists

of all multiples of a function co(z) whose modulus is constant on each boundary

component (the constants being different). This function tu(z) is uniquely deter-

mined, apart from a constant factor, as the Riemann mapping function of the

annulus on a unit disk from which a suitable concentric circular arc has been

removed, such that cu(a) = 0 (cf. Golusin [5, p. 421]). This suggests a possible

"Beurling factorization" in the multiply-connected case: the "inner functions"

are now bounded functions with (in general different) constant modulus on each

boundary component. We have not, however, been able to establish this. To

attack it by the methods of the present paper requires that the conclusion in

axiom A4(ii) be replaced by :/i(í)áfi(0 — /»(Og^CO isconstant n.e.on each boundary

component. One then obtains, analogous to (2.1), functional equations connecting

the r.k. of H and of S, but we have been unable to extract the desired information

from these equations.

Acknowledgement. The author wishes to acknowledge helpful discussions

concerning the present paper with D. J. Newman, A. L. Shields, L. Silverman,

and John Wermer.

Bibliography

1. N. Aronszajn, Theory of reproducing kernels, Trans. Amer. Math. Soc. 68 (1950), 337-404.

2. S. Bergman, The kernel function and conformai mapping. Math. Surveys No. 5, Amer.

Math. Soc, Providence, R.I., 1950,161 pp.

3. A.Beurling, On two problems concerning linear transformations in Hubert space, Acta

Math. 81 (1948), 239-255.

4. P. Garabedian, Schwarz' lemma and the Szegö kernel function, Trans. Amer. Math.

Soc. 67 (1949), 1-35.

5. G. M. Golusin, Geometrische Funktionentheorie, Deutscher Verlag der Wiss., East Berlin,

1957.

6. P. Halmos, Shifts on Hubert spaces, J. Reine Angew. Math. 208 (1961), 102-112.

7. H. Helson and D. Lowdsnslager, Prediction theory and Fourier series in several variables,

Acta Math. 99 (1958), 165-202.

8. P. Lax, Translation invariant spaces, Acta Math. 101, (1959), 163-178.

9. I. I. Privalov, Randeigenschaften Analytischer Funktionen, authorized German trans-

lation, Deutscher Verlag der Wiss., East Berlin, 1956, 247 pp.

10. J. Rovnyak, Ideals ofsquare summable power series. Math. Mag. 33(1960), 265-270; cor-

rection, ibid. 34 (1960), 41-42.

New York University,

New York, New York


