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Introduction. This paper is mainly concerned with the characterization problem

for bounded spectral operators (see [5]). We restrict the discussion to scalar type

operators with real spectrum, which we call pseudo-hermitian operators (p. h.).

The criteria are given in terms of certain properties of the exponential group

generated by the operator. The simplest criterion of this kind is for Hubert space:

a bounded linear operator S is p.h. if and only if || e"5| ;S M < oo for all real /.

This statement is false for Banach spaces, and even for reflexive Banach spaces.

In the latter case, we give additional necessary conditions on the group e"s,

which together with its uniform boundedness are both necessary and sufficient

for S to be p.h.

Another useful criterion is the following: a bounded linear operator S on a

reflexive Banach space is p.h. if and only if for every/in LX(R) (R the real line),

we have || $Rf(t)e't!idt || ^ M \\ f\n, where the norm on the left is the operator

norm, / is the Fourier transform of/ and || • | œ is the sup norm.

Unlike the general theorems in [5] about the spectrality of an operator, the

characterizations obtained in this paper are easily applied to analytically given

operators on concrete Banach spaces. An example is discussed in §4. Applications

are discussed at the end of §5. §2 deals with an improvement of a theorem of

Foguel [7] about the resolutions of the identity of sums and products of com-

muting spectral operators. §1 contains preliminaries. The characterization prob-

lem for spectral operators is discussed in §§3 and 5.

1. Preliminaries. The term "operator" is used for bounded linear operators

on X into X, where X is some fixed Banach space. We refer to [5] for definitions

and properties of spectral operators. If A is a Banach algebra with unit and

xeA, then a(x), p(x), r(x) and R(X;x) denote respectively the spectrum,

the resolvent set, the spectral radius, and the resolvent of x. We write

r+(x) = sup (Re X ; X e a(x)) and s +(x) = sup (Im X ; X e a(x)). Similarly, r ~(x)

and s~(x) are defined with inf instead of sup. Complementation is denoted by a

prime. The commutativity of x, ye A is expressed by the symbol x ̂ y.
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Definition 1. A pseudo-hermitian operator is a spectral operator of scalar

type with real spectrum.

The terminology is motivated by the fact that a pseudo-hermitian operator

S on a Hilbert space is similar to a hermitian operator. This follows from a well-

known result of Mackey's [11] stating the existence of a nonsingular operator Q

such that the resolution of the identity £( • ) of S satisfies the equation

E(Ö) = QF(S)Q~l for each Bord set ö of the complex plane, where £(•) is a self-

adjoint spectral measure.

For arbitrary Banach spaces, the pseudo-hermitian operators play, among

the spectral operators of scalar type, the same role as the hermitian operators

among the normal operators in Hilbert spaces. This is shown in the following

Theorem 1. Let S be a spectral operator of scalar type and let £(•) be its

resolution of the identity. Then there exists a unique pair (A,B) of pseudo-

hermitian operators such that S = A + iB and

(1) ,4_B and any operator which commutes with S commutes with A and B.

(2) a(A) = Reo-(S) and a(B) = Im a(S).

(3) £(•) is the product measure EA x EB, where EA and EB are the spectral

measures induced on the real axis by the resolutions of the identity of A and B

respectively.

Proof. Let á? and @tr denote the Bord fields of the complex plane and of the

real line R respectively. We define on 3Sr two operator-valued functions EA and

£Bby

EA(Ô) = E(ö x R) and EB(Ô) = E(R x ô)

for each ô e @¡r.

The following properties are immediate :

(a) EA and £ B are spectral measures on R ;

(b) they are uniformly bounded on 38 r, and their uniform bounds are less

than or equal to the uniform bound of £ ;

(c) they are countably additive on 36r in the strong operator topology ;

(d) their support lies in [r~(S),r+ (S)] and in [s ~(S),s+(S)] respectively.

Define now

A= Í ZdEA(0 and B= f nd£B(n).
JR JR

A and B are well-defined operators. Since we have

(*) A= f ReAd£(A)andB=  I lm XdE(X)

(where the integration is over the complex plane), A and £ are the functions of S

corresponding to the continuous functions Re X and Im X (respectively) in the
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operational calculus for scalar operators. Therefore, (1) follows, and further-

more A and B are scalar operators by Lemma 6 in [4]. Using (*), we also have

A + iB = j (Re X + i Im X)dE(X) =  f XdE(X) = S.

We prove (2) by applying Theorem 16 in [4] (with the function/(A) = Re X).

We have

<t04) = p|{ReT;ôeSS, E(ô) = /}.

But E(a(S)) = / by Theorem 1 in [4]. Hence

cr04)c:Reor(S) = Reff(S).

Similarly <r(B) dm a(S).

Now, since A^B, we have a(S) c a(A) + ia(B) ; but <r04) and a(B) are real

(see above); therefore Recr(S) c a (A) and Im a(S) c a(B). This completes the

proof of (2).

Next, let ôx and b2 be in S8r. We have:

EA(ÔX)EB(Ô2) = E(ôx xR)E(R x ô2) = E((ôx xR)n(Rx ö2)) = E(ôx x 32).

Thus £ is the product measure EAx EB (proving (3)).

To prove the uniqueness, suppose that S=AX + iBx, where Ax and Bx are

pseudo-hermitian operators satisfying (l)-(3). For S e SSr, we obtain from (3) :

E(ô xR) = EAl(ô)EBi(R).

Since a(Bx) c R by (2), we have EBl(R) = /, and therefore

EAi(S) = E(ô x R) = EA(Ô) for each ô e SST.

It follows that Ax = A; similarly Bx = B. This proves the uniqueness.     Q.E.D.

Let S, A, and B be as in Theorem 1 ; A and B will be called the real part and the

imaginary part of S (respectively). We also use the notation:

A = ReS,   B = ImS,   S=A-iB.

Obviously, the operators S, S, Re S, and Im S commute and are in the second

commutant of S. The operator S is pseudo-hermitian if and only if S = S.

Given two scalar operators Sx and S2, the operator Re(Sj + S2) is not neces-

sarily defined, since Sx + S2 may fail to be spectral, even when St._ S2 (see [9]).

Nevertheless, under sufficiently strong conditions, Re(St + S2), Im(S1 + S2),

Re(S^), etc., are all defined and satisfy the same computational rules as for

the complex analog. More precisely, we have (for weakly complete Banach

spaces) :

Theorem 2. Let Sx and S2 be two commuting scalar operators. Suppose that
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the Boolean algebra of projections generated by the resolutions of the identity

of Sy and S2 is uniformly bounded. Then

Re(Sy + S2) = ReSx + ReS2;   Im^ + S2) = lmSx + ImS2;

Sy + S^ = Sx + S2;   Re(S1S2) = ReS1-ReS2-ImS1ImS2;

Im(SiS2) = Re S y • Im S2 + Re S2- Im Sx and S¡S¡=S¡-S~2.

Proof. Under the conditions of the theorem, it is well known [7] that Sy + S2

and SyS2 are spectral of scalar type.Therefore, Re(Sy + S2), lm(Sy +S2), etc.,

are meaningful, according to Theorem 1.

Let^ = Re(Si + S2), A, = Re(S¡) (i = 1,2), ß = lm(Sy + S2), B¡ = ImS,

(i = 1,2). We have Sy +S2 = A + iB; Sk=Ak + iBk (k =1,2). Thus A +i B

=(Ay +A2) + i(By + B2)(2) or A- (Ay + A2) = i(Bt + B2 - B). The spectrum

of the operator on the left-hand side is real, while that of the operator on the

right-hand side is pure imaginary. Therefore

a(A - [Ay + A2J) = a(B - [By + B2]) = {0}.

Now, by Theorem 17 in [4], the full algebra si generated by the scalar operators

Sy and S2 and by their resolution of the identity is equivalent to the algebra

C(Ji) of all continuous complex-valued functions on the maximal ideal space

Ji of si'. Therefore si is semi-simple, and it follows that A = Ay + A2 and

B = By + B2. The other relations are proved in the same way.

We shall see in the sequel (§3) that the pseudo-hermitian operators can be

characterized in a "closed" analytic way. This fact motivates the interest in this

special class of spectral operators, since the known characterizations for the whole

class of spectral operators (see [5]) are very difficult to apply to concrete prob-

lems. Furthermore, by Theorem 8 in [4] and Theorem 1 above, the knowledge of

the class of pseudo-hermitian operators implies a global knowledge of the class

of spectral operators. More precisely, the class of spectral operators is the sub-

class of {A + iB + N; A,B pseudo-hermitian and N generalized nilpotent},

for which A, B, and N commute, and the Boolean algebra of projections generated

by the resolutions of the identity cf A and Bis uniformly bounded.

Before going into the characterization problem for pseudo-hermitian operators

we apply Theorems 1 and 2 to improve a result of Foguel's [7].

2. Convolutive properties of the resolution of the identity(3). The following

theorem was proved by S. R. Foguel [7], Theorem 7, for weakly complete Banach

spaces.

Let Ty and T2 be two commuting spectral operators on the Banach space X.

Suppose that the Boolean algebra of projections generated by their resulotions

(2) The uniqueness claim of Theorem 1 does not apply directly, because we do not know

a priori that Ax + A2 and B\ 4- B2 satisfy condition (3) in Theorem 1.

(3) In this section A"is a weakly complete Banach space.
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of the identity, Ex(-) and £2(• ),is uniformly bounded. Then Tx + T2 and TxT2 are

spectral operators, and their resolutions of the identity Gx(-)and G2(-)satisfy:

(1) Gx(ô)x= ( E2(ô - X)dEx(X)x

and

(2) G2(«5).x = ( E2(ô/X)dEx(X)x

for each Bord set ô of the complex plane and for each x in X for which

(3) Gt(do)x = 0        (¿ = 1,2),

where dô denotes the boundary of «5.

We show (Theorem 3) that the identities (1) and (2) are valid without the

restriction (3).

In particular, it then follows that Theorems 1 and 2 in [7] are corollaries of

Theorem 3 in this section.

We consider only the case of a sum ; the corresponding theorem for a product

of spectral operators is proved in an analogous way.

Theorem 3. Let Tx and T2 be two commuting spectral operators on the

Banach space X. Suppose that the Boolean algebra of projections generated

by their resolutions of the identity, Ex(-) and E2(-), is uniformly bounded

(thus implying that T = Tx + T2 is spectral, by Theorem 7 in [7]). Let £(•)

be the resolution of the identity of T. Then £(•) is the convolution of Ex(-) and

E2(-)(i.e.,E(ô)= \E2(è—X)dEx(X) in the strong operator topology, for each óeSS).

The statement of the corresponding theorem for a product is obtained by

replacing the + and — signs in Theorem 3 by " • " and ": " respectively.

Proof. The theorem is an immediate corollary of the following lemmas.

Lemma 1. Let the hypothesis be as in Theorem 3. Define

F(S)x= (* £2(<5 - X)dEx(X)x

for each ôeSS and xeX. Then £(•) is a uniformly bounded spectral measure

on 0&, countably additive in the strong operator topology and commuting with T.

Furthermore, the support of the restriction F/E(S)X of F to E(S)X is in the

closure 5 of Ô (for each 3 e S9).

Lemma 2. Let E and F be two spectral measures which are weakly (and

hence strongly) countably additive. Suppose that

Support {F(-)E(ô)}c S

for each be SB. Then £=£.
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Proof of Lemma 1. F(ô) is well defined in the strong operator topology.

A direct check shows that it is a spectral measure on 01. Since

F(<5)x=l J cô-x(OdE2(OdEy(X)x,

where cô _x is the characteristic function of ô — X, it follows that F( • ) is countably

additive in the strong operator topology and uniformly bounded on 3S if the

product measure E2xEx is uniformly bounded on 0i x 3S; but this follows

from the assumption that the Boolean algebra of projections generated by £i(-)

and £2(-) is uniformly bounded. The commutativity of F and T is trivial. Hence,

F(S) *_£(e) for all Ö, se01, and F|£(<5)X is meaningful. The statement support

{F|E(<5)X} cz o will now be proved.

Let S, Sk be the scalar parts of T, Tk respectively (k = 1,2). For each èe3S,

we denote :

XÔ = E(Ô)X;   SS = S\E(Ô)X;   SkS = Sk\E(ô)X.

Since Tx -^ T2, also Sk^,S and therefore Sk _ E(ô). Hence Sa and Sk6 are well-

defined elements of B(Xd), and Sa = Sxi + S2d. These operators are spectral, and

their resolution of the identity are the restrictions £a(• ) and Eki(• ) of £(• ) and

Ek(-)toXô.

By the definition of spectral operators, o(Sô) cz o. Therefore, if T¡ is a finite

union of simple Jordan contours which contains o in its interior, then

(1) ¿   £ R(p;Sd)dp = Is,

where Id is the restriction of the identity operator /. to Xd. It follows that

(2) E(ô) = -L j   R(p;Sd)dp■ E(S) (for all be38),

the equality being nowbetween elements of B(X).

Since S} = SXi + S2S where Slô ^ S2S, we have:

(3) R(p ;SS)=(       R(p-X; S26)dExs(X),
J(T(S,ó)

for p ^ a(Sxô) + o(S2ô) (see remark following Corollary 7 in [10]).

Case 1. St and S2 are pseudo-hermitian. In this case, S, Ss and Ski (k = 1,2)

have real spectrum, and, therefore, (3) is valid for all nonreal p.

Let ô be an interval (open, closed or half-closed) on R: say ö = (Çy,Ç2)- Then,

for any e > 0, Tô may be chosen as the rectangle with vertices £2 + e + is,

Ii — £ + ¿£, £i — e — íe, and ¿2 + e — i'e (in this order). The representation (3) is

valid for all the points on T6, except perhaps for ^ — £ and £2 + e. Denote by

T* the open contour T* = Ts — {^ —e,£2 + e}. Since R(p;Sô) is continuous

on r¿, we have:
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" ¿ï L» í      R(li-kS2i)dEt¿X)dp
¿™ Jr* J<,(s1<s)

" ¿Ï L í í       —V^Jd£^(v)d£lá(A)d/i

= f   ( f    (J_f     «fr   >£2¿(v))d£1¿a).

But

r 1  if X + v e (tt-e,Z2 + e),

If du ll.„,
r^     *  -in  ,    \ = -i T if A + v = ^ - e   or   £2 + e,
¿717 Jrd   /i — (A + v) 2

.0 if A + v^ [£, -g, {2 + 8].

¿j  f  R(p;Sô)dp =  f      £M((£, - £,i2 + 6) - A)d£ia(A) + ô
Z7U   Jr» Jo(Slt)

2tT7

Hence

(4)

where

(5) Q = T-  f      [£2*({£i - 8 - A}) + £2a({£2 + s - A})]dE„(A)
Z     J<r(Sti)

(the integrals are understood in the strong operator topology). The first operator

on the right of (4) is a projection G in Xô (this is shown by checking directly that

G2 = G). Using (1), Q = Ii-G; hence g is a projection in Xd, i.e., g2 = g.

Starting from (5), we compute directly g2, and we obtain g2 = ig. Hence g = 0

on Xô, and we conclude from (2) and (4) that

(6) E(ô)x=  f       E20((tx-£¿2 + ¿)-X)dEx6(X)E(d)x
J a(Slô\

for 5 = (ti,t2) or (ti,t2\ etc., and xeX. Equivalently,

(7) E(S)x=J  E2((ti-E,t2 + e)-X)dEi(X)E(ö)x.

Case 2. The general case. By Theorem 1, we have S = A + iB and

Sk = Ak + iBk (k — 1,2), where A, Ak, B and Bk are commuting pseudo-hermitian

operators. By Theorem 2, A = Ax + A2 and B = B!-|-B2. Let 8 = (tx,t2) or

(ti, t2l, etc., a = (nx,n2) or (ni,n2~\, etc., £ > 0 and ex > 0.

Then, by commutativity and (3) in Theorem 1, we obtain from (7):
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E(ô x a)x = EA(ô)EB(a)x

- j j       EÄ2((iy-8^2 + s)-i)EBl((ri1-e1,ti2 + e1)-ri)

■d(EA¡xEB¡)(t;,r,)-E(oxo)x

=   Í E2((ô x a)0 - X)dEy(X)-E(ô x a)x,

where (ô x a)0 is any open rectangle including ô x a. The integration is on any

Bord set including a(Sx). Equivalently, we have proved that for any rectangle 5,

and any open rectangle <5° including 5, the following relation holds:

(8) E(Ô) = F(Ô°)E(Ô).

Now, if X$o, let a = dist {A;5} (a =^ 0), and let V be the open square with

center X and diameter a. Then V is included in Ô°x — <52, where 5° and <5° are the

open rectangles concentric with <5, with diameters diam(<5) + 2a and diam(<5) + a/4

respectively. By (8), £(5) = F(<5?)£(<5) = F(S°2)E(S), and therefore,

F(ôy°- ô2)E(ô) = 0; hence, also F(V)E(S) = 0. This shows that X is not in the

support of F( • ) £(S), proving that

(9) support{F(-)ß(<5)]cz5

for any rectangle ô.

Next, let ô be any Borel set in the plane. If X $o, we may choose an open

square V centered at X and a covering of ô by disjoint rectangles ôk(k =1,2, ■••,«)

such that (i) ô cz [J"= ! ôk and (ii) V and \^)"= i <5t are separated.

We obtain :

F(V)E(Ô) = F(V)E(Ô)-F(V)E (\Jôk) = F(V)E(Ó)- t F(V)E(ök).
u = i   / * = i

The rectangles V and 8k (k = 1,2, •••, n) are separated; hence, by (9),

F(V)E(ôk) = 0, and we conclude that F(V)E(ô) = 0. Thus X is not in the support

of F(-)E(<5). This proves that (9) is valid for any Borel set ô in 01. Equivalently,

support {F | £(<5)X} cz o. Q.E.D.

Proof of Lemma 2. By the assumption on support,

(10) F(S1)E(S2) = 0

whenever ôl3 ô2e0l are separated (i.e., Zx and o2 lie in two disjoint open sets).

Let be0¡ and t>„ = <5 4- 2_B£ where £ is the open unit disk. We have ô„+x czô„

and\im„ôn = f]^yo„ = o.
Now each ô'n is separated from ô, so that, by (10), F(ô)E(ô'n) = 0. Since £ is

countably additive in the strong operator topology, we obtain :

F(ô)E((d)')x = F(¿)£(lim¿;)x = lim F(<5)£(<5„)x = 0 for all x e X.
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Thus F(ô)E((o)') = 0, so that

(11) F(ô)E(ô') = F(ô)E(dSnô')

(where ôô denotes the boundary of ô; ôe SS). Next, let <5„ = {Ae(5;dist{A;<5'} ̂ 2""}.

We have : lim„ ô„ = [J"= x <5„ = interior (ô). Again, <5„ and ô' are separated, so

that F(Ô')E(Ô„) = 0 by (10), and therefore

F(Ö')E (int ô)x = F(ô')E(\imô„)x = lim£(«5')-E(<5„)x = 0.
n n

Hence

(12) F(ô')E(ô) = F(ô')E(dônô).

Now, we use the evident identity :

(13) F(ö) - E(ô) = F(ô) E (ô ') - F(ô ') E (ô)       (f or all Ö e Se).

We obtain, by (11), (12), and (13),

(14) £(.5) - E(S) = F(Ô)E(ÔÔ n ô') - F(ô')E(dô n ô).

By the same argument as above, we reduce (14) to :

(15) F(ö) - E(ö) = F(ôô n ô)E(dô n ô') - F(ôô n ô')E(dô O ô).

Now, if ô is open, then ôô n ô = 0, and therefore, (15) implies £(<5) = E(ö).

If ô is closed, then dö nô' = 0, and we obtain again £(5) = £(<5). By strong

(7-additivity, the equality extends to any Bord set of the complex plane.   Q.E.D.

3. Characterization of pseudo-hermitian operators. If S is a pseudo-hermitian

operator, then e~2l"iS(t real) is the Fourier-Stieltjes transform of the resolution

of the identity £ of S (considered as an operator-valued measure on the Bord sets

of the real line). Formally, E is thus the inverse Fourier-Stieltjes transform (IFST)

oí e~2miS. But this operator-valued function is defined for any bounded linear

operator S, by means of the operational calculus for analytic functions. This

suggests the possibility of characterizing the pseudo-hermitian operators as those

operators for which the IFST of é~2!"iS exists in a certain sense. This is the

underlying idea in the following discussion. The connection thus obtained between

spectral theory and Fourier analysis shows the importance of the specialization

to the study of pseudo-hermitian operators.

The considerations above are made rigorous by means of Theorem 2.1.3 in [2].

Let X be a reflexive Banach space; let B(X) be the Banach algebra of bounded

linear operators of X into X. We denote by C(R) the space of all bounded con-

tinuous complex-valued functions on the real line R, normed by the supremum

of the absolute value of the functions.

For N > 0, £ ̂  0, n e R and S e B(X), define:
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GN(r,s)=  £ exp { - [ (|)2 + 2£|£| -21ft ] it j e'2*1^.

This is a well-defined B(X)-valued function of n ; we consider JV and £ as para-

meters varying in the ranges indicated above. The operator S is fixed in our

discussion.

Theorem 4. S is a pseudo-hermitian if and only if the conditions (a)-(c) hold.

(a) I e~2zi4S || = M < oo for all Ç in R.

(b) For each y e C(R) and £ ^ 0, ¡Ky(r\) G^ (rj;È)dr\ converges (when N -» oo)

in the weak operator topology to an element B(y; e) of B(X), and

|| B(y,E) || ^ K || 7 || (K > 0 may depend on s, but not on y).

(c) As a function of s (eTïQ), B(e~2myt ;e) is continuous from the right at

£ = 0, in the weak operator topology (for each real v).

The present section is devoted to the proof of Theorem 4.

We first consider Fourier transforms of functions in L2® A, where A is now

an arbitrary Banach space. L2® A denotes the Banach space of (the equivalence

classes of)(4) /4-valued strongly measurable functions/(£), ÇeR, tor which

JÄfl/«)|2d5<co, with the norm ||/|| = (/«||/«)|2^)1/2.

On the other hand, we consider the integral

r  P- 2*>ii — i

JR  -2iti¿,

It converges in the strong topology of A, and defines an /l-valued function.

Suppose now that F(t]) is a.e. weakly differentiable, and let /~(n) be its weak

derivative (defined a.e.).

We have :

x%rm - ^x*(j(n)) = £ jR e-^-±x*mm

for a.e. n in R.

But the last expression is equal (a.e.) to x*(/)"(n) (see [16, p. 250]). Thus:

(2) x*CT(n)) = x*(fr(n) a.e.

This motivates the following

Definition 2. Let/eL2® A. We say that/ has an L2-Fourier transform if

there exists an /l-valued function / "(n) (defined a.e. on£) such that equation (2)

is satisfied for all x* in a determining set F cz A* (see [8, p.34]) and a.e. n on R.

The L2-Fourier transform of / is the (uniquely determined a.e.) ^-valued

function/^, whenever it exists.

(4) Two functions are in the same equivalence class if they differ only on a set of Lebesgue

measure 0.
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The difficulty involved in the generalization of the concept of L2-Fourier

transforms to functions in L2 ® A is related with the fact that the Parseval and

Plancherel theorems are not valid in general when A is not the complex field

(see remark following Lemma 4 below).

We do not intend to go deeply into such problems. Definition 2 is a "working

definition." Neither do we try to prove general "existence theorem" for L2-

Fourier transforms of functions in L2 ® A. We just note that the discussion

preceding Definition 2 shows that the weak differentiablity a.e. of £(77) (defined

by Equation (1)) is a sufficient condition for the existence of the L2-Fourier

transform of/. Furthermore, in this case, / " is a.e. equal to the weak derivative

of £. In particular, if A is weakly complete, we conclude from the differentiability

of x*(F(n)) (see [16, pp.248-250]) that £(77) is weakly differentiable and hence

that every function in L2 ® A has an L2-Fourier transform, which is given by the

weak derivative of £ (a.e.).

The lemma below gives another sufficient condition for the existence of L2-

Fourier transforms of functions in L2 ® A (this is all that we need in the sequel).

Lemma 3.  Letfe L2 ® A, and suppose that the integral

¡" e-WfWdi       (co>0)
J —w

converges weakly to an element of A for a.e. neR, when <u-> 00. Then} has an

L2-Fourier transform, which is equal a.e. to the weak limit of the integral above.

The proof is straightforward and is therefore omitted.

Lemma 4. Let A be a Banach algebra with unit. Let xgA be such that either

s + (x) <0or s~(x)> 0. Then(l/2iti)R(t;x) is in L2®A, its L2-Fourier trans-

form exists and is given a.e. by

r 0 for 77 < 0

[ _e-2«*i* for „ = 0

and by

re'2"1"*      for 77 <0

[0 for n^O

Proof. If either s+(x)<0 or s~(x)>0. the real line lies in p(x). There-

fore (l/2ni)R(t; x) is continuous on R and its norm is 0(|i|-1) for

111 -> co ; hence this function is in L2 (g) A.

For co > 0, let r* be the boundary of the rectangle with vertices a>, co + ico,

— co + im and — co (in this order), with the base omitted. Let T~ be the reflection

of T* in the real axis, with positive direction.

ifs+(x)<0

ifs~(x)>0.
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If s+(x) < 0, we may choose co large enough (say a> > co0) so that a(x) is in

the interior of the contour T~ U[— co,a>]. By Cauchy's Theorem and the opera-

tional calculus in A, we have:

f   e~2n*n' Tnimx)di = ¿ fr* e ~2nanR(X>x)dX       (0 < « < «)

=   _. c-2«n* + -L f    e -2"a"R(X;x)dX      (œ0 < co).
¿xi Jr-

Estimating the integrals over r* and T~, we find that their strong limit for

co -» oo is 0 for » < 0 and n > 0 respectively.

It follows that the integral j'0lCue~2*ii''-(l/2Ttï)R(Ç;x)dZ converges strongly

(for co-> co) to 0 for n < 0 and to - e~2m>lx for r\ > 0. Using Lemma 3 we get

the first part of Lemma 4; the second part is proved in the same way.

Remarks. (1) If either r+(x) < 0 or r~(x) > 0, a similar result holds for the

function (l/2^)P(i<^;x). Its L2-Fourier transform exists, and is a.e. given by

rr2,i'-' n<0

J ifr+(x)<0.
[ 0 n = 0.

An analogous formula is true for r ~(x) > 0.

(2) The Parseval equality is not valid in general in L2 ® A. Consider for example

the Banach algebra of 2 x 2 matrices over the complex field,with norm

|(x„.)||= I \x,j\.
i J

Let

("!-!)■

so that r+(x) < 0. Taking/(£) = (l/2it)R(H;x), we have ||/(ö || = (9/4 + 4At)1/2,

while
\»/2

«/!=(")   ^11/11

(the norms are the L2 ® A norms).

Lemma 5. Condition (b) holds, for s > 0,/or any S e B(X) with real spectrum.

Proof. Given £ > 0 and Se B(X)with real spectrum, we define:

(1) FM) = ¿.{A(í;S 4 id) -R(Ç;S- /£/)} « e R).

Since a(SlisI) = a(S)lis and a(S) is real, the real line is in the resolvent set

of StisI,  and therefore £/£) is a well-defined B(X)-valued  function.   It is



164 SHMUEL KANTOROVITZ [April

obviously in L2 ® B(X) and according to Lemma 4, its L2-Fourier transform

exists and is given a.e. by:

77-v ï-    ¡e-2ni"iS+UI)   for 77 <0,

r.W-  [e-2.i,(S-i./) f()r ^^o

(Notice that s ~(S + iel) = £ < 0 and s+(S - iel) = - s < 0.) Equivalently,

(2) £;(77) = e_2,t£|,'l-e-2'"'''s.

Now, Fe(t) = e/iiR(t-is;S)R(t +is;S), by the "First Resolvent Equation"

[8, p. 126].
Therefore || Fe(t) \\ is 0(f2) for 11 \ - 00, and it follows that Fe(t) is

in Lx ® B(X) (as well as in L2 ® B(X)). Thus, for xeX, x* e X*,

x*Fs(t)x e LX(R) n L2(R), and therefore, the L2-Fourier transform of x*££(¿j)x

coincides a.e. with the usual L^Fourier transform. According to Definition 2,

we conclude that e~2™M • x*e~2n"'sx is the usual L^Fourier transform of

x*Fe(t)xeLx(R).

By Theorem 2.1.3 in [2], it follows that the integral

f  expí-7t   téX -2itn    W2*e|{| ■x*e-2n,iSx)dt

converges in Lj-norm to x*Ft(n)x when JV-> 00.

Equivalently :

(3) lim¡v-.oo x*GN(n;¿)x = x*Fe(n)x in L,-norm.

Hence :

(4) lim      y(n)GN(n;E)dn =      y(n)Fe(t])dn
7V-»oo   J R J R

in the weak operator topology, for each y e C(R) and £ > 0. We write

(5) B(y;e)=   Í y(r,)Fe(n)dn.
Jr

We have B(y;e)eB(X), and || B(y;£)| = ¡Fe\\x ■ ¡y ||, where ¡Fc\\x is the

L, ® B(X) norm of ££ (i.e., ¡R \\ FE(n) || dn), which is   nite for £ > 0. Q.E.D.

Remark. Let S be an operator with real spectrum. Let £ > 0. Now, for v real,

take y(t) = e-2"'^ in (5). We obtain from (2) that

B(e-2"ivi; e) = F^(v) = e-*»M.e-*««»*.

Therefore :

lim B(e~2nivi; £) = e_2",vS

£-♦0+
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in the uniform operator topology. We conclude that if condition (b) holds, then

condition (c) holds if and only if B(e~2*iH; Q) = e~2*ivS.

In the next lemma, we give formulas for the computation of s+(x) and s ~(x)

for an element x of a Banach algebra.

Lemma 6. Let A be a Banach algebra with unit e. Let xeA. Then:

-2KÍB.1C   II
+ log   e

s  (x) =  hm   —sjl^
,-oc 27rn

and

log le-2"""!
s  (x)=   lim

,->-oo ¿nri

meaning that the limits exist, and their values are s+ (x) and s~(x) when n -> co

and n -» — co respectively^).

Proof. For £ > 0 and £ e R, let

HM) = ¿-{A(í;x - i[s-(x)-E]e)-R(í;x - i[s+ (x) + e]e)}.

Since s~(x — i[s~(x) — fi]e) = e > 0 and s +(x - i[s +(x) + ¿]e) = — £ < 0, we may

apply Lemma 4 and conclude that HM) is in L2® A and has an L2-Fourier

transform, which is given a.e. by

(1) K(n)= e-2^x-<t>e(n)

where

r -2*i,(,<-(*)-«)     <0
(2) w?)= '   n    '

[ e-2«H +(*) + «> t      y^Q

Now, as in the proof of Lemma 5, we check, by means of the "First Resolvent

Equation," that HM) is also in Lx ® A, and it follows that

e~2mtix . <t>M) = J" e-^HMW;
hence

r2"nx\\-(t>M^ I    \\HM)\\di = K<oo.
}r

Taking logarithms and dividing by 27in, we obtain (using (2)):

(i)   Forn<0:

log || e-'^'j      _, log*
■ = 5   (x) - £ +

2%r\ 2nn   '

hence

(5) Equivalently s+(x) = logr(e-l*)ands~(x) = — logr(e'x).
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log || e~2*"" ||
lim inf   -!L.-!L > s  (x) — £.
,--» 2™/

This being true for each £ > 0, we obtain

log || e"2"'^!!
(3) lim inf -£i--!;>s (x).

„__„, 27177

(ii) £or 77 > 0: we obtain by the same method:

log || e"2*"'*!!       +
(4) lim sup -5JL-l g s+ (x).

,^00 2j"7

Now, for A varying in ofx), e~2n"'x varies in a(e~2n,,,;ï) (by the Spectral Mapping

Theorem), and therefore |i>~2'"''"l| g ||e " 2*'«*| ; hence :

(5) 27tn-ImAglog||e~2,li''x|.

Thus, for 77 < 0, we have Im A ̂  Iog|e-2*"'JC H/27177; this being true for each

A e ct(x) and each 77 < 0, we obtain :

loe II e~2""x II                lóele-2'"''*!!
s-(x) = inf Im A ̂  lim sup -^Si 1 ^ lim inf ^Sll-1 ^ s"(x) (by(3)).

X*a(x) ,-*-» 27t" ,-»-co 27"7

Thus we have equality everywhere, proving the existence of

lim    log lie-2"'"-!

,__„ 27177 j

and showing that its value is s~(x). Similarly, we get from (5) and (4) (for 77 > 0):

s  (x) = sup   Im A ;£ hminf-^--ghmsup -^--'es (x).
Xealx, „-00 27t" ,-co 27t"

Hence the limit exists and lim„.<00 log || e-2*'"* \\/2itr¡ = s +(x:). Q.E.D

Remark. Since r+(x) = s+(ix) and t--(x) = s~(ix), it follows from Lemma 6

that the limits of log |] e~2n"'x\\/2itn, when 77 -» 00 or 77 -» -co, exist, and are equal

to r+(x) and r~(x) respectively.

Corollary 1. <r(x) is real if and only if

loelle"2'"vll
liminfiEilLf-!i = 0(6).
|,|-»oo 2ltt]

Proof. a(x) is real if and only if s+ (x) = s~ (x) = 0.

Corollary 2. If || e ~2n"lx || g M < 00 for all neR, then a(x) is real.

Proof. Apply Corollary 1.

(6) Equivalently, o(x) is real if and only if r(e<*) = r(«_,x) = L
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Lemma 7. Let X be a reflexive Banach space, and suppose that SeB(X)

satisfies condition (b)for £ = 0. Then there exists a unique uniformly bounded

operator-valued function £(•) on the Borel sets of the real line such that:

(i) F(-) is finitely additive;

(ii)   F(-)x is countably additive for each x in X; and

(iii) B(y;0)x = $Ry(Ç)dF(i)xfor each x in X.

Proof. We notice first that GN(n;e) is meaningful for any £ _ 0. Indeed, it

follows from Lemma 6 that, given ô > 0, there exists Ç0 = Ç0(ô) > 0 such that

¿2»i,Us)-»)<< \\e-2*tiS\\ < e2"^+<S)+™    for £ > £0

and

e2.(,-(s)+í)í < || -2,iis| < e wm-iK   for | < _ io-

It follows that the integral defining GN(n ; e) converges in the uniform operator

topology.

Next, the integral JR y(rj) GN (n ; s)dn exists (in the uniform operator topology)

for each y e C(R).

Therefore

x*\ y(ri)GN(r¡;£)dr¡x=      y(t])x*GN(r¡;E)xdri
JR Jr

for each xe X and x* e X*. Hence

x*B(y;0)x= lim  í  y(r¡)x*GN(tj;G) xdr\.
N-*<a JR

It follows that

x*B(a1y1 + a2y2; 0)x = a1x*B(y1; 0)x + a2x*B(y2; 0)x

for all yl3 y2 eC(R) and all ax, a2 complex numbers. Condition (b) implies also:

(1) |x*B(v;0)x|g(K||x||||x*|)||y||.

We conclude that x*B(y;0)x is a bounded linear functional on C(R). By the

Riesz Representation Theorem, there exists a unique finite regular complex

Borel measure p(- ;x,x*) on the Borel field 38r of R such that

(2) x*B(y;0)x= j  v(«)dp(n;x,x*),

and

(3) |x*B(-;0)x|| = ||p(-;x,x*)||

for every yeC(R) with compact support; in equation (3),the norm on the left

is the norm of x*B( • ; 0)x as a bounded linear functional on C(R) ; the norm on the

right is the total variation of p. By (1) and (3), we obtain for each de3Sr:
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\p(b;x,x*)   S  ¡p(-;x,x*)\\ = \\x*B(-;0)x\\

=    sup |x*B(y;0)x|^K||x|||x*||.
lb ll = i

We conclude from (4), (2) and the uniqueness of the Riesz representation that

p(ó; ■, ■ ) is a bounded bilinear form onlxl* for each fixed <5 e S8r. The space X

being reflexive, it follows that there exists a unique bounded linear operator

F(b)eB(X) such that

(5) p(b;x,x*) = x*F(b)x

for each be@ir, xeX and x* eX*. From (4) and (5) it follows that £(• ) is a

uniformly bounded finitely additive BO^-valued measure on S8r. By (5), x*F(-)x

is countably additive on SSr; therefore £(•) is countably additive in the strong

operator topology (see [8, p. 75]).

Thus, the integral $Ry(n)dF(n) is meaningful in the the strong operator

topology. We have :

x*     y(n)dF(n)x =      y(n)du(n;x,x*) = x*B(y;0)x,
Jr Jr

for each x in X, x* in X* and y in C(R) with compact support. Hence

B(y;G) = Jk7(77)df (77) for each y in C(R) with compact support; this equation

extends to all y in C(R) because £(■) is uniformly bounded. The uniqueness of

f ( • ) with the properties (i)-(iii) follows from the uniqueness of the Riesz rep-

resentation. Q.E.D.

Corollary 3. Let SeB(X) have real spectrum and suppose that condition (b)

holds for £ = 0 (by Lemma 5, condition (b) holds for e > 0 since S has real

spectrum; thus condition (b) holds for £ 5; 0). Let £(•) be the measure defined

in Lemma 1. Then the Fourier-Stieltjes transform of £(•) is e~2m"s if and only if

condition (c) holds.

Proof. We have noted already that the hypothesis of the corollary implies that

condition (b) holds. Therefore, by the remark following Lemma 5, condition (c)

holds if and only if B(e-2"ivi;0) = e~2nivS. But, by Lemma 7, B(e~2""i ;0) is the

Fourier-Stieljes transform of £( • ). Q.E.D.

Lemma 8. Let S and £(•) be as in Corollary 3. Suppose furthermore that

condition (c) holds. Then £(•) is a spectral measure on Sùr.

Proof.   By  Lemma  7,  all we have to  prove is that  F(R) = / and that

F(ôi n b2) = F(bx)F(b2) for all bx and b2 in SSr.

By Corollary 3, we have :

(1) Í  e-2*,vtdF(t)x = e-2xivSx

for all v in JR and x in X.
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Taking v = 0, we obtain F(R) = I.

Next, if vx and v2 are real numbers, we have:

I   e-2*¡(v,+v2K dF(£)x = e"2,ti(Vl + V2lsx = É,-2,tiv's-e_2'"V2Sv

=   f   e-2"intdF(Ç)- i  e"2"iV2idF(^x.

Using this relation, we obtain

f yy(0y2(0dF(0x=íyy(0dF(0Í   y2(OdF(^x
Jr Jr J r

for functions yt and y2 in C(R) of the form Z£=1ocJte_2,l'v 4, where oí!,--.,^ are

complex and v,,.--,vB are real numbers.

By the uniform boundedness of £(•), it follows therefore that the map

y-* ¡Ry(Ç)dF(Ç) is multiplicative over the uniformly closed linear subspace

A of C(R) generated by the set {e ~lnivi; v e R}. Since A is closed under complex

conjugation, we apply the Stone-Weierstrass Theorem, and using again the uniform

boundedness of F(-) and the bounded convergence theorem for integrals, we

conclude that the map is also multiplicative over the class of functions which

are (pointwise) limits of uniformly bounded sequences of functions in C(R).

In particular, this is true for characteristic functions of intervals. It follows that

F(oty)F(a2) = F(cty n<x2) for intervals; since F(-) is countably additive in the

strong operator topology, this relation extends to all ax and a2 in 3Sr.      Q.E.D.

Proof of Theorem 4. (1) Necessity. Let £(■) be the resolution of the identity

of the pseudo-hermitian operator S, and let F( • ) be the restriction of £( • ) to

3§r. Then

e-2*ms = f e-2«wdf(i)

Hence || e~2"i,,s\\ g. K and condition (a) holds.

Since a(S) is real, condition (b) holds for £ > 0 by Lemma 5. We prove that

condition (b) holds also for e — 0. For each x in X and x* in X*,

x*e~2ninSx is the Fourier-Stieltjes transform of the countably additive complex

measure x*F(-)x with finite total variation. By Theorem 2.1.3 in [2], it follows

that the indefinite integral of x*GN(n;0)x is "Bernoulli-convergent" to x*F(-)x

when N -*oo, i.e., its total variation is uniformly bounded for N > 0 and

lim  f   y(r¡)x*GN(ri;0)xdr¡ =  í  y(n)dx*F(n)x
N-*œ JR JR

for all y in C(R). Equivalently, the integral jRy(n)GN(ri;0)dri converges (when

JV-> co) to JRy(n)dF(n) = B(y;0) in the weak operator topology. We also have



170 SHMUEL KANTOROVITZ [April

II *(?; 0)1 = 1  f   y(tl)dF(n)\\^K\\y\\,
« Jr II

and condition (b) is proved.

By the remark following Lemma 5, condition (c) holds if and only if

B(g-2«'»«; 0) = e~2"hS for v real.

But this follows from the facts that

B(y;0) = f  y(r¡)dF(r¡) and e~2KivS= f   <T2,tivW(n).
J R J R

This completes the proof of the necessity.

(2) Sufficiency. By Corollary 2, condition (a) implies that the spectrum of S

is real. Then, by Lemmas 7 and 8, using conditions (b) and (c), we conclude that

there exists a unique uniformly bounded spectral measure F( ■) on 3Sr, countably

additive in the strong operator topology, such that

(1) B(y;0)=(y(OdF(O

for all y in C(R). Furthermore, by Corollary 3, the Fourier-Stieltjes transform

ofF(-)ise-2,,ivS,

(2) e~2nivS = f   e~2"v(dF(0 for all real v.

Thus, £(•) commutes with e_2"'vSfor all real v. Since

Um (-27tiv)-1(e-2'livS-/) = S
v-+0

(in the uniform operator topology), it follows that F(-) commutes with S. There-

fore, the Banach algebra generated by {F(<5); ôe3Sr) and S is commutative and

has an identity (since / = £(£)). Let Ji be its maximal ideal space. Since F(-) is

a spectral measure, the support of £( • ) (m) is either void or consists of a single

point £,„ on R (for each fixed m in Ji). Thus, by (2),

e-2n"s(m)= f   e-2^d(F(t:)(m)) = e-2Khi

in the second case and 0 in the first. But

e-2*toSfm\ = ^-2<tivS(m)

for all real v: it follows that only the second case is possible and S(m) = Çm.

By Lemma 2 in [4], we obtain (for each <5 in 3S¿) :
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a(S\ F(b)X) = {S(m);m e Jt, F(b)(m) = 1}

=  {tm;me.£,F(b)(m)=\}.

If tm is not in 5, then F(b) (m) = 0. Thus t,„ e 8 for each meJi such that

£(o)(m) = 1. Hence, by (3), we conclude that

a(S\F(b)X)c5.

If we extend now the measure £(•)! to the Bord sets of the complex plane by

defining E(b) = F(b n R) for each Bord set b of the plane, we then obtain a re-

solution of the identity £(•) for S. This shows that S is a spectral operator with

real spectrum. Thus, by Theorem 1 in [4], the support of £(•) (or £(•)) is o~(S).

Therefore, by (2), we have:

(-2niv)-l(e~2'"s - 1) = i     ( -2itiv)-1(e~2nivi - \)dF(t).
J<r(S)

The expression on the left-hand side converges to S (when v -» 0) in the uniform

operator topology. Since a(S) is compact, the integral on the right-hand side

converges to \a(S)tdF(t) in the strong operator topology. We conclude that

S = $a{S)tdF(t). This completes the proof of Theorem 4.

Remarks. In applying Theorem 4 to concrete problems, we may use the fol-

lowing facts in order to simplify the verification of the conditions (a)-(c).

(1) Condition (a) may be replaced by the condition

(a') lim inf OM)-1 log || e-2"18"! = 0,

which is equivalent to the condition that a(S) be real (see Corollary 1).

(2) Condition (b) for £ > 0 follows from condition (a) (or (a'))- This is a con-

sequence of Lemma 5 and Corollaries 1 and 2. Therefore, if (a) or (a ') hold, we

only have to check condition (b) for £ = 0.

(3) Once we have obtained B(y ; 0) (by checking condition (b) for £ = 0), con-

dition (c) can be verified by showing that

B(e"2'tivi;0) = e-2'"'vS for real v.

(4) In Hubert space, condition (a) alone is sufficient for S to be p.h. This is false

in general (see §5).

4. Examples, (a) We apply Theorem 4 to a concrete example. For 1 < p < oc,

let S be the operator defined on LP[0,1] by:

(1) (S/)(x) = xf(x) + j*(e'-'- l)f(t)dt.

For £ e R, we find that
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(2) (e~2"itsf)(x) = e~ 2niixf(x) + J* K(x, t; t)f(t)dt,

where

^^;t)-^T(e-2^ex--e-2^').

We then obtain the estimate

(3) ||e_2,liiS||^e + 2fora]lreaU.

Next, we show that S satisfies condition (b) in Theorem 4. According to the remark

following the proof of Theorem 4, we have only to check condition (b) for £ = 0.

Let y eC(R),feLp[0,1] and xe [0,1]. By (2), we have:

jRy(ri)GN(n;0)dnfj(x)

=   f  y(n) f  e-^'N)2 + 2^"-x)dtdnf(x)
J R J R

+ 51 \5r ̂ l e~mm2+2%*nK(x>v>®dzdri)f®dt

= JxN(x) + J2N(x).

Now

to = Jry(n + x)Ne-^n> dnf(x).

Therefore, by Theorem 1.1.1 in [2], Jj, converges to yf in the weak topology of

LP[0,1].

Next

-f(l *+,)L «"*"'"""" -drM«)"0*-
We write 2nit/(2nit - 1) = 1 -1/(1 - 2itit) and observe that 1/(1 - 2nit) is the

Fourier transform of the function in LX(R) defined by:

/ e"    for 77 ̂ 0,

*<') = (o     for7,>0.

Therefore, using Theorem 2.1.3 in [2], we obtain:
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lim J2N = f\y(x) - f  y(rj + x)h(r,)dn)ex-'f(t)dt - f 7v(i)
jv->oo Jo Jr Jo \

- JRy(" +Oft («¥»)/(i¥i

in the weak topology of Lp[0,1], and we conclude that

(4) lim  ( f  y(n)G„(n;0)dn/)(x) = y(x)/(x)+ f L(x,t;y)f(t)dt
/v->oo \ J r I Jo

where

(5) L(x,t;y) = y(x)ex-t-y(t)-e-'^ y(n)e"dn.

Hence :

(6) lim   f y(n)GN(n;0)dn = B(y;0)
¡v-»œ Jr

in the weak operator topology (over Lp[0,1]), where

(7) [B(y ; 0)/](x) = y(x)f(x) + Í * L(x, i ; y)f(t)dt,        f e Lp[0,1].
Jo

Finally, we find the estimate:'

¡B(y;0)||=(2e+l)|y|.

According to the remark following the proof of Theorem 4, we check condition (c)

by showing that

B(e-2Ki^;0) = e~2nivS for all real v.

But this follows at once from (7), (2) and the identity

L(x,t;e-2mvli) = K(x,t;v).

We conclude that S satisfies conditions (a)-(c) in Theorem 4. Therefore S is

pseudo-hermitian. In particular, as an operator over L2[0,1],S is similar to a

hermitian operator.

For completeness, we determine also the resolution of the identity F of S.

Using Lemma 7 and (7), we obtain :

ÍÍ  y«)dF(i)/|(x)=f y(t)dpM)(Tf)(x) - f  y(fl(T/)(Ocio.»l(0«.

where px( ■ ) is the measure defined on the Borel sets of R by

(1   if  xeö,

^Ô)=\0   if   xtS
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and T is the (nonsingular) operator defined on £,,[0,1] by

(8) (Tf)(x)=f(x)+r ex~'f(t)dt.
Jo

It follows that

(9) [/W](x) = px(ô)(Tf)(x) - f (T/)({)d{
Jan[0,x]

for each Borel set <5 on R,f in Lp[0,1] and x in [0,1]. Equations (8) and (9)

define the resolution of the identity F( • ) of the pseudo-hermitian operator S.

Now we have :

(S/)(x) = ( |*{dF(0/j(x) = x(T/)(x) - £ «T/)(Od{.

Since T is nonsingular, every/in Lp[0,1] can be written as T" 1g with ge Lp[0,1] ;

hence :

(ST~1g)(x) = xg(x)-^ Çg(Î)dÇ-
in

Applying T on both sides of the equation, we obtain

(TST-1g)(x) = xg(x),

proving that S is similar to the "multiplication by x" operator on LP[0,1] (for

1 < p < oo). We notice that the same holds for p — 1 (direct check!). Further-

more, the similarity mapping is performed by means of the operator T defined

in (8).

(b) The Spectral Theorem for hermitian operators in Hubert space follows

from Theorem 4. Indeed, conditions (a)-(c) are satisfied if S is hermitian: first

e-2nit,s js unjtary; an(j therefore |e~2,t"'s|| =1; i.e., condition (a) is satisfied.

Next, let xeX; let a1;...,aB be complex and nx,---,t]n be real numbers (n k 1).

Then

i (e-"«H-'"»x,x)afij =   Î (ccie-2*i'"sx,aje-2*i'»sx)
i,j = l i. J"=l

I aie-2"""sx
2

= 0;
i¡ = i

i.e., the function fx(r¡) = (e~2n"lSx,x) is positive definite; hence it is the Fourier

transform of a positive measure px, by Bochner's Theorem. We have

(1) ||px||=varp;t=/;c(0)=||x||2.

Now the function (e 2mS x, y) is the Fourier transform of the complex measure
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1 .
Pxy —  "¿(flx + y      Px-y^ iflx + iy       llix-iy)-

For a fixed Bord set b on R, pxy(b) is a complex bilinear form such that

pxx(b) = px(b) ^ 0. Therefore, by Schwartz inequality and (1):

(2) \pxy(b)\ipx(b)1/2-py(b)l,2ï\\x\\\\y\\.

There exists therefore an operator-valued set function F(b) such that

pxy(b) = (F(b)x,y). This equation shows furthermore that £(•) is countably

additive in the strong operator topology. Now, by Theorem 2.1.3 in [2], the in-

tegral ($Ry(n)GN(n;0)dnx,y) converges (when JV-»oo) to J"Ky(n)d(F(n)x,y);

i.e.,

lim  f  7(7,)GJV(7,;0)d77= f  y(n)dF(n) = B(y ; 0)
n-^ooJr Jr

in the weak operator topology. Furthermore, by (2),

|(B(y;0)x,JO| = | J"  7(ri)dpxy(n) \^\\y\\\\x\\\\y\\,

i.e.,

\\B(r,0)\\u\\y\\.

Finally, condition (c) follows from:

(B(e-2™*;0)x,y) = j  e~2^dpxy(t) = (e ~2™sx,y).

5. Other characterizations of pseudo-hermit ¡an operators. The characterization

of pseudo-hermitian operators given in Theorem 4 has a "constructive" meaning.

Indeed, B(y;0) is the operator y(S) defined in the operational calculus for scalar

operators; it is constructed by a limiting process, using the group {e~2ni^s; t real}.

The existence of B(y ; 0) is the essential part of conditions (b) and (c) ; in other

words, pseudo-hermitian operators are characterized in Theorem 4 by means

of their operational calculus, which is furthermore obtained without knowing the

resolution of the identity for S (and not even its existence). Since the knowledge

of B(y ; 0) = y(S) for all y e C(R) is equivalent to the knowledge of the resolution

of the identity for S, we might say that the latter is also given constructively

through Theorem 4 (see example 1 in §4).

In this section, some nonconstructive characterizations of pseudo-hermitian

operators are given. Their merit lies in their simplicity.

The first result is for Hilbert spaces.

Theorem 5. A bounded linear operator S on the Hilbert space X is

pseudo-hermitian (i.e., similar to a hermitian operator) if and only if the group

{e-2"iiS; t real} is uniformly bounded (i.e.,\\ e~2"{s¡ g M < oo for allteR).
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Proof. We have only to prove the sufficiency. By a theorem of B. Sz.-Nagy [13],

the uniform boundedness of the group {eliS; £e£} implies the existence of a

nonsingular operator Q such that {ß~ ViS(2; ÇeR} is a group of unitary opera-

tors. By Stone's Theorem, the latter group has an infinitesimal generator iA,

where A is self adjoint. Now A is obviously equal to Q~1SQ, and is therefore

bounded. Hence A is hermitian and S = QAQ~l is similar to a hermitian operator,

i.e., S is p.h.

Remark. Wermer's result [15] on sums and products of commuting spectral

operators in Hilbert space is an immediate corollary of Theorem 5 (for the case

of real spectrum). Indeed, we may restrict our attention to the scalar parts, i.e., to

p.h. operators. For the sum, this follows from the inequality

|^+'»M.'V|á|«n|«r"L
using then Theorem 5. For the product, we write 2ST = (S + T)2 - S2 - T2, and

since the square of a spectral operator is spectral, the result follows from the

corresponding result for the sum.

Since Wermer's Theorem is false in Banach space (even if the space is reflexive,

see [9] and [12]), it follows that Theorem 5 is not true in that situation, i.e.,

condition (a) in Theorem 4 is not sufficient by itself, even in reflexive Banach

space. In the latter case, Theorem 4 gives additional necessary conditions which,

together with condition (a) (or the weaker condition (a')), are both necessary and

sufficient for S to be p.h.

Notice that if the condition in Theorem 5 is satisfied with M = 1, then S is

hermitian (and conversely). This follows at once from Sz.-Nagy's proof in [13].

Our next characterizations for pseudo-hermitian operators in reflexive Banach

spaces are derived from the Bochner-Schoenberg Theorem [3; 14].

Theorem 6. Let S be a bounded linear operator on a reflexiveC) Banach

space X. The following statements are equivalent:

(1) S is pseudo-hermitian.

(2) For every feLx(R), we have

1^/(^-2««^ j| =M||/flœ>

where the norm on the left is the operator norm, f is the Fourier transform

of f and || ||a, is the sup norm.

(3) For every real vector (£i,•••,£») and every complex vector (cx,---,c„),

n = 1,2, •••, we have

¡I t cke-2"iik!i « fg M sup I S cké-2niik' .
\ik = í leR   '* = 1

(7) From now till the end of the paper, the space is assumed to be reflexive.
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(4) For    every    xeX    and    x*eX*   with    unit   norm,   the   integral

$R\x*{R(t — ie;S) — R(t + is;S)}x\dt  is  uniformly bounded as £->0 + .

Proof. The implications (1) => (2) and (1) => (3) are immediate.

(2)=>(1). We first notice that the integral ¡Rf(t)e ~ 2*iSSdt converges in the

uniform operator topology. Indeed, if m > n are integers and/eL,(R), let

fn.ÁO =ñi) forn = { = m and/„,„(£) = 0 otherwise. Then

/:
f(t)e

-2iti£S
•dt J>-,(t)e-2lí^dt

ík M¡¡/„„

We conclude that (2) is equivalent to

f(t)(x*e~2^sx)dt\L

J n

< M   x

/«) di

f\

0.

for all feLx (R), xeX and x*e X*. By Schoenberg's Theorem, this implies the

existence of a measure p(-;x,x*) on the Borel sets of R such that || p(- ;x,x*)||

^ M || x || || x* || and x*e'2niisx = \R e'2Kii"dp(n;x, x*)for all xeX and x*eX*.

It follows (as in Lemma 7) that there exists a unique uniformly bounded (by M)

operator-valued function £(•) on S8r such that (i) £(•) is finitely additive;

(ii) £( ■ )x is countably additive and (iii) e~ 2,[iiSx = JV 2Kii" d£(7;)x for all x e X.

We conclude (as in Lemma 8) that £( •) is a spectral measure on SSr. The proof

is then completed as that of Theorem 4 (sufficiency part from equation (2) to the

end).

(3)=>(1). The proof is analogous to that of the implication (2)=>(1), using

Bochner's Theorem [3].

(1)=>(4). Let £ be the resolution of the identity for S. Let v(- ;x,x*) be the

variation of the complex measure x*£( ■ )x. For xeX and x* e X* with unit norm,

we have v(R : x, x*) ;£ 4M where M is the uniform bound of £, and therefore :

f |x*{R0? - ie,S) - R(t + ¿e;S)}x|d£
J R

= 2f   if       dx*E(n)x

Jr   I Ja(S) (t-ri)2 + e2

2sdt

di

^5,J5w-w)M^x")=2MR-'x^
< 8tiM.

(4) => (1). We first notice that the reality of a(S) is implicitly  required  by

statement (4).
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The Fourier transform of x*{R(Ç - ie;S) - R(Ç + is; S)}x is

2itie-2niM x*e-2*i(Sx

(see proof of Lemma 5). Using Fubini's Theorem, we obtain for all/eLL(R):

j f(Oe-2"mx*e-2"iS xdÇ = JLf x*{R(Ç - íe;S) -R(t + is;S)}xM)dl;.

By Lebesgue Convergence Theorem and condition 4, the left-hand side converges

to x* ¡Rf(Ç)e~2*iiSdÇx when £->0+, while the right-hand side is uniformly

bounded (as £->0 +) by M||/||œ (for all xeX, x*eX* with unit norm). Hence

(4) => (2) and therefore (4) => (1). Q.E.D.

Remark. Let Ly(R) denote the space LX(R) normed with the spectral norm,

||/||s= 11/11«,. Let T be the linear operator defined by Tf = \Rf(t)eitSdt. Then

statement 2 is equivalent to the statement: T is a bounded linear operator on

Ll(R) into B(X). The operator norm of T will be called the pseudo-variation

of S, and will be denoted by pv(S). Thus: pv(S) = sup | ¡Rf(t)el,sdt ||, where the

sup is taken over all/ in LX(R) with |/||s = 1. Notice that pv(S) is defined for

any S in B(X), and we have 0 < pv(S) i% oo ; pv(S) is finite if and only if S is

pseudo-hermitian.

We also denote b(S) = supreR || e"s||. Some elementary properties of the

pseudo-variation are listed below.

Lemma 9. The pseudo-variation is invariant under real translation and

dilation: pv(S + rl) = pv(S)for all real r, and pv(rS) = pv(S)for all real r # 0.

We have 1 ̂  b(S) ^ oo ; ifb(S) < oo, then b(S) S pv(S), so that 1 ̂  pv(S) ^ oo.

In particular, if pv(S) is finite (i.e., if S is p.h.), then 1 ̂  b(S) :g pv(S) < oo.

Proof. The map/->/,., where fr(t) =f(t)eirt, is an isometry of L^(R) onto itself.

Hence :

pv(S + rl) = sup I f fr(t)eitsdt 1   (/ e Ly(R), \\f ||s = 1)
Il Jr H

= sup |J  g(t)e,tsdt|j   (geLy(R),\\g\\s= 1)

= pv(S).

The invariance of the pseudo-variations under real dilation is proved in a similar

way.

The inequality 1 g b(S) follows at once from the group property of e"s.

Suppose now that b(S) < oo, and for £ > 0, let i0 be such that || e"oS || = b(S) - e.
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Using the Hahn-Banach Theorem, we choose a unit vector u* e B(X)* such that
*J'°S = Il „"»swe— = ||e— ||. Since |/||s ^ \\f\\x for feLx(R), we have

{feLx(R); \\f\\x Ï 1} c {/eL^R); |/|,= 1}.

Denoting the former set by .4 and the latter set by B and using the isometry of

L*and Lœ, we obtain:

/3(S) - c = 1 eifoS || = u V°s g sup | u V's|

= sup I f /(i)u* eltSdt   ^ sup ¡I   f f(t)ei,sdt
feA    \jR feA   H   J«

I^ sup   I I   f(t)ei,sdt
feB

MS). Q.E.D.

Theorem 7. Leí S„ 6e a nei o/ operators converging strongly to the oper-

ator S. Suppose that the pseudo-variations of Sa are uniformly bounded. Then

S (as well as all Sa) is pseudo-hermitian.

Proof. Using the Uniform Boundedness Theorem (see, e.g., Hille-Phillips

[8, Theorem 2.5.5]), we check easily that exp(/iS0) converges pointwise to el,s in

the strong operator topology.

Let K = supapv(Sa). By Lemma 9, we have ||exp(iiSa)|| ^ K for all real t.

Now, for fe LX(R) and A > 0, let fA(t) =f(t) for - A g t ^ A and fA(t) = 0
otherwise. Using the Lebesgue Dominated Convergence Theorem for nets (see,

e.g., Dunford-Schwartz [6, p. 124, Theorem 7]), we obtain :

j fA(t)ei,sxdt = lima | fA(t)exp(itSa)xdt

(in the strong topology of X, for all x e X).

But

¡sfA(t)cxp(itSa)xdt\^K\\fA

Hence || jfA(t)e"sdt || g K \\fA j^, and since fA ->/ in L^norm when A -» oo,

we get finally :

\jf(t)ei,sdt^K\\f\\x,   for allfeLx(R).

By Theorem 6, this shows that S is p.h. (and also that pv(S) ^ supapi;(Sa)).

Remark. Let S be p.h. and let £ be its resolution of the identity. Write

M = sup(|| E(b) \\;beá?r). Then it is easily seen that

M ^ pv(S) ̂  AM.
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This implies that the hypothesis of uniform boundedness of the pseudo-variations

of Sa is equivalent to that of uniform boundedness of the resolutions of the

identity for Sa. This means that our Theorem 7 is equivalent to Theorem 2.3

in Bade [1] (for the case of real spectrum). However, our statement has the

advantage of being entirely given in terms of "analytic" conditions on the S„

themselves, without any allusion to the generally unknown resolutions of the

identity.

We consider now the relation between/(S) and/(Sa) for bounded Bord func-

tions/on R.

Using essentially the notations of §4, we write:

GN(t,S) = f   exp( - it(u/N)2 + 2ititu)e~2n,uSdu.
Jr

A straightforward application of Theorem 1.1.1 in [2] and of the Lebesgue

Dominated Convergence Theorem gives :

Lemma 10. Let S be p.h. and let E be its resolution of the identity. Let f be

a bounded Borel function on R with set of discontinuities K. Then for each

x e X such that E(K)x = 0, we have:

/(S)x = lim       f(t)GN(t,S)xdt    (strongly).
N-»oo Jr

In particular, if E(R) = 0, then f(S) is the strong limit of §Rf(t)GN(t,S)dt

(as N-> oo). Furthermore, if Sa and S are as in Theorem 1 and E(R) = 0, then

f(Sa)=  lim    |   f(t)GN(t,Sa)dt    uniformly in a.
,v-»co Jr

Notice the following

Corollary. For S and E as above and oe38r, we have:

E(ô)x = lim f   e'n(u,N)2cô(u)e2niuSxdu,
N-*ao  Jr

provided that E(dS)x = 0 (cs and dô are the characteristic function and the

boundary of Ö respectively).

The following theorem is easily proved by using Lemma 10 (the proof is

omitted):

Theorem 8. Let Sa be a net of operators converging strongly to the operator S.

Suppose that the pseudo-variations of Sa are uniformly bounded. Let then Ea

and E be the resolutions of the identity for Sa and S respectively. Then for every

bounded Borel function f on R, f(Sa)x converges strongly to f(S)x provided
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that E(K)x = 0, where K is the set of discontinuities off. In particular, Ea(S)x

converges strongly to E(ö)x if E(ôô)x = 0.

According to the last remark, Theorem  8 is equivalent to Theorem 2.6

in Bade [1].
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