
LIMITS OF POLYNOMIALS

WHOSE ZEROS LIE IN A RADIAL SET

BY

J. E. LANGE AND J. KOREVAARÍ1)

1. Introduction. Let P be an unbounded closed set in the complex

plane. The polynomials whose zeros belong to P will be called P-

polynomials. We say that a sequence of functions is U-convergent when

it converges everywhere in the plane, and uniformly on every bounded

set. The object of study is the class C(R) of all functions not identically

zero which can be obtained as //-limits of P-polynomials. It is clear

that C(R) consists of entire functions whose zeros belong to P. A set P

such that C(R) consists of all entire functions not identically zero whose

zeros belong to R will be called regular. Descriptions of C(R) for a number

of special "singular" sets have been known for a long time; cf. Obrechkoff's

monograph [6]. For a survey of more recent work, see [3].

Some years ago the second author set the problem of describing the

class C(R) for general sets P. He obtained a number of results in terms

of the asymptotic directions of P. It is convenient to define the asymptotic

directions as the rays argz = 8 for which P contains a sequence of points

{z„( which tends to infinity in such a way that argz„—>0. The set of the

asymptotic directions (rays) arg z = 0 for R will be denoted by A (P), the

set of the corresponding rays argz = jd by AJ(R) or A(RJ). One can dis-

tinguish three kinds of sets P:

(i) R will be called a set of the first kind if no set AJ(P), ; = 1,2, • • •, be-

longs to a half-plane. Sets R of the first kind are regular [l].

Suppose now that we have a set R not of the first kind. For such a set,

let k be the smallest positive integer such that Ak(R) belongs to a half-plane.

(ii) R will be called a set of the second kind if the convex hull of Ak(R)

is an angle < *■. For a set of the second kind C(R) consists of the entire

functions of the form expiez*) -g(z), where g(z) is an entire function not

identically zero of genus £ k — 1 whose zeros belong to R, and — c belongs

to the convex hull of Ak(R) [l].

(iii) R will be called a set of the third kind if the convex hull of Ak(R) is

a half-plane or a line. Some sets of the third kind are regular [l], some are

singular; no general results are known. Of the singular sets of the third

kind only special sets such as lines, strips and half-planes have been

investigated.
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In work of this sort it is convenient to introduce, besides the order and

the genus of an entire function f (z), a third number which we shall call

its index. This is the smallest positive integer q such that f(z) can be

written in the form exp(cz') -g(z), where g(z) is entire of genus g q — 1.

The order p (index q) of a set P or the class C(P) is defined as the least

upper bound of the orders (indices) of the entire functions in C(R). There

exist sets of all orders p, 1 ^ p ^ °°. It is known that a set is singular if

and only if its order {or index) is finite [2]. For a singular set P the zero

free functions can be written in the form

Aexp(aiz4-+açz") (A^O).

Let us denote by K the set of all corresponding points

a = (ax, ■ ■ -,aq) = (Reab Imab • • -,Rea,, Im a,)

in real 2q-dimensional space. It is known that K is a (closed) convex

cone: if a E K then Act G K for all real X ̂  0, and if a,bEK then

\(a + b)EK [2].

2. Present results. In this paper we obtain a complete description of the

class C(R) for the case where P is any (closed) radial set, be it of the first,

second or third kind. For a radial set, that is, a set such that if z E R then

also XzER for all X ̂  0, A(P) coincides with P. A radial set is regular

if and only if it is of the first kind, that is, if and only if no power R' be-

longs to a half-plane.

For a singular radial set we determine the index in terms of the geometry.

The order is equal to the index, and attained by a zero free function. The

corresponding cone K is the product of 2-dimensional closed convex cones

Kj: aEK if and only if OjEKj, j= l,---,q. For j <\q the set K,

is the plane, for \q ¿¡j <q the Kj are either the plane, a half-plane, or a

line; Kq is always an angle <i or a ray. (For certain nonradial sets, such

as the half-plane Re z ^ 1, the cone K cannot be decomposed in this

manner [l].)

In order to discuss our results for singular radial sets in more detail we

have to describe the geometry of P. Set P = Pi, let kx be the smallest

positive integer such that PÎ1 belongs to a half-plane, and let Si be the

convex hull of Rkxl. If Si is an angle < * the set P is of the second kind

and C(R) is known. If Si is a half-plane ax = argz ^ ax + it or a line

argz = ax, ax + n- we introduce an auxiliary set R2. The set R2 will con-

sist of those rays argz = 8 of Pi for which kx0 = ax(modir). That is, R2

consists of the rays of Rx whose fcjth powers fall along the boundary of Si.

In general, let kv be the smallest integer > k,_x (k0 = 0) such that

P*" belongs to a half-plane, and let S„ be the convex hull of Rk". If S„ is
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an angle < w we go no further. If S„ is a half-plane a, Sj argz z% a, + w

or a line argz=a„, a,+ w we introduce an auxiliary set R,+y. The set

P„+i will consist of those rays argz = 6 of P„ for which k„d = a,(modx).

In other words, P„+1 consists of the rays of P„ whose &„th powers fall along

the boundary of S,.

The above process comes to an end in a finite number of steps since

PiD P2D ■••> and Rfl is just a ray. Let P„ be the last set P„ introduced

in the construction, and let ku be the smallest integer > ku_y such that

Rt" belongs to a half-plane. Then the convex hull S„ of P*" is an angle

< w or a ray. Note that since P2*1 is a ray for any v ä 2, one has

(2.1) fcB $ 2ky

whenever u> S 2.

Theorem 2.1. Lei R be a singular radial set. Then the zero free entire

functions in CiR) are the functions of the form

(2.2) Aexp(o!Z+-\- aNzN) (A^O)

where N = ka,

(2.3) aKE-S„       forw-1, ••-,«,

and the other a¡ are arbitrary. iNote that by (2.1) all a¡ with j < { N are

arbitrary.)

In (2.3), - S, denotes the  set  of all  points   —z  with zES„.

Theorem 2.2. The singular radial set R has index and order equal to

N = ku. The class CiR) consists of the entire functions which can be repre-

sented in the form

Azmexpibyz +-\-bNzN)
(2.4)

• II (1 - z/zp)exp(z/zp + • • • + zf-'/iN - l)^-1)
p

where A jí 0, zpER, ~E,p\zP\~N converges, b, is arbitrary for ;V*„

v = 1, • • •, u, bk E — Su, and

(2.5) bK + lZzpKe-S„,      r-l,...,«-l,

¿re the sense that the series

(2.6) Imibk/"') + rZ Im(Zp-V"")

converges to a sum
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(   ^ 0 if S, is the half-plane a„ ̂  argz ^ a, + w,
(2.7) a, \

(  = 0 if S, is the line argz = a„ a, + it.

A somewhat less precise form of the above results was obtained by the

first author in his (unpublished) Ph.D. thesis [4]. The proofs in the present

paper are shorter and quite different. They depend on comparison of

C(R) with certain related classes of entire functions, a technique which

may be useful also in the study of nonradial sets.

3. The auxiliary classes Ch(R). We begin by normalizing the functions

in C(R). If F(z) is any entire function not identically zero one can write

F(z) = Azmf(z), with f(0) = 1. Furthermore, if F(z) is the //-limit of P-

polynomials Fn(z), one can omit suitable factors from the Fn(z) to obtain

ñ-polynomials fn(z) which are {/-convergent to f(z). Thus /(z)GC(P).

We denote the subset of the functions / (z) G C(P) with f (0) = 1 by C0(R).

Every function f(z)EC0(R) is the  LMimit of normalized P-polynomials

(3.1) fn(z) = II (1 - z/znp),        ZnpER-
p

More generally, if h is any integer S 0 we define Ch(R) as the class of

U-limits of finite products of the form

(3.2) fn(z; h) - ITU - 2/2np)exp(z/z„p + • • • + zh/hzhnp),       znp E R-
p

Note that for \z\ <minp|z„p|,

(3.3) fn(z; h) = exp(sn.h+lzh+l + sn,k+2zh+2 + ■■■)

where the sn; are given by the formula

(3.4) »^--ÍZ*¿        .7=1,2,....
/ p

It is clear that the product of two functions in C(P) is again in Ch(R),

and likewise the limit of a //-convergent sequence of functions in Ch(R).

If f(z) is the limit of a (7-convergent sequence of finite products f„(z;h)

one can write, in a disc about 0 which is free of zeros of f(z),

(3.5) f(z)=exp(ah+1zh+1 + atl+2z>'+2+ ■■■),

where

(3.6) a;=limsnj,        j = h + l,h + 2, ■ ■■ .

The existence of the limits (3.6) by itself is not sufficient to imply U-

convergence of a sequence \fn(z;h)\. Something has to be added, as in

the following lemma.
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Lemma 3.1 (cf. Lind wart and Pólya [5j; Obrechkoff [6]). Let the

fniz; h),n = 1,2, • • • be finite products (3.2) such that the associated sequences

\sn¡\ (3.4) tend to limits a¡ as re —> <», _/ = A -|- 1, h + 2, • •• . Suppose further-

more that there are an integer t > h and a number M such that

(3.7) X|znp|-'^M,        »=1,2,....
p

Then the sequence \fniz; h) j is U-convergent to an entire function of index zi t.

There are simple geometrical conditions which imply (3.7):

Lemma 3.2 (cf. Lindwart and Pólya [5]; Korevaar [l]). // the kth

powers zknp of the zeros of the fniz;h) belong to a fixed angle with vertex 0 and

opening <*, and the numbers snk, re= 1,2, • •-, form a bounded sequence,

then (3.7) holds with t = k and a suitable constant M. If the kth powers znp all

belong to a fixed half-plane a ^ argz i% a + w, and the numbers snk and s„i2k,

n = 1,2, •••, form bounded sequences, then there are constants A and B such that

(3.8) X|lm(zñpV)| z%A,   Y.\ZnP\"lk^B,       re =1,2,.-..
p p

Here the requirement that the angle ( < w or = w) have vertex 0 may

be dropped if it is known beforehand that the sequence j/„(z;/i)¡ is U-

convergent.

The following lemma helps one determine the zero free functions in C(P).

Lemma 3.3. Let zn = rnel>n, where rn^ °o and 8n—>6. Let X > 0, sa

positive integer, and let vn be  the  integral part of \sfn.   Then  as  n —» œ,

(3.9) j (1 -z/zjexp(z/z„+ ... +zs'l/is - i)**"1) }-^exp(- Xe^z')

in the sense of U-convergence.

The preceding lemmas may be used to obtain results on the class

ChiR) in terms of asymptotic directions (cf. §1). We omit the proofs

because they are very similar to those for the corresponding results on

C(P)  (cf. Korevaar  [1]).

Theorem 3.4. Let R be a set whose asymptotic directions are such that

AA+1(P), •••,A*-'(P) (where k ^ h + I) do not lie in a half-plane. We

denote the convex hull of Ak(R) by S.

(i) Suppose that

(3.10) exp(aA+1zA+1 + • ■ • + akzk + ■•■)

represents a zero free entire function in Ch(R). Then akE —S, and if S_is an

angle < w moreover a, = 0 for all j > k. On the other hand, if akE —S then

(3.11) exp(ak+yzh+1 + ■ ■ ■ + akzk)
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belongs to Ch(R) for every choice of the complex numbers an+x, ■ ■ -,at_i.

(ii) Suppose that Rk belongs to an angle < ». Then Cn(R) has index k,

that is, the maximum of the indices of the functions in Cn(R) is k. The class

Cn(R) consists of the entire functions which can be written in the form

exp(bn+xzh+1 + ■■■+ bkzk)

(3-12)
■ IT (1 - 2/2p)exp(z/zp + • • • 4- zk'l/ik - Dz*"1),

p

where zp E R, ^P\zp\ ~k converges, and bkE —S.

(iii) Suppose that Rk belongs to the half-plane a g argz ia+ir, but not

to an angle < ». Then Cn(R) has index q with k < q g 2k. All functions in

Ch(R) can be written in the form

exp(bh+1zh+l + ■■■+ bkzk + ■■■ + bqz")

(3 13)
• 11(1 -z/zp)exp(z/zp4- ■■■+z"-l/{q-l)zp-1),

p
where zpER, J^P\zp\~q converges, and

(3.14) èi + _1^2p*G_S)
k p

in the sense that the series

h(3.15) Im foe") + -£ Imfe-***■)
k p

converges to a sum

i: 0    if S is the half-plane a ;£ argz ;= a + w,
(3.16)

0    if S is the line argz = o, a 4- ».
'I

4. Initial results on C(P) for radial sets P. Regular radial sets will be

disposed of in a few lines. With every singular radial set we associate the

sets P„ and S„ and the integers k, defined in §2. It will be shown that

C(R) contains the classes C^(P„+i), u = 1, • ■ -,ui — 1, and this result

is used to prove one direction of Theorems 2.1  and 2.2.

Lemma 4.1. A radial set R is regular if and only if no power R1, j = 1,2, • • • ,

belongs to a half-plane.

Proof, (i) Suppose that no power R1 belongs to a half-plane. Then the

same is true for the sets AJ(R) (= RJ), hence by §1 (i) the set P is regular.

(That all zero free entire functions belong to C(R) could also be derived

from Theorem 3.4.)

(ii) Suppose that Rk belongs to a half-plane. Since Rk is a radial set

the half-plane will have the form a ^ argz ^ a + t. It now follows from
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Theorem 3.4 that all functions in C(R) are of order ^ 2k, hence R cannot

be regular.

Lemma 4.2. For singular radial sets R one has the following inclusion

relations:

(4.1) C(R) D C0(Ä,) D Ckl(R2) D • • O C^iflJ.

Proof. It is clear from §3 that C0(Pi) C C(Ri) = C(R). Now let h = k„_x

and k = &„, where 1 £ a ^ u — 1. We will show that

C(P„) D Ck(R^+i).

Let f(z) E Ct(P„+i). Then f(z) is the limit of a //-convergent sequence

of finite products

(4.2) fn(z;k) =X\(l-z/znp)exo(-sniZ-snkzk),       n=l,2, ••-,
p

where the znp  belong  to  PM+1  and  the sn;- are  given  by   (3.4).  Clearly

(4.3) fn(z; k) = exp( - s„,A+1zA+1-SnJfez*) /n(z; h).

By its definition the point — snk belongs to the convex hull of Rk+i.

However, by the definition of R„+l the set P*+1 is a line through 0, the

boundaryjpf S„. It follows that the point s^ also belongs to Sß, hence

- $nk E —S„. Applying the first part of Theorem 3.4 to /?„ one concludes that

exp(- snih+lzh+1 - ... - Snkzk)

belongs to Ch(R„). Since znp G P^+i C P„ it is clear that the function

fn(z;h) belongs to Ch(Rl). Thus the products fn(z;k) (4.3) belong to

Ch(RX and  likewise  their   //-limit f(z).

Theorem 4.3. Suppose that R is a singular radial set.

(i)   Let al,-..,aN,   where  N = ka,  be  any N-tuple  of complex   numbers

such that

(4.4) aKE -S„       v= 1, •••,(■>.

Then the zero free entire function

(4.5) expiez +-h aNzN)

belongs to   C(R).

(ii) More generally, let f(z) be any entire function which can be written

in the form

(4.6) exp(6l2 + • • • + bNzN) Ü U - z/zP)exp(z/zp + ■■■ + zN~1/(N - Dz?"1)
p

where N = ku, zpER, SpI2pI~N converges,  bNE — S„, and
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(4.7) bkf + {Zzp-k'E-S„     r-l,...,«-l,
k„ p

in the sense explained in the statement of Theorem 2.2. Then /(z) EC(R).

Proof, (i) Theorem 3.4 shows that for » = 1, •••,« the function

(4.8) exp(a^_1+1z*-i+1 + • • • + akzk*)

will belong to the corresponding class Ck^^R,). However, by Lemma 4.2,

the classes C^ j(P„) are part of CiR), hence the functions (4.8) all belong

to CiR). Forming their product one concludes that the function (4.5)

belongs to CiR).

(ii) Let us assume for definiteness that the product in (4.6)  is infinite.

Then /(z)  is the  U-limit of the finite products

(4.9) 4>n(z) = exp(Clz + • • • + cNzN) H (1 - z/zp),
p^n

where

(4.10) cj = Cjin) = bj + -Ylzp',       j = 1, • • -,N - 1; cN= bN.
J Pan

Because of (4.7) the number cki will either belong to — S, or be very

close to it.  Indeed, set

(4.11) dK = cK+ie-'°>lZlmiZpKe,a"),        r-l,...,«-l
R-p>n

(compare the statement of Theorem 2.2). Then

(4.12) dkt — c^—>0    as   re^oo,

and

dkela" = p, + ¿a,

where p, and o, are real and a, is the sum of the series  (2.6).  It thus

follows from   (2.7)   that

(4.13) dKE-S„,       *=l,..-,a»-l.

Setting dj=Cj for j^k„ p= 1, •••,« — 1 we will have dy —c^—>0

as re —► co for y = 1, • ■ -,N, hence /(z) is also the LMimit of the modified

products

(4.14) Uz) = expidyz + ■■■ + dNzN) U (1 - z/zp).
pan
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Using (4.13) and the fact that dN = bNE —S„ we obtain from part (i) of

the theorem that

exp(d\z 4- • • • 4- dNzN)

belongs to  C(R).   It   follows  that  the  functions  ^„(z),   and   hence  their

{/-limit f(z), belong  to  C(R).

5. First reduction theorem. Proof of Theorem 2.1. In this section we

complete our investigation of the zero free functions in C(R) for radial

sets P. The principal tool is a kind of converse to Lemma 4.2. It shows

that for every zero free entire function in C(R) certain related functions

belong to the classes Ck (Ru+X).

Theorem 5.1 (first reduction theorem). Let R be a singular radial

set. Set h = kll_l, k = kr, where l^)iáu-l, and suppose that

(5.1) f(z) = exp(an+lzh+l + ...4-0*2*4- •••)

is a zero free entire function in Cn(Rß). Then

(5.2) g(z) = exp(a,+1z*+1 + ak+2zh+2 +■■■)

is a zero free entire function in Ck(R„+i).

Proof. Write f{z) as the limit of a (/-convergent sequence of finite

products fn(z;h) as in (3.2), with the znp in P„. Since f (z) is free of zeros,

(5.3) rn= min |z„p| — <*>    as    n^ *>.
p

The snj (3.4) will tend to a,- as n— œ, j = h + l,h + 2, • • •   (3.6).

We next use the geometry of the set P„. Writing aß = a it is known

that P* belongs to the half-plane a ^ argz ia + j (and not to an angle

<»). Setting znp= rnpexp{id„p)  one observes that

(5.4) sin(k8np - a) è 0.

By Lemma 3.2 there are constants A  and P such that

(5.5) I>-*sin(/e0„p -a)iA,       ¿>«p2* sß,       n = 1,2,....
p p

We now rotate all zeros znp of fn(z;h) to the (or a) nearest ray of P„+i.

Their new positions u>„p are given by

(5.6) wnp = rnpexp\i(a + sw)/k\,

where the integer s = snp is chosen so as to minimize

\dnp- (a + sr)/k\,
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subject to the condition that argz = (a + sw)/k be a ray of P„+i. (When

there are two possibilities for wnp one makes an arbitrary choice.) In terms

of the wnp define

(5-7) tnj=--Zw~pJ,
J p

and

gn(z; k) = II (1 - z/wnp)exp(z/wnp +-1- zh/kwknp)

(5.8)
= exp(i„,t+1z*+1 + tn,k+2zk+2 +■■■),        re = 1,2, ••• .

Clearly gn(z; k) E Ck(Rß+i). It will be shown that the gn(z;k) are U-

convergent to g(z), and thus g(z) E C¿(P„+i).

We will need an estimate for tnj — snj. Since for real x,

|e"-l| ^ |x|,

one has the initial inequality

1
\tnj        Snj\ 2>„,/[exp| - ijia + snpw)/k \ - exp(- ij6np)

,_m =Erv-|exp[t/|flnp- (a + Snpw)/k\]- 1|
(5.9) p      ;

^T,rnpJ\dnp- (a-r-S„pir)/Ä|.
p

It will next be shown that there is a constant C (depending only on the set

P„) such that for all re areoi p

(5.10) |0„p - (a + snpw)/k\ z% Csinikdnp - a).

Note that the complement oî R„ is an open radial set. Let us look at the rays

of the special form argz = (a+STr)/k which belong to this complement.

There will be a positive number ô <w/2k such that all rays within an angle

óof a special ray likewise belong to the complement of P„. Now consider the

rays argz = 8 of R„ such that

min|0 — (a + S7t)/â| < ô.
s

By the definition of ô the minimizing rays argz = (a + sw)/k must belong to

fi„ and hence to P„+i. For the rays argz = 8 considered,

min | kd - (a + sw) | < ko < \ w,

hence if argz = (a + sew)/k is the ray of Rß+1 nearest argz = 8,
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\k8 — (a-\- Suit) | < \ TT sin(k8 - a).

For all other rays argz = 0 in P„ one has

kb ^ min | kd — (a + Sir) I  ^ I 7T,
s

hence sin(&0 — a) ^ sinkb. It follows that for those rays argz = 0  (again

denoting by argz = (a + s„ir)/k the nearest ray of R^+i),

k-K
\k8 - {a + s„Tr)\ ^kw ^ -r—r- sin(k8 - a).

sin «5

This completes the proof of (5.10).

Combining (5.9) with (5.10), and using (5.5) and (5.3), one obtains the

estimate

\tnj - snj\ g CY,rnpJsin(k8np - a)

(5.11) L .   .
^ C^r*p-V^sin(^„p -at) è ACrl', j^k, n = 1,2, • • -.

p

Since the snj tend to a, as n —> oo it immediately follows that

(5.12) t^—iCij   as n—> <*>, j = k +l,k + 2,---.

The second inequality (5.5) and (5.12) enable us to apply Lemma 3.1 to

the functions gn(z; k). The conclusion is that the gn(z;k) are {7-convergent.

The limit function G(z) will have the form exp(6*+1z*+1 + bk+2zk+2 + ■■■)■

Here b¡= limínj, hence by (5.12) b¡ = a, and thus G(z) =g(z). It follows

that g(z)eCk(R,+1).

We now have all the ingredients for the

Proof of Theorem 2.1. Let P be a singular radial set. Suppose that

(5.13) expiez + a2z2 + ■■■)

represents a zero free entire function in  C(P). Repeated application of

Theorem 5.1 then shows that for v = 1, •••,«,

(5.14) exp(o^_1+1z*-i+1 + • ■ • + akzh" + ■■■)

represents a zero free entire function in Ckr_l(R/). Thus by Theorem 3.4

(5.15) akiE—S„,        i>=l,-..,w.

For v = u the set S„ is an angle < w, hence Theorem 3.4 shows in addition

that a¡ = 0 for all ; > &„.

It follows that all zero free entire functions in C(R) have indeed the form

given by (2.2) and (2.3). The converse was obtained earlier as part (i) of

Theorem 4.3.
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6. Second reduction theorem. Proof of Theorem 2.2. Let P be a singular

radial set, and let q be the index of C(R). Since P*1 belongs to a half-plane,

q g 2k x (Theorem 3.4). On the other hand, by Theorem 4.3, q^N = k„.

By Lemma 4.2 the classes Ck (P„ + i)   all have index   ^ q.

We will prove another reduction theorem, more general than the one in

§5, which shows that for every entire function in C(R) certain related

functions belong to the classes C/,(P„+i). We start by describing the

construction of these  functions.

Construction 6.1. Let h — fc„_i, k = kß, where 1 á m I « - li and

suppose that f(z) E Ch(Rß). Then f(z) can be written in the form

f (z) = exp(ch+,zh+l + ••■+cqzq)

(6.1) .nU-z/Zp)exp(z/zp+ ...+z"-l/{q-l)zp-x),
p

where q is the index of C(R), zp E P„ and XpI2pI ' converges. One can

say a little more. The set P* belongs to the half-plane a g argz ^ a + »

where a — aß.  Thus  by  Theorem   3.4,   writing   zp=exp(/0p),   the   series

(6.2) £r-*sin(*flp - «) - £ - Im(zp-V")
p p

of non-negative terms converges.

We now rotate all zeros zp of f (z) to the (or a) nearest ray of P„+i. Their

new positions wp are given by

(6.3) wp= rpexp\i{a + spTr)/k\,

where the integer sp is chosen so as to minimize |flp — (a + spir)/k\, sub-

ject to the condition that the ray argz = (a + spir)/k belong to P„+i. For

some points zp there may be two candidates for wp. In this case we let the

choice of wp depend on a given sequence | fn(z;h) J which is {/-convergent

to/(z), as explained in the proof of Theorem 6.2 below.

In terms of the numbers wp define

(6.4) dj =Cj-\j^ (wpJ - zp'),        k <j <q; dq= c„.
J p

The convergence of the series (6.2) and the argument used in the proof

of Theorem 5.1 show that the series in  (6.4)   are absolutely convergent

(cf.(5.9)-(5.11)).

Finally set

g(z) = exp(dk+lzk+1 + ■■■+dqz")

■U(l-z/Wp)exp(z/Wp+ ••• +z"-l/(q- IK"1);
p

it is clear that X^pI^pI "' converges.
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Theorem 6.2 (second reduction theorem) . Let f (z) E Ch(R/), and

let g(z) be the function associated with f(z) by Construction 6.1. Then giz)

E C*(P„+i). If fiz) has its index equal to q then so does giz).

Proof. As in the proof of Theorem 5.1 we write f(z) as the limit of a U-

convergent sequence of functions fniz;h) of the form (3.2), with the

Znp E P„- For each fixed re the znp will be numbered in such a way that

znp^zp as re^co, p=l,2, •■•. Writing znp = rnpexp(¿0^,) one again has

(5.4) and (5.5). For the numbers snj defined by (3.4) one will have, as re —> <»,

Cj for h <j <q,

(6.6) 1 c, - -£zp*        for ; = q,
q p

-yZV        for j>q.
J p

Next introduce numbers wnp as in the proof of Theorem 5.1. For every

p for which there was only one candidate wp in Construction 6.1 one will

have wnp —> wp as re—> œ. However, for a p for which there were two candi-

dates w'p and Wp it is known only that every w^ (with re large) will be close

to either w'p or wp. One can resolve this difficulty as follows. Pick a subse-

quence of re's such that the corresponding sequence j wnl j converges, and

denote the limit (which is either Wy, or w[, or w'{) by Wy. Next pick a subse-

quence of the subsequence such that the corresponding sequence \wn2\

converges, etc. For the diagonal sequence of re's, wnp^wp for every p. The

corresponding sequence of functions fniz;h) will again be denoted by

\fniz;h)\.

One finally defines numbers tn¡ and a sequence \gn(z;k) J of functions in

C*(P„+i) as in the proof of Theorem 5.1. It will be shown that the gn(z;k)

(5.8) are U-convergent to giz) (6.5), and thus giz) E CkiRß+1).

We first prove that for j > k

(6.7) tn] - snj = -\Z ("V - zn¡) -* - Í£ (wp> - z~')
J p J p

as re —> a>. Taking r ¿¿ all rp it is clear that

£ iwñpJ - zñpJ) — £ Íwp' - zPJ)
rnp<r ip<r

as re —> oo. Furthermore, by the argument used in the proof of Theorem

5.1 (cf. (5.11)),

-  Z   (*V - Zap')
] r„„>r

z%ACrk~>,       re = 1,2,
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The same inequality holds with wnp, znp and rnp replaced by wp, zp and

rp. Taking r large one obtains (6.7).

Combining (6.6) and (6.7) one finds that as n—> oo,

dj for k <j <q,

(6.8) t„j— )d„- -XWpq       for ; = q,
a p

--T,wp~j        for j>q,
J p

where the d¡ are given by (6.4). By the second inequality  (5.5)

(6.9) Z\wnp\-2k^B,       »-1,2,....
p

Thus by Lemma 3.1 our functions gn(z;k) are (7-convergent. For |z|

< min rp the limit function G(z) can be written in the form

exp(ek+1zk+1 + ek+2zk+2+■■■).

Here e, = limi„„ hence by (6.8) and (6.5), G(z)=g(z). It follows that

g(z)ECk(Rß+l).

Finally, suppose that f(z) has its index equal to q, the index of C(R)-

If q >1 then either cq ̂  0 or the series ^pTp^1 diverges (or both). Hence

in that case g(z) also has its index equal to q. If q = 1 there is nothing to

prove.

We can now give the

Proof of Theorem 2.2. Let R be a singular radial set, and let q be the

index of the class C(R). Repeated application of Theorem 6.2 shows that

the classes Ck (R„+i) also have index q. However, P*u is contained in an

angle < x, hence by part (ii) of Theorem 3.4 the class Cku_l(RJ has index

ku.   It  follows   that  q = ku = N.

Suppose now that f{z) is any function in Ca(R). Then f (z) can be

written in the form

(6.10) exp(6l2 + • • • + bNzN) Hd- z/zp)exp(z/zp + • ■ • + zN~l/(N - l)z^1)
p

where zp G P and ^,P\zp\~'w converges. Repeated application of Theorem

6.2 shows that Ckri(R,) contains an entire function of the form

exp(6i" 1z*-'~i+1+...+6#zN)

(6.11)
• 11(1 - z/zp")exp(z/z^ + ••• +zN~l/(N- 1)[2¿'T_1),

p

where   \zp"'\ = \zp\,  and
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br = bru-lz\\zP-ri-\zrrj\ = ---
j p

(6.12) =bJ-\Z\[zp»]-J-zpJ\,       h,.y<j<N,
J p

btí = bN.

For v= 1, •••,«— 1 one can apply part (iii) of Theorem 3.4 to the

function in (6.11). Thus one finds that the series

(6.13) Im(&iy«') + ^£lm([zp"]-V".)
«„ p

converges to a sum <r„ which is ^ 0 if S, is the half-plane a, ^ argz

úa,-\-w, and =0 if S, is the line argz = a„ a,-\-w. Combining (6.13)

and  (6.12)   (with j = k,)   one  concludes  that  the  series

(6.14) lmibky°') + j-Z lm(z-k"e'"°)
R, p

also converges to the sum a,.

For v = to one uses part (ii)  of Theorem 3.4 to show that bNE —Sw.

It follows that all functions in CiR) have indeed the form given in

Theorem 2.2. The converse was obtained earlier as part (ii) of Theorem 4.3.

References

1. Jacob Korevaar, The zeros of approximating polynomials and the canonical representa-

tion of an entire function, Duke Math. J.  18 (1951), 573-592.

2. _, Entire functions as limits of polynomials, Duke Math. J. 21  (1954), 533-548.

3. _, Limits of polynomials with restricted zeros, Studies in Mathematical Analysis

and Related Topics  (Essays in honor of G.  Pólya),  pp.   183-190,  Stanford,  Calif., 1962.

4. John E. Lange, Entire functions as limits of zero-restricted polynomials, Ph.D. thesis,

Univ. of Wisconsin,   Madison,  Wis.,   1961.

5. Egon Lindwart and Georg Pólya, Über einen Zusammenhang zwischen der Konvergenz

von Polynomfolgen und der Verteilung ihrer Wurzeln, Rend. Cire. Mat. Palermo 37 (1914),

297-304.
6. Nikola Obrechkoff, Quelques classes de fonctions entières limites de polynômes et de

fonctions méromorphes limites de fractions rationnelles, Actualités Sei. Ind. No. 891,

Hermann, Paris, 1941.

St. John's University,

Collegeville, Minnesota

The University of Wisconsin,

Madison, Wisconsin


