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1. Introduction. In this note we consider a class of (bounded) operators

on Hilbert space that properly contains the much-studied class of Toeplitz

operators, and we show that virtually all of the results of [2] concerning

spectral properties of Toeplitz operators are valid for operators in this

larger class.

We devote §2 to preliminary definitions and examples. The concept of

a "Riesz system" is first introduced and then is used to define the class

of generalized Toeplitz operators. Several examples of Riesz systems are

set forth to illustrate the generality of the concept. In §3 the spectral

inclusion theorem for generalized Toeplitz operators is proved, i.e., it is

shown that the spectrum of any given generalized Laurent operator is a

subset of the spectrum of the associated generalized Toeplitz operator.

This result is then used to recover several of the theorems of [ 2] for gener-

alized Toeplitz operators. §4 is devoted to questions concerning isomor-

phisms between Riesz systems and ways in which these systems can differ

from the "classical" Riesz system that gives rise to Toeplitz operators.

In §5 we make some concluding remarks.

2. Generalized Toeplitz operators. Let 3l be any (not necessarily sepa-

rable) infinite-dimensional Hilbert space, and let R be a maximal abelian

von Neumann (v. N.) algebra of operators acting on M. A (closed) sub-

space 3t ^ \0 \ E &i& said to be a weak Riesz subspace for R if each non-

zero fE3f is a separating vector for R. By definition this means that

if TE R and T/ = 0, then T = 0. By virtue of a well-known theorem

for v. N. algebras [3], this is equivalent to supposing that if / is any

nonzero vector in Jf , then the linear manifold Rf is dense in i&. A proper

subspace 3? C & is a Riesz subspace for R if both 3tf and 3? "L are

weak Riesz subspaces for R. A triple ( i&, R, 3tf ) is called a Riesz system

if ¿& is an infinite-dimensional Hilbert space, R is a maximal abelian v. N.

algebra on i&, and 3? C ^is a Riesz subspace for R. We shall see below

(Proposition 3.3) that this implies that both 3? and _5f x are infinite-

dimensional. If ( M, R, 3? ) is any Riesz system under consideration,

the linear operator that projects M onto the subspace 3? will always be

denoted by P. Furthermore, every operator A ER will be called a gener-
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alized Laurent (GL) operator, and every operator of the form PA acting on

the Hubert space 5? will be called a generalized Toeplitz (GT) operator.

Thus every Riesz system gives rise to families of (GL) and (GT) oper-

ators, and it is appropriate to set forth some examples of Riesz systems:

Example 1. Let p be normalized Lebesgue measure on the unit circle

C in the complex plane, and let i& be the Hilbert space L2ip, C). Let R

be the v. N. algebra of all multiplications by bounded measurable func-

tions on L2ip, C). Then R is maximal abelian and is in fact isomorphic

to L°°Gi, C) as a Banach algebra. Finally, consider the orthonormal basis

[z": |z| = 1, — œ < n < œ } for L2ip,Q, and let J^ be the subspace of

^consisting of all fEL2ip,C) such that the sequence {cn}¿°=_„ of Fourier

coefficients of / with respect to the above orthonormal basis satisfies c„

= 0 for all n < 0. The fact that (i^,Ä,Jf) is a Riesz system follows

immediately from the F. and M. Riesz theorem [7]. And, of course, the

operators A ER are the "classical" Laurent operators, and the oper-

ators PA on 5f? are the "classical" Toeplitz operators.

Example 2. Here we set forth a class of Riesz systems all related to

the Riesz system itu,R, A% ) of Example 1. Let F be any finite subset

of the non-negative integers, and consider the subspace JCF C 3f span-

ned by the orthonormal vectors jz": n ^ 0, n ^ F\. It is an easy exercise

to verify that ( t&, R, JtF) is a Riesz system, and for future reference we

denote such a Riesz system by Rf.

Further examples of Riesz systems related to ( $, R, 3(f) can be obtained

by considering any subspace-^ °^V fz": n = 1,2, ••• N\ and replacing

the subspace 3if by the subspace J^ e JY.

Example 3. Let G be any (nontrival) subgroup of the additive group

of real numbers, and regard G as a discrete topological group. Let G be

the compact character group of G, let v denote normalized Haar measure

on G, and let R be the maximal abelian v. N. algebra of multiplications

by bounded measurable functions on the Hilbert space L2i¡>,G). The

elements rEß, regarded as functions r(x) on G, form an orthonormal

basis for L2iv, G). Thus an analogue of the subspace j# in Example 1 can

be obtained by defining S# = A \rix)'- rEG,r ^ 0}. It has been shown

by Helson and Lowdenslager [5, pp. 177-178, 195] that iL\v,G),R,5?)
is a Riesz system. It should be noted that if G is taken to be the additive

group of real numbers itself, then the Hilbert space L2iv, G) is nonsepar-

able; thus there exist Riesz systems associated with nonseparable Hil-

bert spaces.

Example 4. Let iS,p,S^) be any finite measure space, and let R be

the v. N. algebra of all multiplications by bounded measurable functions

on the Hilbert space L2ip,S). Let 5€ be any subspace of L2ip,S) with

the property that if/^0G3f U -5^ "S then / vanishes on at most a set
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of measure zero. It is known [9] that such a v. N. algebra R is maximal

abelian, and it follows immediately that iLAu,S),R,Je) is a Riesz system.

We remark that the existence of such a subspace Je imposes some

restrictions on the measure space iS,p, S3). In particular, it follows

from Proposition 3.3 below that iS,p, S3) must be nonatomic and homo-

geneous.

We also remark that it can be shown that every Riesz system is equiv-

alent (in a sense to be defined in §4) to a Riesz system of the above type.

That this is true follows from the fact that R always has a cyclic vector

and the standard representation theory for maximal abelian v. N. algebras

[8]. Thus if one is content to consider Riesz systems on separable spaces,

there is no loss of generality in taking iS,p, S3) to be Lebesgue measure

on the interval [0,1] and R to be L"ip,S).

3. The spectral inclusion theorem. Throughout this section we suppose

as given some fixed but arbitrary Riesz system ( t&, R, Je ). Recall that

P denotes the projection of i^onto Je. We first obtain some preliminary

results that lead to the spectral inclusion theorem, and one piece of addi-

tional notation is needed. If JC is any linear manifold in &, then the

closure of JC will be denoted by [ 3t\.

Lemma 3.1. IfLERand [L&]* M, then [L&]=[LJe]=[LJr±].

Proof. Clearly [LSe]c[Litf\. Suppose now that fE[Li&] is such
that / is orthogonal to [L Je]. Let E be the projection on the subspace

[L¿¿]. Then one knows that EER, and that (J - E)f = 0. Now for

each A G 3? , (L*f,k) = (f.Lk) = 0. Thus L*fE 3? \ and since (/ - E)f
= 0, ü -E)L*f=L*ü-E)f=0. Since I-E is a nonzero element

of R and Je ± is a weak Riesz subspace for R, L*f = 0. Thus / is a null

vector for L*, which implies that / is orthogonal to [Lt&], so that /= 0.

This proves that [LJe]=[L ¿¿], and the result for [LJe^] follows

from the symmetry of the assumptions on the subspaces 3?   and S3 L.

We remark that Lemma 3.1 actually characterizes Riesz systems in

the sense that if t& is an infinite-dimensional Hilbert space, R is a maxi-

mal abelian v. N. algebra on i&, and 3? is a subspace of i&, then ii&,R,Je)

is a Riesz system if and only if E&=[EJe]=[EJeL] for every

nonzero projection E < 1 in R.

Proposition 3.2.  If 0^ LE R and \LOi\* M, then [PL Je] = Je.

Proof. Clearly [ PL Je]E Je, and it follows easily from Lemma 3.1

that [PL Je]=[PL¿£]. Thus suppose that A G Je is such that A is

orthogonal to [PLttf], Then for all A G M, iL*k,h) = (A,LA) =0, so
that L*A = 0.   Since 0 * L* E R, A = 0.
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Proposition 3.3. The maximal abelian v. N. algebra R contains no inon-

zero) minimal projections, and the subspaces Je and JV ± are both infinite-

dimensional.

Proof. Suppose that P is a minimal projection in R. Then E must pro-

ject onto a one-dimensional subspace of Of, since any minimal projection

in a maximal abelian v. N. algebra has this property. From Lemma 3.1

we know that E i& = [E Je] = [EJeL], and since E must map Je

and Jtr± in a one-to-one fashion, it follows that dim Je = dim[EJe]

= dim[EJe1] = dimJe± = dimEi&=l. Thus &= Je® JeL is two-

dimensional, a contradiction. Thus R contains no minimal projections,

and therefore no projections of finite rank. The fact that E ¿&= [E Je]

= [ E Je x ] then forces Je and Je± to be infinite-dimensional subspaces

of ¿&. Furthermore, it is not hard to show that dim(P ¿&) = dim[ E Je ]

= dim Je for all nonzero projections E < I in R. Thus if R is represented

as the multiplication algebra of L2 of a finite measure space, then the

measure space must be nonatomic and homogeneous.

Before continuing to the proof of the spectral inclusion theorem, we

introduce the following terminology. If A is any operator, we denote by

oiA) the spectrum of A and by ir(A) the approximate point spectrum of

A. Furthermore, if LE R (so that L is a (GL) operator), then the (GT)

operator PL on Je  will be denoted by TL.

Theorem 1.   If L is a (GL) operator, then o-(L) C o-(Tl), and in fact,

<KDC*m).
Proof. Since TL_X¡^ = TL — \I^, it suffices to show that if 0 G <r(L),

then 0 G t(Tl). Also if L = 0, then clearly Th = 0, so that we can assume

that L j¿ 0. Let « > 0 be given, and choose a spectral projection E ER

of L such that 0 < E < I& and such that ||PL|| < t. Since R contains no

minimal projections,, there exists a projection FER such that I > F

> I — E. Let / be any unit vector in & such that FEf = /. Since we

know from Lemma 3.1 that [F Je] = Ft&, it results that there exists a

sequence of vectors kn E J# such that || Fkn — P/|| —* 0. We consider

first the case that the sequence {\kn\ \ is bounded. Then

| TLkn\\ = \\PLkn\\ ï ¡Lkn\\ = \\LFkn - LFf+LFf + LU - F)kn\\

á ¡Li   II Fkn - P/1 + ILEFf\ +1 LEU - F)K\\

Ú\\L\\  \\Fkn-Ff\\+t + t\\kn\\.

Also

\\kn\\UFkn\\=\\Ff-iFf-Fk¿\\

è||P/|| -||P/ - Fkn\\ = / -||P/ - Fkn\\.
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Since \\Fkn- F/||->0, for sufficiently large n we have |TLAn| =3i||A„|,

which proves that 0Gt(T¿).

On the other hand, if the sequence j ||A„|| j is unbounded, choose a sub-

sequence {An(i)j such that ||A„((+1) — An(t)|| ̂ 1 for all £. Upon setting ht

= ||An(i+i) - A^H^HA^+i)- km),  we  have

I TM á \\Lht\\ = \\LEht + LH - E)h,\

zít + \\LiI-E)Fht\\íe + \\L\\   \\Fht\\

= i + ||L||   \\Fknit+x)-Fknit)\\.

Since I Fkn(t+X) — Fkn{t) || —> 0, for large enough £ we have ¡TYA,! < 2e, so

that again 0E*iT¡).
It is interesting to note that in the argument just completed the unit

vectors which L made small were taken from the subspace Je .

We now settle down to exploiting the above result. The spectral radius

of an operator A will be denoted by pi A).

Proposition 3.4. TAe mapping L-^TL is linear and one-to-one and

preserves adjoints, spectral radii, and norms.

Proof. That the mapping is linear and adjoint-preserving is completely

obvious, and its one-to-oneness will follow from the fact that it is norm-

preserving. Now from above we know that piL) z%piTL). Therefore ||L||

= PiL)ïPiTL)zi\\TL\\. Also since for f E Je, \\TLf\\ =\\PLf\\ zi\Lf\\,
we know that \\TL\\ ^||L||, and the argument is complete.

Proposition 3.5. If L is a iGL) operabr, then the closure of the numerical

range of L is identical with the closure of the numerical range of TL.

Proof. Let W(L) denote the numerical range of L. Since iTLf,f) = (L/,/)

for /G Je, WiTÔEWiL) and [ WiTL)]dE [ WiL)]c\ Also [W(TL)]cl

contains the spectrum of TL and thus the spectrum of L. Since [ WiTL)]d

is closed and convex, it must contain the closed convex hull of <r(L), i.e.,

it contains [W(L)]cl.

Note that it follows easily that [W(TL)]cl is the closed convex hull of

aiT¡), and that L is positive semi-definite if and only if TL is also.

Proposition 3.6. If L is a iGL) operator that is not a scalar, then L and

TL have no proper value in common.

Proof. Since TL+X¡ií, = TL+ \I# , it suffices to show that if 0 is a proper

value for an L 7± Xl in R, then 0 is not a proper value for TL. Thus let

EE R be a spectral projection for L such that 0 < E < 1% and such that

EL =0. Now suppose that A G ^satisfies TLA = 0. Then P(LA) = 0 so

that LA G Je ±. Since £(LA) =0, LA = 0, and since A G Je and L ^ 0,

A = 0.



438 R. G. DOUGLAS AND CARL PEARCY [March

Corollary 3.7.   The only compact iGT) operator is 0.

Proof. Suppose that TL is compact and nonzero. Then L j¿0 and oiL)

contains at least one nonzero number X. It follows from Theorem 1 that

XG oiT¡), and since TL is compact and oiL) E<*iTd, a must be an isolated

proper value for each of the operators TL and L. But this contradicts

Proposition 3.6, so that TL = 0.

The spectral theory of (GT) operators is now sufficiently far advanced

to enable us to reprove several additional results from [2]. For example,

Theorem 10 of [2] along with its Corollaries 1, 2, and 3 are valid of (GT)

operators. Somewhat more interesting is the valid generalization of The-

orem 12: Every nonscalar (GL) operator L is a minimal normal dilation

ofTL.

Since the proofs of these results are essentially the same as those in

[2], we omit them and continue to a discussion of some results of [2] for

which different arguments had to be improvised. A (GL) operator L and

its associated (GT) operator TL are said to be analytic if L Je E Je

and to be co-analytic if LJe x C Je ± It follows that L (resp. TJ is

analytic if and only if L*(resp.  T*)  is co-analytic.

Lemma 3.8. If L ¿¿\I is any iGL) operator and Q is any projection such

that 0 < Q < /* and such that Q ̂  P or P ^ Q, then LQ ̂  QL.

Proof. We consider the case P è Q; the case Q ^ P is proved similarly.

Suppose LQ = QL, and let E E R be a spectral projection for L such that

0 < E < I. Let JC= Q M and observe that Je C JL. Since EQ = QE,
E JCE J£, and from Lemma 3.1 one knows that E ¿&= [E Je]. Thus
EM=[Eje]C[EJt\C^. Since also I-EER and il - E) Jt
C Jt, it follows similarly that il — E) i&E J, which implies that Jt

= t&, a contradiction.

Corollary 3.9. The only iGL) operators that are both analytic and co-

analytic are the scalars.

Proof. If L is analytic and co-analytic, the LP = PL and the result

follows from the preceding lemma.

Theorem 2. A iGT) operator TL is an isometry if and only if L is an

analytic unitary operator. Furthermore such a TL is either a scalar of mod-

ulus one or a pure isometryi1).

Proof. If L is an analytic, unitary operator it is clear that TL is an iso-

metry. Thus, going the other way, suppose TL is an isometry. We know

from  Proposition  3.4  that  \\L\\ = \\ TL\\ = 1,  so  that  for   each  kE Jf ,

( ) An isometry S is pure if there is no reducing subspace for S on which S acts as a unitary

operator [l].
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\\Lk¡ i\\k\\ =\\TLk\\ =\\PLk\\ z%\\Lk\\. Thus for each kE J3 , \PiLk)\
= || LA || = || A || which implies that PLA = LA since P is a projection. Thus

LJe E Je , and L is analytic. If L is not a unitary operator, then a

spectral projection E ER of L can be chosen so that E ¿¿ 0 and || EL | < 1.

If 0 * k E Je, then

\\kf^\\Lkf = \\LEkf3\\iI-E)Lkf

^||LEn|£A||2 + ||L||2||(/-£)A¡2

<||E*||2 + ||(/-i?)A||2 = ||A||2,

which is a contradiction. Thus L must be an analytic unitary operator.

Now suppose that TL is not a pure isometry. Then there is a nonzero

subspace JCE Je such that JC reduces TL and such that TL\ JC is a

unitary operator. Since L is analytic, it follows that LJCeJC and that

L\JC= TL\ JC is unitary. Thus the restriction of L to the invariant sub-

space _^is a normal operator, and it follows that JCE Je reduces L. By

virtue of Lemma 3.8, L is forced to be a scalar of modulus one, so that TL

is also a scalar of modulus one, and the argument is complete.

The final result to be proved in this section is that the spectrum of

every analytic (GT) operator is connected. For this purpose we need the

following lemma.

Lemma 3.10. The collection of analytic Toeplitz operabrs associated with

any Riesz system forms a semi-simple commutative Banach algebra under the

operabr norm. Furthermore, the operator spectrum of any analytic iGT)

operabr is the same as its spectrum regarded as an element in this Banach

algebra.

Proof. Let A be the collection of analytic (GT) operators associated

with a Riesz system i&,R,Je). It is clear that if Tlx and T^ are in A,

then TLlT[y2= TLl¡J2EA, so that A is at least a commutative operator

algebra. Now suppose that {T^J is a sequence of analytic Toeplitz oper-

ators converging to an operator on Je ■ Then the sequence {T^ j is

Cauchy in the uniform operator topology, and since the map L^>TL is

norm preserving by Proposition 3.4, the sequence ¡L„} is also Cauchy.

Thus the sequence {L„J converges in the uniform operator topology to

an analytic (GL) operator LER, and it follows that Ti^—^Tl. Thus A

is a commutative Banach algebra, and is semi-simple because no TL is

quasi-nilpotent.

Now let 2(TL) denote the spectrum of an analytic (GT) operator TL

regarded as an element of the Banach algebra A. Since I % G A, it is

obvious that a(TL) C 2(TL). Since TL-\I# = TL_X¡¡£, to prove 2(TL)

C aiTL) it suffices to show that if 0 $ oiTL), then 0 $ 2(TL). Thus suppose

that TL is an invertible operator on Je .  It follows from Theorem 1 that
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L is invertible on i&, and one knows that L i G R- For k G Je , TL_X TLk

= TL_xPLk=TL_xLk = PLiLk = Pk = k since L is analytic. Thus

TL_i is a left inverse for the invertible operator TL and it follows that

(TL)-l= TL_X. Thus for each kE Jt, LPL~1k= TLTL-Xk = k, so that

PL~lk = L~lk. Thus L~ikE Je , which proves that L"1 is analytic and

that0G2(TL).

Theorem 3. The spectrum of every analytic iGT) operator TL is connected.

Proof. By the above lemma, it suffices to show that the spectrum of TL

regarded as an element of A is connected. The Gel'fand theory tells us

that TL can be regarded as a continuous complex-valued function t(-) on

the compact maximal ideal space X of A, and the spectrum of TL is then

the range of the function i( • ). Since the continuous image of a connected

set is connected, it suffices to prove that the maximal ideal space X is

connected. By the well-known theorem of Silov [10], X will be connected

provided A contains no idempotents other than 0 and /. Thus suppose

that E = TLl G A is an idempotent analytic (GT) operator. Then by the

spectral inclusion theorem, the analytic (GL) operator Lx must be a pro-

jection. But it follows easily from Corollary 3.9 that the only Hermitian

analytic (GL) operators are the real scalars, so that Lx = 0 or Lx = I&,

and the proof is complete.

4. Nonequivalent Riesz systems. In this section we study ways in which

Riesz systems can differ. Two Riesz systems ( i&, R, Je ) and ( i#x, Rx, Jex)

are said to be equivalent if and only if there is a Hilbert space isomorphism

<t> of i^onto i&x such that <f>iJf ) = Jex and such that 0Ä0"1 = Rx. We

first show that there are nonequivalent Riesz systems on a separable

Hilbert space. For this purpose, note that if iiS,R,Je) and i¿&x,Rx, Jed

are any Riesz systems equivalent under an isomorphism <f>: ¿&—> fflx and

T is a (GT) operator associated with ( M, R, Je ), then <f> \ Je carries T

onto a (GT) operator Tx associated with i¿^,Rx,Jex) that is unitarily

equivalent to T. This elementary observation can be used to prove that

some of the Riesz systems RF set forth in Example 2 are not equivalent.

We continue to denote the original Riesz system of Example 1 by

i St,R, Je) and the projection of St onto Je by P. For each positive

integer n, let F{n) be the set of integers Fin) = ) 1,3, • • -, (2n — 3), (2n — 1) 1,

and let Qn be the projection of St onto the subspace JtF(n) (in the termi-

nology of Example 2). Recall that the maximal abelian v. N. algebra R

associated with each Riesz system RFin) is just R, the algebra of multipli-

cations by bounded measurable functions on St = L2ip, C). Also note

that if L is any operator in R, then the (GT) operator associated with L

and RFin) can be written as QnL | JtF(n) = QnPL \ JtF(n).   Now it is known
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[4] that every nonzero Hermitian Toeplitz operator must have a trivial

null space. Thus if L = L* E R, PL must map JCF,n) in a one-to-one fashion

since JCFM E Je . It follows that if / G JCF(n) and QnLf = QnPLf = 0,
then PLfE (P — Qn) &■ Since (P — Qn) SS is an n-dimensional subspace

of SC we have proved the following lemma.

Lemma 4.1. No Hermitian iGT) operator associated with the Riesz system

iw,R,JCF(n)) has a null space whose dimension exceeds  n.

Now let «o> 0 be arbitrary but fixed, and consider the operator LER

that multiplies every vector /G $ by the function <j>iz) = z + z~l. Since

<b is real on the unit circle C, L is Hermitian, so that the (GT) operator
/-«w        r**J

QnçL] JCF(n<)) associated with the Riesz system i &, R, JCF(n())) is also Her-

mitian. A simple calculation shows that the orthonormal vectors fkiz)

= zk,A = 0,2, ■ • -,2n0 — 2, in JCF{no) are all in the null space of Q^LlJCp^,

so that there is a Hermitian (GT) operator associated with ( w, R, JC^))

that has an re0-dimensional null space. This fact together with Lemma

4.1 yields:

Theorem 4. // ro and n are distinct positive integers, then the Riesz systems

RFim) and Rm are not equivalent. Furthermore no Riesz system RF{n) is equiv-

alent £o iSc,R,je).

Although in general the question of whether two Riesz systems are

equivalent seems to be a difficult one, we are able to show that at least

one of the Riesz systems of Example 3 is not equivalent to ( t&, R, S3 ).

To do this, the following lemma will be needed.

Lemma 4.2. Let t&'= L2ip,C) be the Hilbert space of Example 1, and let

\fn\n~i oe a bounded sequence of vectors in the subspace Je C &■ Let fniz)

be the analytic extension of fn to £Ae open unit disc S3, and suppose that the

sequence {fniz) \ converges subuniformly on 3) to an analytic function fiz)

that is the analytic extension of a vector fE S3 to S3. Then the sequence of

vectors {/„} converges in the weak topology of S3   to f.

Sketch of the proof. Let \ekiz) = zk: |2| = 1, A è 0} denote the ortho-

normal basis for je considered in Example 1. The Fourier coefficients

of each vector /„ (resp. the vector f) are the Taylor coefficients of the

analytic function fniz) (resp. fiz)) and the subuniform convergence of the

sequence fniz) to fiz) guarantees that for each ro = 0, the sequence of mth

Taylor coefficients of the fn{¡) converges to the roth Taylor coefficient of

fiz). It follows that ifn,ek) —> if,ek) for all A ̂  0, and thus that ifn,g) —> if,g),

where g runs over a dense set of vectors in Je . In the presence of the

boundedness of the sequence {/„[, this is enough to enable one to con-

elude that the sequence {/„j converges to / in the weak topology of Je .
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Now let G denote the additive group of rational numbers, and let G, R

and Je   be as defined in Example 3.

Theorem 5(2). The Riesz systems iL\v,G),R,Je) and (St,R,Je) are

not equivalent.

Proof. We assume that these Riesz systems are^ equivalent, and

denote by 0 a unitary isomorphism from L\v, G) onto St that implements

this equivalence. Let G+ denote the subset of G consisting of all non-

negative rational numbers, and let r E G+. Multiplication by the bounded

measurable function r(x) on G determines an analytic unitary (GL) oper-

ator Lr on L2iv,G), and if e denotes the function identically one on G, the

vectors \Lre\lr(EG+ form an orthonormal basis for the subspace Je. For

each rE G+, denote by Lu the Laurent operator <t>Lrf>~lER, and observe

that if /= (be, then \LhTf\reG+ forms an orthonormal basis for Je . Since

Lb, is an analytic unitary Laurent opertor, L^ must be multiplication on

Llip, O by an inner function —say hT. (See [6, p. 62] for the definition

of inner function.) Now for each r E G+, let hAz) denote the extension of

hr to a bounded analytic function defined on the open unit disc 3> in the

complex plane. Since hn ■ h^ = hn+r2 it follows that for each r E G+ and

each z E 2$, hAz) = [/ir/„(z)]n for each positive integer n. Thus for zE St1,

hAz) 9± 0 (otherwise, hAz) would have a zero of arbitrarily large multipli-

city), and each hAz) can be written hAz) = e^kAz) on St where kAz) is

a singular inner function [6, p. 67] satisfying kAO) > 0. If kr denotes the

(essentially unique) bounded measurable function defined on the unit

circle C whose analytic extension to 2t is kAz), then ikrf,f) = e'^iL^f, LhJ)

= 0. On the other hand, if we denote the unique (on 2t) nth root of the

function kxiz) that is positive at the origin by [kAz)]1"1, it must be that

kx/Az) = [^i(z)]1/rt. It follows easily from the representation theorem for

singular inner functions [ 6, p. 66], that the sequence of analytic function

\kx/Az)\ converges uniformly on compact subsets of 2t to the analytic

function /(z) = 1. If /(z) denotes the analytic extension to St of the func-

tion / G Je , then the sequence \kx/Az)fiz) J converges subuniformly on

St to fiz) and the corresponding sequence \kx/nf}E Jit is bounded. It

thus follows from Lemma 4.2 that the sequence of vectors kx/nfE Je

converges weakly to /, and thus for n sufficiently large, {kx/nf,f) ¿¿0. This

contradicts an earlier equation and completes the proof.

Actually the above proof can be used to show that a large class of sub-
/■"w '"«W ,-«■'

groups of the reals yield Riesz systems not equivalent  to   ( St, R, Je ).

The above theorem completes our results on the nonequivalence of

Riesz systems, and we now want to look at the question the other way

( ) One of the central ideas in the proof of this theorem was kindly pointed out to us by

Eric Nordgren.
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around and ask what additonal structure need be added to a Riesz system

to force it to be equivalent to iSt,R,jt')? In this connection we can

prove the following theorem.

Theorem 6. Suppose that associated with the Riesz system iSt,R,Jt )

there is a iGT) operator U that is a unilateral shift of multiplicity one. Then

i St, R, Je) is equivalent to i St, R, Je).

Proof. To say that U is a unilateral shift of multiplicity one means

that there is an orthonormal basis j/„(r=o for J? such that Ufh = /*+i f°r

k = 0,1,2, • • •. Since U is by assumption a (GT) operator, there exists

an LER such that U = PL\Je. Since U is an isometry, it follows from

Theorem 2 that L must be an analytic unitary operator. Now for all

positive integers k, let / *=L"*(/0). It follows that the family {/*}£=--

is an orthonormal family of vectors in St and that the subspace JtES

spanned by the fh, — °o < k < œ, is a reducing subspace for L. Since

Jt~J) Jt , it follows from Lemma 3.8 that JL= St; in other words, the

family {/*}£=-« forms an orthonormal basis for St. We define an iso-

morphism <f> from the Hilbert space S onto S by defining </>(/„) = z"E'Jt

for each integer n. Then clearly <f>iJt) = Jt, and it suffices to show

that <bR<p~l = R. We have established that L is a bilateral shift operator,

and it is well known (see, for example, Theorem 2, [2]) that a bilateral

shift operator always generates a v. N. algebra that is maximal abelian.

It follows that L must generate R, and since <bL<bx is the bilateral shift

operator L': zn->zn+l in R, <t>R(b~LCR- But <bR<f>_1 and R are both maxi-

mal abelian v. N. algebras, and it follows easily that <bR<b_1 = R. This

completes the argument.

5. Concluding remarks. We first point out that the definition given

above for a Riesz system could be loosened somewhat without affecting

the results of §3. In particular, if the v. N. algebra attached to a Riesz

system is required only to be abelian and have no minimal projections,

then the proofs in §3 carry over without change. Furthermore, many of

the results of §3 remain true if the definition of a Riesz system is weak-

ened further by requiring only that Je ^ be a weak Riesz subspace for

R. In particular, Theorems 1, 2 and 3 remain true in this setting.

One can also regard the results of §3 as theorems about a single oper-

ator that has a normal dilation with the appropriate properties to give

rise to a Riesz system. The interested reader can work out the precise

formulations of the results of §3 from this standpoint for himself.

It appears to us that further inquiry into the properties of (GT) oper-

ators might well be fruitful. In particular, one would like to know if there

is an analogue for analytic (GT) operators of the Beurling theory of in-

variant subspaces for analytic Toeplitz operators, and if the spectrum of
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every (GT) operator is necessarily connected. (The fact that the spec-

trum of every Toeplitz operator is connected was recently proved by

Widomfll].)
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