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1. There has been in recent years a certain interest in differential equations

with operator coefficients (see e.g. [7; 10; 11; 16; 21; 12; 14; 25; 26; 28; 29; 31]).

In this paper we will present an adaptation of some methods of Calderón,

Mizohata, and Malgrange for uniqueness in the Cauchy problem (see e.g. [8 ; 9 ;

17; 19]) to the equation

m

(1.1) Pu = £ AiU(V) = 0,   u(i)(0) = 0 (/ = 0, -, m - 1),
i = 0

where u(0 = tfujdt', Am = I, A0 = P0(A) (P0 a polynomial of degree m) and

A, A¡ii = l,",m — 1) are unbounded operators in a Hubert space H (precise

hypotheses are given below). It is assumed that t -» u(í) e Sm(H) with

t -* A¡uM e S°iH) iSk(H) is the space of fc-times continuously differentiable

functions with values in H), and that A-1 = S e ¿¡?iH) (i?(iï) is the space of

bounded linear operators in H). Suppose for example that E"1-'^ c A¡Zm~' with

A¡ = .¿4¡A~<m~,)densely defined on DiA) and bounded there; then A¡ determines

an operator in &ÍH) by extension to H which we denote again by A¡. We will

regard A as the basic operator and restrict the behavior of the A¡ relative to

A ; A"1 is presumed to be densely defined and we note that A-1 e 3?(H) implies A

is closed since un -*■ u and Aun -* v imply u = A-1v. It is seen also that A*,

k _ m, is now densely defined and closed. In practice the basic operator will be

AmandifAm=A is closed with | AR(A, - A) \\ < M < oo then a closed

A1/m can be defined (see [5]).

Suppose now only that u(i)eD(Am_l) andset ui+1 = Am-I"1u(0(/ = 0,-",m-l).

Let A¡ be bounded operators (which may or may not arise from the preceding

considerations) and assume A¡Ac AA¡ with all Ät and £ commuting. (These

hypotheses will hold throughout the paper along with A ~l e SPÍH) and D(Am)

dense.) Then (1.1) leads us to pose the following problem for t -* u(f) e Sm(H),

t^Am-lu(i)eS\H),

—-_j
(1.2) M(m) + A E ^«,+1-0

¡=o
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This may be written in the form

(1.3)

(1.4)

du/di + A//u = 0, u =

H

r0 -1

0     0

, 11(0) = o,

-1

10   At   ••• Am_l J

In order to pass strictly from (1.1) to (1.3) it is necessary that say D(A¡) c D(Am_i)

and that the remaining hypotheses of paragraph one are fulfilled. In such a case

uniqueness in the problem (1.3) implies uniqueness in the problem (1.1).

The characteristic polynomial of H is formally

(1.5) u/-//| = (-iy £(■
; = o

X)iÄi^(-l)mq(X)

and we write ÄQ ( = A0A~m) = Q0(A) = îo(^) where the degree of q0 may be

any integer r,0ir^m (q0 has nonzero constant term in any case). The nature

of the roots X¡ of q(X) = 0 will play a crucial role in the theory (cf. [8; 17; 19]).

Some of the present results were summarized in [20].

2. Let 88 be the commutative Banach algebra generated by the m + 1 elements

a¡,ao = 2>, ai = Ai (i — l,---,m — I), am = I. The determination of charac-

teristic roots of q(X) thus involves constructing algebraic functions of several

Banach algebra elements. To do this we follow [2; 3; 4; 22; 24; 30]. The joint

spectrum o(a, 38), a = (a0, ■■-, a,„-i), of the elements a¡ (0 ^ i ^ m — 1) is de-

fined to be the set of all X e Cm for which there do not exist b¡ eSS with

£o-1(a¡ _ K)b¡ = 1 (see e.g. [2; 3]). Let a¡ be the functions on the carrier space

<frm (see [22]) defined by the ah i.e., </>(a¡) = a¡((p), and let a :<S>m-+ Cmbe defined

by a(<p) = (â0(4>),---,âm-i(</>)). Then the range of a coincides with o(a,SS) (see

[2; 3; 22]). Since the a, (0 :£ i Sj m — 1) with am = I generate 38, a is a homeo-

morphism (see [22, pp. 113-114]); moreover o(a,SS) is compact and is contained

in the compact polydisc A=FJ0"_1Di, D{ = {z¡ : | z¡ | ^ v(a¡)} (i = 0, ••■,m - 1),

where v(a¡) is the spectral radius v(a¡) = lim || a¡"\\1/n = max|z¡|, zieo(ai,3S)

(see [22]). Since v(a¡) ^ | a¡ ||, rr(a,á?)is surely contained in any open polydisc of

the form U£ = H^'D' where D\ = {z¡ :\z,\ < || a¡ || + e}.

Let now^f(fJ ,&) be the class of holomorphic functions on Ve with values in J1.

Then thïre is a continuous algebra homomorphism J :3V(lfe,í%)-* $t such that

J(b) = b for each "constant" be3S and J(z¡) = a¡ where z, is the ith coordinate

function in C"(see [2; 3]). This induces a homomorphism /:^(l/£, C)-+^ and

we may write J(f)=f(a0, • •■, am_ j) ; in fact J(f) may be represented by a multiple

Cauchy integral over the distinguished boundary   of say  C/e/2 = FJo_1 D¡/2
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(see [2 ; 3 ; 22 ; 30]). The homomorphism / is clearly characterized by the prop-

erties J(l) = 1, J(z¡) = a¡, since / may be approximated by polynomials uni-

formly on Ve'2 (see e.g. [6]; cf. [2; 3; 30]).

Remark 1. The proof in [22] used a hypothesis of semi-simplicity for 38 in

order to establish the homomorphism J and this hypothesis was therefore used

in an earlier version of this paper. However as was shown in [2] such an assumption

is unnecessary (cf. also [30]).

Thus we are led to consider the equation (see (1.5))

m-l

(2.1) q(X,z) = q0(z0)+   I   (- X)% + (- X) m= 0
i = i

in the m complex variables z¡ (i = 0, •■•, m — 1). If we can solve (2.1) for functions

Xj(z) analytic in say U" then we can determine operators A/a) = J(Xj(z)) e 38

such that J(q(Xj(z), z)) = q(Xj(a)) = 0. (We will not consider in this paper the

possibility of roots X¡ e if(H) of q(X) = 0 arising which are not given in terms of

analytic functions on some Î/6.) Suppose that q(X) = ( — l)m\~\(X — A,) where each

factor (A — A,) occurs m¡ times and suppose that this corresponds to a factoriza-

tion q(X, z) = ( - l)m f] (A - Xi(z)), Xi(z) e 2t°(U\ C). Writing formally

Pu = ( I%Ai(dldt)')u (Am = /) it is seen that formally

Pu = ( SHA^"1-0 (A-1 dldt)'Am)u = ( l.Äi(A-idldt)i)Amu

and therefore since q(X) = Z( — X)lA¡

(2.2) Pu = ( - l)mn( - A~ld/dt - Xi)Amu = Ylid/dt + XiA)u.

Without regard for the formal steps leading to (2.2) it is easily seen now that the

last term in (2.2) is a valid decomposition (note A; e 38 and it will be shown below

that 38AcA38). Indeed if ueê\H) then (A¡h)' = A,m' trivially. Moreover if

co'eD(A), co(0) = 0, then (see [28]) Aco(i) = A ¡¿co'dÇ = \'0Aco'd^; therefore

(Ato)' = Ato'. Hence \\(djdt + A,A)u may be expanded to give Pu. We remark

that this factorization will be used in connection with the problem (1.3) and thus

no assumption tt(,) e D(A¡) is made in general; by Pu in the following we will

understand the form (2.2) (last term) with uU) e D(A'n~,). It remains to prove

38A c A38. By assumption a¡A c Aa¡ (i = 0, •■•, m — 1) and hence for any poly-

nomial p(a¡) e 38, pA c Ap. By definition 38 is the norm closure of polynomials

in the a¡ and /; let b e 38 and p„ -> b in norm. If u e D(A) then

bAu — Ap„u = (b — p„)Au -> 0;

therefore p„u -» bu and Ap„u -> bAu. This implies that bu e D(A) and Abu = bAu

since A is closed; hence 38A a A38. We will use the factorization (2.2) in §4 which

is modeled after [19].

Remark 2. We note that in case A¡ = P;(A) where P¡ is a polynomial of degree

m — i the theory takes on a particularly simple and interesting form. In this case
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Ai=AiA~^m °= QiiA) = q¡ (L) is a polynomial of degree m — i in S. Thus

qiX) = Yli-XJqiiT)iqm = \),qiX,z) = lX-X)iqiiz), and the A((z) are algebraic

functions of one complex variable z. The Puiseux series (see [1]) for X¡ are con-

vergent and a detailed study of possible roots X¡ e ¡% (or Xt e &ÍFFJ) can be en-

visioned using the many classical results available in this situation. Some examples

will be given later.

In the following a separate treatment will be given for the case of distinct roots

X¡ because of its traditional importance. We note that distinct analytic functions

2,(z) and A,(z) on U* do not necessarily give rise to distinct operators A¡(a)

and Xjia). Suppose however that A¡(z) # A,(z) anywhere on Ve ; then

[A¡(z) — Xjiz)]'1 is analytic on say Ue/2 and determines an operator

[A,(a) — Xjia)]'1. This means in particular that A¡(a) # A,-(a). A criterion for

distinct factors of this type can be given as follows. We recall that the discriminant

Diz) of qiX,z) is defined as £>(z) = Y[i<jiXiiz) — A/z))2; moreover if Riq,q')

is the resultant of q and q' then Riq,q') = ( - l)mD(z) (see [27]; q' = dqjdX, z is

fixed). Therefore Diz) is a polynomial in the z¡ (recall q0iz0) is a polynomial) and

its zeros determine an algebraic set in Cm. If all the zeros of D(z) lie outside of

Ue then for any zeUe fixed there will be m distinct analytic roots k¿z) of

qiX, z) = 0 in some neighborhood of z (see [13] for the implicit function theorem ;

cf. also [6]). We can now determine by analytic continuation m distinct analytic

functions X£z) on say U2e/3 with A¡(z) ̂  Xj'z) anywhere (see e.g. [6; 13]). This

proves

Proposition 1. Assume all zeros of Diz) lie outside U'. Then there exist m

distinct isingle-valued) analytic functions A¡(z) in say l/2e/3, roots o/o/A,z) = 0,

such that Af(z)^A/z) anywhere in JJ2"13. These functions determine m distinct

operators Xfß)e3Swith [A¡(a) — A/a)]-1 e Si well defined.

Remark 2a iAdded in proof). Some general existence results involving a

spectral theory on a are indicated in [12a].

3. The case of distinct roots X¡ (a) of the type described in Proposition 1 will be

treated first. The presentation will follow that of [8 ; 17]. Let

(3.1) N-1 =

1 1 •••       1

i-*i)     (-¿2) (--U

L(-A1r"1(- x,)"-1- i-Xm)m

Since (A¡ — X¡) 1 e ¿% by assumption, the matrix N such that AJN"1 = / may be

computed (see [15]) and is seen to be a matrix of bounded operators in 3$, Then

(3.2) Jf = NHN-1 =ÜX¡))

is a diagonal matrix (see [8; 15; 17]). Setting y = Nu (1.3) becomes
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(3.3) dy/dt + JfAy = 0, y(0) = 0

(recall âSA c AUS and thus ¿VA c A^f).

Suppose now that v satisfies v(0) = v(t) = 0 and set w = exp(fc/2)(f - r)2v; then

O)(0) = oj(t) = 0 and writing w = ip\,

( 3.4) w, - k(t - t)û> + JfAta = \¡,(v, + JTAv).

(It will be neater to work with JfA rather than Ají? as will be seen.) We write

^ = ^i+^2, Jei =\(J? + Jf*), je2 = ^(JíT ~ Jf*), and define the

integral I = jl expk(t - t)2 || vt + Jf Av \\2dt. Then

/   =    f[|a>, + JT2A«i||2ííí + f|^1Ato-/c(í-T)ío|2dI

(3.5)

+ k[\\(o\\2dt+Jl +J2.

(3.6) Jy =  -2Rejk(f-T)(^r2Ao),<D)d/,

(3.7) J2 = 2Re|(ö), + 3^2A(o,3eiAfä)dt

(all integrals are over [0,t]). We note that ¿f t = 2V\, 3^* = - áf2, and

(3.8) - 2 Re f fc(i - t) (©„ w)df = k f || w ||2 dt.

It will be assumed now that D(A) c D(A*) and that A* — A is bounded on D(A).

Then A* — A may be extended to a bounded operator on H denoted by the same

symbol. Since @A c A3S it follows that @*A* c A*0S* (see e.g. [23]); therefore

A*2tf**ü is well defined. Similarly A*tff o = [(A* - A) + A].?f© is defined since

© e 0(A). We define now the operator on D(A)

(3.9) Ti  = A*^2 -¿e2A = ^ {(A* - A)¿e + 3#>*(A - A*)}

and extend it to H by continuity (note JPA c AJf and A*^T* = ^f* A* on

D(A)). Then

(3.10) Ji = k \(t - t) (©, T!<o)dt,

(3.11) | Jt | á k Í(t - i) || cd || || Ty © I dt g ktc, f|| to ||2 dr.

Turning now to J2 we note first (see [8])
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(3.12)

^iA©,©) = lim  { («t+f-«¿\A*jrÍ ©(I+n))

+ (A©(0,^(^^--^)))}

(3.13) j( ^Aro.a») = (©„ A*^i©) + (A©,.?f i©t)

(note in general ©,<££)( A)). From this it follows that

(3.14) 2 Re j (©„JfiA©)di = j (©„ T2<a)dt

defining T2 = JfXA — A*Jft. We display T2 as a bounded operator by writing

(3.15) T2 = y{^f*(A - A*) - (A* - A)je}.

Now J2 may be written

(3.16) J2 =     (©, + ¿f 2A©,T2©)di + í (A©,T3©)di,

(3.17) T3 = (3*c i=3r 2 — ̂ r 2=3r i)A + 2k 2T2 = T4 + stf 2T2,

(3.18) T4 = ipf*^ - Jfjr *)A.

We want to find conditions under which T4 (defined on D (A)) will be a bounded

operator. For example if the a¡ are normal operators then T4 = 0. First however

we summarize the preceding.

Proposition 2. Assume I defined as above with ©(0) = ©(t) = 0,

D(A) c D(A*), and A* —A bounded. ThenTy and T2 are bounded and the equa-

tions (3.10), (3.11), (3.16) hold.

Now as stated earlier the X¡(a) are given as the norm convergent Cauch y integrals

of absolutely convergent multiple power series X¡(z), X¡(z) analytic on say

Ve; hence the X¡(a) are represented by absolutely convergent power series in

the a¡(see [2; 6; 13; 22; 30]). Thus set a = a0---am_i and X¡(a) = 'Lcinan

(n = (n0,---,"m-i));thenl¡*= l,c'na*n (ñ = (nm_i,---,n0)) and

(3.19) Tt = XfX¡ - XtXf = iZéAia^a* - aka*n)

(see [13, p. 100]); the series (3.19) are absolutely convergent. The expressions
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T¡A will determine the behavior of T4; we observe that the constant term in T¡

is zero as well as any term involving one of the ak or a*" a constant. Set now

G-¡k = a*ñak-aka*ñ; then

m—l m-1

(3.20) G9,k= 2   ah'ia*n' -an')a*""ak + S  aka*n'ia"' - a*ni)an"

1 = 0 ¡=o

where h' = (n,„_1; •••, ní+1), ñ" = (n,_1; -,n0). Note next that A may be carried

to the left in in G^A as follows : a*"a*A = a*v'Aa* = a*"" (A - A*)ak+ A*a*""ak.

We note that in carrying A to the left we start with G-kA defined on D(A). Thus

everything is well defined up to and including the term

a*""a*A = a*""(A - A*)a* + A*a*""ak

(recall 88A c Aâ# and 3d*A* c A*31*). However we do not know whether

a*"a*ueD(A) for u e D(A) and thus a priori a further decomposition

A*a*""a* = Aa*"'a* + (A* - A)a*"V is meaningless. Suppose we only make

assumptions which insure that AA is bounded on D(A) where A = a*"' — a"';

then AA is extendable to H. Let u e D(A); then aku e £>(A), v = a*""aku e D(A*),

and AA*v is defined. On £>(A) we have ^A* = AA + 4(A* - A) = £2 bounded

and extendable to H. We want to check whether the extended Q agrees with AA* on

Z)(A*). Let veDiA*) and un-+v, u„eD(A); then fiu„ = AA*un->co by the

continuity of £2. However there is no assurance that co = AA*v (unless say A is

invertible). Therefore we write

m—l m—1

GnkA =  I a*a*"'(a"'- a*"')Aan" + £ a""^*"'- an,)A*a*5"a*

(3.21) i=0 ,=0
m-l

+   S a"'^*"' - an,)a*""(A - A*)a*.
1=0

If (a*"' - a"' )A is bounded on D(A) and (a*"' - a"')A* is bounded on D(A*),

then the terms in the series for T¡A are all bounded operators (extend GikA to H

by continuity); however there is no a priori guarantee that the resulting series

converges. If however Zci4(G->tA) = £(g '¿¡¿A) converges absolutely to an ope-

rator S, then for u e D(A)

Sm = lim( 2^-, *A)u = lim( 2(^>tAu))= lim( I^.JAu = T,Au.

Hence S=TtA on D(A) and we define T; A on >7 to  equal  S. Moreover since

&(H) is a Banach space, if Z(g»>JkA)   converges   absolutely,   then   there   exists

S e -S?(/7) to which it converges.

In order to find conditions for convergence we remark that

(3.22) (af5 - af)A = I afiaf- a^A«,"*-1
* = o
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and thus if (a* — a;) A is bounded so is (a*" — a?) A. Moreover for s large

(3.23) ||(«r-aDA||á a\at\'-%\{ar-adA\

i {l+Sr\at\-lHaî-adA\.

Therefore if || (a* - a,)A || ^ c \\ a¡ ||, then

(3.24) || (a** - aSi)A || gc[(l+5) || a,¡J.

Similarly (a/*5 - a?)A* = - (a? - a?S)A* = - ^"¿«fai - «?)A*a?s~*~ * and we

want to make an assumption || (a* — a¡)A* || ^ c || a¡ || on D(A*). We examine now

the terms GhkA and see that the last term in (3.21) may be bounded by

2cmn|«i|",,+*land the first two by cm]\[(l + ô)\\ai\\~]n,+k'(c represents

various constants at different times). Hence if e > ¿max || a¡ || and the X¡(z) are

analytic on Ue it follows that Y,(g¡¡¿A) converges absolutely. This proves (since

5 > 0 is arbitrary)

Proposition 3. Assume||(af-a,-)A||^c||ai|| on D(A), |(af-aj)A*||^c||a/||

on D(A*), and that the X¡(z), analytic on Ue, define X¡(a). Then T4 is a bounded

operator.

Corollary. The conclusion holds if only | (a* - a¡)A* fl ;£ c | a¡ ||  on D(A*).

Proof. Let u e D(A) then

| (a,*- a()Au || ^ |(a? - a¡)(A - A*)u | + ||(a*- at)A*u ||

^2c1||aI||||»H + c¡|af|l||u||. QED

Remark 3. The estimates for the T.show that (and in fact are based upon the

fact that) the individual terms in the T¡ are bounded, e.g., T(A. This remark will be

used later when the Xt are no longer assumed distinct.

From (3.16) the following estimates now hold if we assume ¿P^ is invertible

on its range.

(3.25) || A© || g c2 I ¿fxA& I ^ c2 { || ¿f iA© - k(t - r)© || + || fc(i - t)© ||},

lj2l = T|^/llu>' + ̂ 2Aü)||2<íí+^fc/WI2íií}

(3.26)
+ 2 17k     I ̂ ^»-^-^l^ + V*    l»|2di + feT    |«>||2di

(note ¡ABdt ^ 1/2 [¡A2ja2dt + Ja2B2di] and set a = k1/4). Choosing k

large we make first c/y/k ^ 1 and c2jy¡k í£ 1; then from (3.5) (see also (3.11))

/ £ y f J©, +■ Jf2A© \\2dt + y [ || ̂ iA© - k(t - t)© |2di
(3.27) - 2

Ik _ hrc, _ c^k _ c^fc _ fcTCi j J W2rfi
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Choose now x small enough so that r(ct + c2/2) < 1/3; then make k larger if neces-

sary so that |(c2 + c)^Jk < fc/3 (i.e., yjk > \(c +c2)). Then

(3.28)
/ ^ — f I «9, + J^2Ae> \\2dt + y Í ||^iAo> - k(t - t)© ||2di

+ jj\H\2dt.

Next from (3.25) for kx < k, kj fixed,

(3.29) A j || JT, Ao - kit - r» |*A2 ^ J | A<o |>A - ^ J|| tt ||2df.

If t is now chosen smaller if necessary until kiT2/2 < 1/6, then

(3.30) I^^jWA^dl + jjW^dt.

The estimate (3.30) holds then for  k large (t may now be fixed). This proves

Proposition 4. Assume the hypotheses of Propositions 2 and 3 and suppose

J?, is invertible. Then (3.30) holds.

If now y is a solution of the Cauchy problem (3.3); dy/dt + ¿f Ay = 0, y(0) = 0,

let cp e C [0, oo), cp = 1 for t ^ x/2, cp = 0 for t ^ x, and set cpy = v. Then v satis-

fies v(0) = \(x) = 0 and

(3.31) vr + Jf Av = (j>ty.

Therefore defining / as before

(3.32) / ^ Í expk(i - x)24>2 I y |2dí ̂ cC expfc(f - x)2dt,

where c depends on cp and y. Using (3.30) we obtain in particular

(3.33) -r f exp kit - x)2 || v ||2di g c V exp k(t - x)2dt.
0   JO Jt/2

This can hold (for k arbitrarily large) only if v=0 on [0,t/2] (see [17; 19], and

note that the above development follows [17] quite closely). Therefore

Theorem 1. Under the hypotheses of Proposition 4, if y is a solution of the

Cauchy problem yt + JfAy = 0, y(0) = 0, then y = 0 in a neighborhood of t = 0.

Suppose #Ci = 0 (this will be called a hyperbolic case); then J2 = 0 and we

have the estimates

(3.34) I^kií-xci)  ÍH|2df.

Therefore it is easily seen that the following theorem holds, if ¿^ = 0.
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Theorem 2. Under the hypotheses of Proposition 2, if y is a solution of

y, + ^f Ay = 0, y(0) = 0, then y = 0 in a neighborhood oft = 0 (^ =0).

4. In this section the factorization (2.2) will be used for the case of multiple

roots following [19]. Assume r¿(i)(0) = r(0(r) = 0 (0 <¡ i £ m - 1) and set

co= exp(/c/2)(t — t)2i>. Then writing again \j/ = exp ik/2) it — x)2 consider a

factor id/dt + X¡A)v.

(4.1) co, - kit - x)co + AjAco = \pivt + X¡Av).

We   write   X^^-r X¡   with   X, = K¿¡ + A?),    X, = ±(¿¡ - A?),  and   define

IJ = j^Hu,+ A;At;||2df.Then

(4.2) Ij   =  i ||co, + XjAco \\2dt + i || XjAco - kit - x)co \\2dt

+ fc    ||ûj||2di +J{ +J2,

(4.3) J{ =  -2 Reí kit --r)iXjAœ,co)dt,

(4.4) j{ =  2 Re f (cut + XjAcoyXjAco)dt.

It follows from the preceding analysis that under the hypotheses D(A) c D(A*),

A* - A bounded, || (a* - a¡)A* || = c || a¡ ||, Xj{z) analytic on Ue, and 1} invertible,

that (3.30) holds with I replaced by J;. (Since there are only a finite number of

roots we may suppose that e,k,x in (3.30) do not depend on/) Now we iterate

this procedure, taking as a new v the function v = v, + XjAv; then v(0) = v(x) = 0,

and setting c = min(e, 1/6),

(4.5) = c { k j* r 1 v, + XjAv fdt + -i J ^ || A(», + A^A») ||2di)

èc2( k2í^2||t;¡2dí + 2fiA2||At>¡2dí+i-f ||A2j;|2díj.

Proposition 5. Assume D(A) <r £>(A*), A* — A bounded, ||(a*— «¡)A* || g

cl| ¿2f lj in £>(A*), A;(z) analytic on U\ and 1¡ invertible. Then ifor either mul-

tiple or distinct roots A/a))

(4.6) jr\\P42dt=\cmîo (m™ ̂"-"JVlA'»!2*

whenever t -> Am_ii>(i) e ê°(H) and t/°(0) = u(0(x) = 0/or 0 g i = m - 1.
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Proof. The inequality (4.6) is obtained by m iterations of the procedure

indicated in (4.5). QED

Suppose now that u is a solution of Pi/ = 0 with u(i)(0) = 0(0|i^m-l).

Let <p eCm[0, oo) with <p = 0 for t ^ x and <p = 1 for 0 ^ t ^ t/2. Set <pu = v and

then v satisfies the requirements of Proposition 5. Also there results

(4.7) Pv = P((pu) = <pP(u) + <D = <3>,

where the support of 3> lies in [t/2,t]. Hence

(4.8) f   iA2||Pi;||2di^ f  il/2\\a>\\2dt^c T !^2di
.' 0 J t/2 J t/2

where c depends only on <p and u. As before we may conclude

Theorem 3. Assume the hypotheses of Proposition 5 and that Pu = 0 wií/i

u(0(0) = 0/or 0 ^ i <; m - 1. Then u = 0ina neighborhood oft = 0.

Remark 4. The above result in uniqueness holds even if only a bound

J \¡i2 || Pv \\2dt ̂  c E£ J i^2 || A'y ||2di + c J^t^di is somehow obtained where

p is the largest integer I such that m — 21 > 0. For example if

||Pw||2^c Í | A'« ¡2
o

this situation will occur since then

I tpPu + <D ||2 ̂  2(<p2 || Pu ||2 + || <S ||2) g 2 || O I2 + 2c S|| Alv \\2.

If now lj = 0 then as in (3.34) we have an estimate I} ¿ick J |co ||2di. Simi-

larly if lj is invertible a simpler estimate for lj is given by I¡ ^(fc/6)J* || a)||2di

(see (3.30)). Hence if the 1} are either zero or invertible we obtain by iteration

(4.9) W || Pv \\2dt £ cmkm |V | v \\2dt.

This implies, arguing as before,

Theorem 4. Assume D(A)cz D(A*), A* - A bounded, and Xj(z) analytic on

U'; if lj 9e 0 for some j assume Xj is invertible and suppose

I (a* - a¡)A* \úc\ ai ||. Then if Pu = 0 with w(0(0) = 0 for 0 g i ^ m - 1 ft

follows that u^O in a neighborhood of t = 0.

5. We will discuss the case m = 2 briefly in this section and give some examples.

When m = 2, q(X,z) = X2 - ztX + q0(z0) with q0(z0) = q0 + 4iZ0 + g2Zo.Thus

a complete expression for X¡ is

(5.1) X = j- ± yj(z2 - 4q0 - 4glZo - 4q2z20).
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The discriminant D(z) = z2— 4q0 — 4qiz0 — 4g2z02 vanishes in general on a

somewhat nontrivial set in C2 even in this simplest of cases. When A is self-

adjoint positive the spectrum of L lies in the region z0 real, 0 ^ z0 ^ || £ ||, and

contains zero. Now o = a(Äl,'L;3S) is the set of points {(£($),â^tp))} (at = Ä^;

hence if the spectrum of Ax is purely real or imaginary we can plot a(Ä1,'L;aS)

in R2. The case represented by Zi purely imaginary occurs, e.g., when^ + Ät*

= 0 ; in this case somewhat stronger u niqueness results can be obtained by the meth-

ods of [16] (see in particular p. 151). We remark however that no general result

seems to have been obtained by such methods for uniqueness without a bounded-

ness condition on the Hermitian part of At (this would correspond here to a

condition of the form (ÄL + Ä*)A bounded). Therefore we will consider here

the case zx real and show that uniqueness results can be obtained by the methods

of this paper. It is seen thereby that although the use of characteristic roots (at

least of the kind considered here), and thus a distinction of "type," seems to

impose definite limitations on the theory, still it appears to give new results in some

cases. A study of this matter is in progress.

For simplicity we assume qx = 0 and set p = q\ — 4q0q2 = — 4q0q2

(p plays a role in classification in the general case). The discriminant is now

D(z) = z\ + p\q2 - 4q2z2 -z\ — 4q0 - 4q2z0z and curves D(z) = 0 are easily

plotted. These show what kind of norm conditions on S and Äv will provide

well-determined analytic Xt(z) on a as well as distinct A, in the cases considered.

We assume o lies within a region where the radical in (5.1) can be defined as a

single-valued analytic function. For q0 > 0, D(z) < 0 at the origin and for q0 < 0,

D(z) > 0. Thus when D(z) > 0 on a from (5.1) we write

(5.2) Xi + Xf = y(¿! + Ä*) ± y [ V (¿í - q0(D) + ̂ (Ä*2 - a0(S))J.

I f D(z) < 0 on a then a sign change occurs in taking conjugates and we have

(5.3) A, + X*i = y {Ä, + Ä*) ± y [ V(g0(Z)- Ä2) - V(g0(E) - Ä*2 )

Thus if Â = v4t*for example then in (5.3) X¡ =\Ä± and 1¡ invertible means Ät

invertible. In the case of (5.2) and Äx =Ä* we have 2X¡ = Ä1 ±j(Â2 —q0(£));

invertibility for this case involves more complicated criteria. The reader is invited

to carry out similar calculations when the spectrum of Ät is purely imaginary and

for the most general cases.

As a final example consider the case m=2 with 4f=p((A),p0(A)= aA2+ bA + c,

Pi(A)= idA + e, p2(A) = 1. This leads to q2(I) = 1, q^Z) = id + e2,

g0(2) = a + Sb + cS2. Then q(X) is given by

(5.4) q(X) = A2 - X(id + el) + (a + bZ + cL2).
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We have written id above to relate this example to situations in different

equations, e.g., A = - d2/dx2. Thus q(X, z) = A2 — Xiid + ez) + (a + bz+cz2)

and the discriminant is D(z) = - (d2 +4a) + z(2/de - Ab) + z2(e2 - 4c)with

X¡iz) given by X¡iz) = \ (/d + ez) ± \ ^j Diz). If a is real and d is not pure imaginary

then D'z) fiO and D(0) # 0; hence if || S|| is small enough the roots of Diz) lie

outside some Ue. Some criteria in this direction can be found in [18]. It is in-

teresting to plot again some diagrams indicating the position of the zeros of

Diz) as the constants a, b, c, d, e vary.
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