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Introduction. It was realized recently that a natural starting point for

spectral theory is the operational calculus (see [7] and [15]). Instead of

postulating the existence of a resolution of the identity (as in [4]) one

postulates the existence of an operational calculus, which is an extension

of the usual analytic operational calculus for bounded operators.

For us, an ^.-operational calculus is a continuous representation T(-)

with compact support of a topological algebra 81 of complex-valued func-

tions on the complex plane, in the Banach algebra B(X) of all bounded

operators on a given Banach space X. It is convenient for our purposes to

make some restrictions on 21 and on T(-) (see details in §2). An operator

T is "of class 31" if there exists an 21-operational calculus T(-) such that

T(z) = T.

We are concerned with the classification of bounded operators by means

of their operational calculus, and with the characterization of certain special

classes. We deal mainly with "real operators" (i.e., operators with spectrum

on the real line). In this case, we have the following

Classification Theorem. If T is a real operator of class 21 for a homo-

geneous Banach algebra 21 (cf. Definition 2.17), then T is of class C" for some re.

This allows us to restrict our study to "operators of finite class" (i.e.,

operators which are of class C" for some re), as long as 21 has a Banach

algebra structure.

Spectral operators of finite type (cf. [4]) are operators of finite class.

The simplest necessary and sufficient condition for T to be a real operator

of finite class is that ||eltr|| = 0(|i|*) for some k (t real). In fact, the latter

condition implies that T is of class C*+2. It follows in particular that sums

and products of commuting real operators of finite class are of finite class.

This shows that these operators are not necessarily spectral (cf. [9] and

[14]). However, it is true that operators of class C are spectral if X is

weakly complete. This is false in general with Ch (k è 1) instead of C,

even if X is reflexive. In the latter case, we could prove only that "singular"

real operators of class Ck are spectral of type k (cf. §3).

Presented to the Society, January 26, 1964; received by the editors November 23, 1963.

( ) This research was partially done while the author was with Princeton University, and

was partially supported by a National Science Foundation grant (NSF-GP780) through

the Institute for Advanced Study.

194



CLASSIFICATION OF OPERATORS 195

In §4, we derive various characterizations for operators of class Ck (for

given k), using either the group euT or the resolvent. These results generalize

Theorems 4 and 6 in [10].

Theorem. A real operator T is of class Ck if and only if there exists a posi-

tive number M and a closed finite interval A such that

Ífit)eUTdt = M||/|| k,à

for all fELx¿ {the notations are defined in §4).

For an arbitrary real operator T, for fECk (i.e., /EC* and has compact

support), and for u ^ 0, we define a sequence TJJ; u) of bounded opera-

tors (/» — 1,2, •••)• We then have the following "constructive" characteriza-

tion:

Theorem. T is of class Ck if and only if, for every fE Co, Tm(/; u) con-

verge weakly to a bounded operator T(J; u), uniformly with respect to u (u ^ 0),

and || Tif;u)\\ ^M||/||*,A (u ^ 0) for some M>0 and some finite closed

interval A.

In this case, the C*-operational calculus for T is given by T(/) = T(/0; 0),

/ E Ck, where /0 is any element of Co which coincides with / on A.

Limits and sums of operators of class C* are studied in §5. Results of

Bade's [l] and Foguel's [6] are generalized.

1. The general operational calculus.

1.1. Definition. A general operational calculus (g.o.c.) is an ordered

pair (3l,T(-)) which consists of

(i) a topological algebra 31 of complex-valued functions on a subset A of

the complex plane, with the ordinary pointwise operations, which contains

the restrictions to A of polynomials; and of

(ii) a continuous representation T(-) of 31 in F(X), such that T(l) = /

(= the identity operator).

1.2. Definition. An operator(2) T is of class 31 if there exists a g.o.c.

(31, T(-)) such that F(z) = T; any T(.) with this property will be called

an %-operational calculus for T. The symbol T E i 31) stands for the state-

ment "T is of class 31." If TE (31), the symbol T(-) will be reserved for

any 3l-operational calculus for T.

Remarks. 1. The condition T(l) = / is merely a normalization, since,

in any case, T(l) is a projection, and Y = Til)X is an invariant subspace

for the representation T(-). The restriction of T(-) to Y defines a g.o.c.

satisfying T(l) = / when X is replaced by Y.

( ) The term "operator" is used for "bounded linear operator on X into itself.'
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2. Given a g.o.c. (21, T(-)), the operator T(z) is of class 21.

1.3. Examples, (a) Let 21 = 77(A) be the algebra of all complex-valued

functions which are locally holomorphic in the open set A, with the topology

of uniform convergence on every compact subset of A.

An operator T is of class 77(A) if and only if its spectrum a(T) is con-

tained in A. In this case, the representation T( • ) is uniquely given by

T(f)=—ijf(z)(z-T)idz,     fEH(A),

where r is an oriented envelope of a(T) with respect to / (cf. [8], Theo-

rem 5.2.5]).

(b) For a compact A, let C(A) be the Banach algebra of all continuous

complex-valued functions on A with the supremum norm. If X is a Hilbert

space, an operator T is of class C(A) if and only if it is similar to a normal

operator:

T=QNQ\       NN* = N*N.

In this case, the C(A)-operational calculus is uniquely given by

T(f) = QN(f)Q~\

where f—>N(f) is the usual operational calculus for normal operators.

More generally, if X is a weakly complete Banach space, (C(A)) coin-

cides with the family of spectral operators of scalar type with spectrum in

A (cf. §3).

(c) Take A=[0,l], 21 = G(A), X = LP(A) (l^p^ ») and TEB(X)

defined by:

(T<b) (x) = x<b(x) + J   <b(t) dt,       <f>EX, xE A.

We claim that TE ( 21). Indeed, an 21-operational calculus for T is given by:

[T(f)<p](x) = f(x)t(x) + j f'(t)<b(t)dt,       fE% <t>EX, xEA.

This can be checked by a straightforward calculation.

2. Special operational calculus. In order to get interesting results, we need

some restrictions on 21 and T(-) (cf. Definition 1.1).

For a compact subset X of the complex plane, 77(X) will denote the

algebra of all complex-valued functions which are locally holomorphic in

an open neighborhood of X, with the usual topology.

Condition 1. If/E 77(X) for a compact X^0, then there exists /0E 21

such that /o = / on 0 O A, for some neighborhood Ü of X. Roughly speaking,

analytic functions belong locally to 21.
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From now on, Condition 1 will replace the assumption that 31 contains

the restrictions to A of polynomials, and A will be either the complex plane

C or the real line R, unless otherwise stated. We assume also that the set

3l0 of all functions in 31 with compact support is dense in 31.

Fix fE 3l0. Suppose gE F(Spt/), where Spt/ denotes the support of /.

By Condition 1, there exists g0E 31 such that g0 = g in a neighborhood of

Spt/. Define a map

Ms: F(Spt/)^31

by

Mfg = fg0,      gEHiSptf).

Mf is well defined. Indeed, if gx E 31 is such that gx = g in a neighborhood

of Spt/, then obviously fg0 = fgx on Spt/, and fg0 = fgx = 0 on [Spt/]',

so that fg0 = fgx everywhere (the prime denotes set theoretical comple-

mentation) .

We can state now

Condition 2. The map Mf : F(Spt/) —» 31 is continuous (for every / G 310).

The next restrictions are on the representation F(-).

Condition 3. T(-) has compact support (which we denote by 2, or 2r

when distinction is needed).

2 is the smallest compact K with the property that if / E 3l0 has its

support in K', then T(/) = 0.

Iff,gE 31 and / = g in a neighborhood of 2, then T(/) = Tig); in other

words, T(/) depends only on the restriction of / to an arbitrary neighbor-

hood of 2.

Let /GF(2). By Condition 1, there exists /0£3l such that /0 = / in a

neighborhood of 2. Write TH(f) = Tifo). The map TH: F(2)^F(X) is
well defined; it is obviously a representation; we call it the restriction of

T(.) to F(2). We can (and will) omit the subscript H in TH.

Condition 4. The restriction of T(-) to F(2) is continuous.

2.1. Definition. An operational calculus (o.e.) is a g.o.c. (31, T(-)) which

satisfies Conditions 1-4.

If 31 is a topological algebra satisfying Conditions 1-2, an operator T is

of class 31 if there exists an o.e. (31, T(-)) such that T(z) = T.

An algebra 31 satisfying Conditions 1-2 is called a basic algebra (cf. [15]).

2.2. Lemma. Let T be an operator of class 31 for a basic 31. Then

o-iT) = 2,

where 2 denotes the support of any ^-operational calculus for T.

Remark. Lemma 2.2 does not depend on Condition 4. The following
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proof uses an argument of Foia§ [7, Proposition l].

Proof. If 2 (£ 2, there exists fzE 21 such that /2(X) = (z — X)_1 in a neigh-

borhood of 2. Hence:

T(fJ(zI -T) = T(Q T(z - X) - T(l) = 7,

showing that 2 is in the resolvent set p(T) of T. Thus

<HT)C2.

In order to prove the reversed inclusion, we must show that if / E 2l0 has

its support in p(T), then T(f) = 0.

For such a function / and for 2ESpt/, the function M¡gz is in 21

(g*E77(Spt/) is defined by &(X) = (2 —X)"1). As a function of 2 from

[Spt/]' into 21, Mfgz is analytic by Condition 2. Therefore T(Mfg^ is an

analytic operator-valued function of 2 on [Spt/]'.

Let &,oE 21 be such that gzfi = gz in a neighborhood of Spt/. We have:

(27 - T)T(Mlgz) = T(z - \)T(fgz,Q) = T(f(z - \)gzJ = T(f),

because (2 — X)gz0 = 1 in a neighborhood of Spt/, so that f(z — X)gZy0 = /.

Thus T(Mfgz) = (27- T)-'T(f) on P(T), and therefore T(Mfgz) can be

analytically continuated in p(T) 3 Spt/. We conclude that T(Mfgz) is entire.

Now, for 2—+ 00,

T(Mfgz) = (zI-T)-1T(f)^0

in the uniform operator topology. Therefore, by Liouville's Theorem,

T(Migz) = 0 for all 2, and hence T(f) = 0.

2.3. Lemma. Let TE (21) for a basic 21, and let T(-) be an ^-operational

calculus for T (cf. Definition 2.1). Then the restriction of T(-) to 77(2) coin-

cides with the analytic operational calculus for T.

Proof. By Lemma 2.2, TH is a representation of H(a(T)) in B(X). Since

Th(z) = T, TH coincides with the analytic operational calculus for T when

restricted to rational functions with poles outside a(T). These functions

are dense in H(a(T)) by Walsh's Theorem [19, p. 16]. The lemma follows

now by Condition 4.

2.4. An important example of a basic algebra 21 is the algebra C of all

complex-valued functions on the complex plane with continuous partial

derivatives up to the order re, and with the topology of uniform convergence

on every compact of all partial derivatives of order ^ re. Here re stands for

non-negative integers or for 00. Notice that for C, Condition 4 is auto-

matically satisfied by any continuous representation T(-) with compact

support.

We need some elementary facts about operators of class C".
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2.5. Lemma. Let TE (Cn) and let T(-) be a C-operational calculus for T.

Then T(/) E (C) for every fE C", and a C-operational calculus for T(/)

is given by [Tif)]ig) = Tigof), where gof denotes the function igof)ix)

= gifix)),gEC.

Proof. For fEC fixed, the map g^Tigof) of C" into F(X)  is well

defined (because Co fEC"). It is clearly a representation of C" in F(X),

which takes 1 onto / and z onto T(/). Its continuity follows from the con-

tinuity of the map g—>gof of Cn into itself. Finally, its support is con-

tained in /(2), and is therefore compact (2 denotes the support of T(-)).

2.6. For fEC (n < œ) and A compact, ACC, we write

ll/|U= Z suplF'/l,

where j = UuJJ is an ordered pair of non-negative integers, \j\ =jx + j2,

>! -j¿M, and

j\ dx^diiy)3

In case A C R, it will be always understood that j2 = 0.

For A compact, C"(A) will denote the algebra of restrictions to A of func-

tions in C, with the topology induced by the norm || • || „ A.

2.7. Lemma. If TE iC") and A is any compact neighborhood of oiT), then

TG(C(A)) in the sense of Definition 1.2. If n = 0, TE (C(a(T))). Con-

versely, if TEiCiA)), then TEiC) and <r(T)ÇA.

Proof. Let TEiC") and let A be a compact neighborhood of <r(T). Let

fE Cn(A) and let f0E C coincide with / on A. If T(.) is a C-o.c. for T,

define TA(/) = T(/0). By Lemma 2.2, TA(-) is well defined. It is continu-

ous by [17, p. 91], and it follows that TE (C(A)).

The case n = 0 is well known.

Conversely, if TE (C(A)) and TA(.) is a C(A)-o.c. for T, a C-o.c. for

T is defined by T(/) = FA(//A), where //A denotes the restriction of / to

A. The claim <r(T) Ç A is checked by noting that fziw) = (z - w)_1 E C(A)
ifz$A.

For real operators (i.e., operators with spectrum on the real line), the

C-o.c. is unique whenever it exists. This follows from the next lemma. For

real operators, C will mean C(R).

2.8. Lemma. Let T be a real operator of class C, n < œ. Let Abe a compact

interval containing a(T) in its interior. Then the CiA)-o.e. for T is unique.

In particular, if A = [a, b] and if X is reflexive, then there exists a unique

uniformly bounded operator-valued finitely additive set function F(-) on the

Borel subsets of [a, b], which is countably additive in the strong operator topology,

such that



200 SHMUEL KANTOROVITZ [March

TÁf) = Z —T2 (T -a)'+      r\s) dF(s),
j=0     J- Ja

fE Cn(A). The integral is understood in the strong operator topology.

Proof. By Lemma 2.7, TE (C"(A)). Its Cn(A)-operational calculus TA(-)

is uniquely given on polynomials, which are dense in C"(A) for a compact

interval A. Since TA(-) is continuous on C(A), the first part of the lemma

is proved.

For xEX and x* in the adjoint X* of X, the map f—>x*TA(f)x is a

continuous linear functional on C"(A). Thus, if A= [a, b], it is uniquely

representable in the form:

(1) x*TA(f)x = ZcAx,x*)fu,(a) + f rAs)dp(s\x,x*),
;=0 J"

where c,(x, x*) E C and p is a regular Borel measure on [a, b] (cf. [5, p. 344] ).

Taking /,(*) = (i - a)J/j\, we obtain

(2) cAx,x*)=l[x*(T-a)Jx.

Now,   for   fE CS(A) = [fE C"(A) | fU)(a) = 0,   0 á j á » - 1}, we have

x*T,(f)x = fj*As)dp(s\x,x*).

When/ranges in Cô(A), g = /("' ranges in the entire space C(A). Therefore

varp = sup I      ( g(s)dp    , gEC(A), max|g| = lj

= sup [|x*TA(/)x|, /GCS(A), max|/w| = l} .

But for fECô(A) such that maxA|/,n)| = 1, we have

|/("-"(i)| = t^tvt  C(t-sy-lfw(s)ds
(l - 1)!  Ja

s!Lj#    (OS(sw,

so that ||/||„,A ^ (1 + b - a)n/n\. Hence

(3) \p(ô\x,x*)\ ^X||x|| 11*|

for all Borel subsets b of A, where K = ((1 + b - a)n/n\)\\TA(-)\\ and

||TA(-)|| is the norm of TA(-) as a continuous map of C"(A) into B(X).

Using (3) and the uniqueness of the representation (1), we conclude that

p(b\x, x*) is a bounded bilinear form on X X X*. Since X is reflexive, there

exists a unique operator F(b) such that x*F(b)x = p(b\x,x*) for all 5, x

and x*. P( •) is finitely additive and uniformly bounded by X; it is a-additive
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in the weak (and hence in the strong) operator topology. Thus faf^is) dFis)

makes sense, and the lemma follows (using (1) and (2)).

2.9. Lemma. Let T be an operator for which there exists an integer k^O

such that

|| T"|| = 0( | n | *)    for integers n,       | n | -> ».

Then T is of class C+2 and its spectrum lies on the unit circle. Conversely,

if TEiC") and „(T) lies on the unit circle, then || Tn|| = 0(\n\").

Proof. If fE C+2 and t E R, the function d>it) = fie") is periodic (period

2ir) and k + 2 times continuously differentiate. Therefore <t>(k> has an ab-

solutely convergent Fourier series

and

(1) ZKI á4(max|0w| + max|<^+2)|).

If <p(i) =Zd»<?"*> then|d„| = |c„|/|»|* in = ±1,±2, •••). Define

(2) Tif)=   Z dnT",       fECk+2.
n= — °°

We have:

(3) \\dnTn\\ ̂  Const|rc|*|d„! = Const|c|.

Since Zlc"l < °°> the series defining T(/) converges "absolutely" in the

uniform operator topology. Thus T(/) is well defined. Obviously, the sup-

port of T(-) lies on the unit circle; furthermore, F(l) = I and Tiz) = T.

A direct check shows that the map /—>T(/) is a homomorphism of the

algebra Ck+2 into F(X); its continuity follows from (1) and (3):

|| TV) || i ConstZ\cn\i Const || f\k+2,à,

where A denotes the unit circle.

We conclude that TE (C+2) and 2 ç A. Since 2 = oiT) by Lemma 2.2,

the first part of the lemma is proved. The converse follows from Lemma 2.7.

2.10. Corollary. Let Tx and T2 be commuting operators with spectrum on

the unit circle.  Suppose  TxEiCk)  and  T2EiCl).  Then   TxT2EiCh+l+2).

Proof. Applying the "converse" part of Lemma 2.9, we obtain:

\\(TxTèn\\ i\\Tnx\\ |3?| =0(|n|*+'),

and the corollary follows by using the first part of the same lemma.
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2.11. Lemma. Let T be an operator for which there exists an integer k^O

such that

(1) ||e*l = 0(|í|*),       ¿GR,!*!-,».

Then T is of class Ck+2 and its spectrum lies on the real line. Conversely, if T

is a real operator of class Ck, then (1) holds.

Proof. c(T) is real by (1) and Corollary 1 in [10, p. 166]. For fE Ck+2(R),

define T(f) = ff(t)eUTdt, where / is the Fourier transform of /, f(t)

= (l/2x) fe~Usf(s)ds. It follows from (1) that the integral defining T(f)

converges absolutely and || T(/)|| ^ Const(6 - a)(max|/| + max|/(*+2)|),

where (a,b) is an interval containing Spt/. Hence /—♦ T(f) is a continuous

linear map of C¿+2(R) into B(X). A straightforward calculation shows

that it is multiplicative.

By Equation (2) in [10, p. 164],

(2) T(f) = lim -L f/(f) [R(t - is; T)-R(t+ is; T)]dt.
S—0+ 2irl J

Suppose a(T) E(-N,N) and / = 0 on ( - N, N). Then T(f) = 0 because

R(t- is;T) - R(t+is;T)^>0 when s->0+ for t not in (-N,N). Now

if/EC*+2(R) and /0EC0*+2(R) coincides with /on (- N,N), define T(f)

= T(f0). The preceding remark shows that the map f^T(f) of C*+2(R)

into B(X) is well defined. It is a continuous representation of C*+2(R) on

X, and it follows readily from (2) that T(l) = 7 and T(t) = T.

The converse follows from Lemma 2.7.

2.12. Corollary. Let Tx and T2 be commuting real operators of class C*

and Cl respectively. Then Tx + T2 is of class Ck+i+2 and TXT2 is of class

Cm for m = 2k+ 21+ 6.

Proof. Using Lemma 2.11, we obtain:

lle^+^ji á ii^n ii^ii = o(|f|*+');

hence Tx+ T2E(Ch+l+2) by the first part of Lemma 2.11.

By Lemma 2.5, if T E (C), also T2 and tT (t E C) are of class C". Writing

TiT2 = {-[(Tx + Ta)2 - Tí - T¡] and using the result about sums, we con-

clude that TXT2E (Cm) form =[(k+ 1 + 2)+ k + 2) +1 + 2 = 2k + 2l + 6.

2.13. Definition. An operator is said to be of finite class if it is of class

C* for some non-negative integer k. In other words, TgU^oÍC4).

Lemmas 2.9 and 2.11 give simple characterizations of operators of finite

class, when the spectrum is either on the unit circle or on the real line.

We paraphrase these results.

2.14. Theorem. Consider the following statements about an operator T:
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1. T is of finite class and <r(T) lies on the unit circle.

2. For some integer k^O, || Tn\\ = 0(|n|*) for integers n, |rc| —> ».

1'. T is of finite class and oiT) lies on the real line.

2'. For some integer k^O, \\eUT\\ = 0(|f|*) for t real, |f| -> ».

Then 1 <=> 2 and V <=> 2'.

We paraphrase also Corollaries 2.10 and 2.12:

2.15. Corollary. Sums and products of commuting real operators of finite

class are operators of finite class. Products of commuting operators of finite

class with spectrum on the unit circle are operators of finite class.

2.16. Remarks. Operators which satisfy Condition 2 in Theorem 2.14

have been studied by several authors. E. R. Lorch [13] and B. Sz.-Nagy

[16] deal with the special case k = 0 in reflexive Banach spaces or in Hilbert

space. Lorch calls such operators "weakly almost periodic transformations,"

while Sz.-Nagy calls them "uniformly bounded transformations." F. Wolf

[21] has a result which is equivalent to Lemma 2.9 when X is reflexive.

G. K. Leaf [12] studies the class of operators satisfying || T"|| = o(|ra|).

If T is such that \\eUT\\ = 0(1) for real t, Lemma 2.11 asserts that T is

of class C2. In Hilbert space, this assertion can be improved, namely, C2

can be replaced by C (see Theorem 5 in [10]). Such an improvement cannot

be achieved in general Banach spaces, and even not in arbitrary reflexive

Banach spaces. Indeed, in the latter case, operators of class C are spectral

operators of scalar type (cf. §3). If it were true that \\eaT\\ = 0(1) implies

TEiC), then it would follow that sums (and products) of commuting

spectral operators of scalar type (with real spectrum) are spectral; but

this is false in general, even in reflexive Banach spaces (see Kakutani [9]

and McCarthy [14]).

We see therefore that C+2 cannot be replaced by C (in general) in the

first statement of Lemma 2.11, and similarly in Lemma 2.9. (Such an im-

provement is impossible already for k = 0.) We conjecture that this refine-

ment is possible in Hilbert space (the case k = 0 is verified, as we have

remarked above). We are also inclined to think that, at least if X is weakly

complete, Ck+2 may be replaced by C+1.

We come back to the study of operators of class 31 in the sense of

Definition 2.1, restricting our attention to real operators. In this case,

it is convenient to take A = R. Notice that 2 is now defined with respect to R.

It is natural to restrict the generality of 31 in such a way that if T E i 31),

also tTE i 31) for í G E. An 3l-operational calculus for tT which is consistent

with the analytic o.e. may be defined by /-» (iT)(/), /G 31, where (íT)(/)

= T(/() and /,(*) = /(fx) (t.xGR), provided that /,G3I whenever /G31

and that the map /—>/t of 21 into itself is continuous.
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2.17. Definition. Let 21 be a basic algebra. We say that 21 is homogeneous

if /E Si implies /,E2I (where /((x)=/(fx); f.xER) and the map /—>/,

of 21 into itself is continuous.

If 21 is a Banach algebra whose norm topology is not weaker than the

topology of pointwise convergence, then the condition "/E21 =>/,E2I"

implies that the map /—>/t is automatically continuous. This is an immediate

consequence of the Closed Graph Theorem. The same remark is valid if

21 is a semi-simple Banach algebra. Indeed, the map /—>/< is an algebraic

representation of 21 into itself. The closure of its image is semi-simple, as a

subalgebra of a commutative semi-simple Banach algebra. Therefore the

representation is continuous (see L. H. Loomis, Are introduction to abstract

harmonic analysis,  Van Nostrand, New York, 1953, p. 76).

The following result shows that we may restrict our attention to a very

concrete case.

2.18. Theorem. Let T be a real operator of class 21, for a homogeneous

Banach algebra 21. Then T is of finite class.

Proof. The main argument of the following proof is adapted from

Katznelson's proof of Theorem 5.1 in [11]. Denote by Mt and |T(-)|,

respectively, the norms of the continuous maps f—*ft of 21 into itself and

f-> T(f) of 21 into B(X). For re = 0, ± 1, ± 2, • • -, we have:

¡e'^W = 1 Tie***) || £ || T(.) || |e**| á Mt\\ T(-) \\ ||e""|| ■

Define

II e'mT\\

We have 0 ^ P(f) ^ Mt\\T(-)\\. As the limit of a sequence of continuous

functions of t, F(t) belongs to the first class of Baire, and therefore, it has

points of continuity. If f0 is such a point, then for some b > 0, there exists

a constant 77 = 77(f0,ô) such that P(f) g 77 for all f in |f-f0| < b. For

such t, we have:

||exp[¿re(f-í0)T]|| ále^l \\e-^T\\

^F(t)F(t0)\\e^\\ ||e-""|| ^ ffP(i0)M_1|euT

= Const || em* ¡2.

Without loss of generality, we may assume f0 = 0 (otherwise, replace t by

t — t0 in what follows). Thus, for |f| < b, there exists a constant Q = Q(b)

such that

||e"*T|| ̂ 0(ô) |K*||2,        Ul<«.

For re E R, choose re to be the smallest integer ^ 0 such that
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í2"= u    and   |í| < b.

We obtain:

||e'"T|| = ||exp(¿2"íT)|| i Q(5) || exp(¿2"x) ||2

^Q(ô)(M2n||e"||)2.

Since n i (log|u|/log2) + const, we have:

Mf i const exp( 2 ̂ -|' log M2J = const | u | *.

Thus||ei"r|| = 0(| u |*) for * = [A] + 1, and the theorem follows from Theo-

rem 2.14. Q.E.D.

Notice that F G (C), where m = [2 log2M2] + 2.

Consider the chain

(C)C(C)C(C2)C---.

Theorem 2.18 states that this chain exhausts all real operators which are

of class 31 for some homogeneous Banach algebra 31. We have therefore a

kind of general "classification theorem."

Notice that Example 1.3(c) exhibits an operator in (C1) — (C). Indeed,

we have

[euT<b]ix) = e,tx<t>ix) + it f eltscbis) ds,

so that ||e"r| ^0(1).

Theorem 2.18 motivates a more detailed study of operators of finite class.

This will be done in the following sections.

3. Operators of finite class and spectral operators. We first paraphrase

a well-known fact.

3.1. Proposition. Spectral operators of finite type are operators of finite

class. More precisely, if T is spectral of type m, then T is of class C for n ^ m.

Proof. Let T= S + N iS scalar, Nn+i = 0) be the canonical decomposi-

tion of the spectral operator T. Let /—>S(/) be the C-operational calculus

forS:

/
Sif)=J fiX)dEiX),       fEC,

where F(-) is the resolution of the identity for T. Define

Tif)=Z^SiVf),       fEC,
j-0 J-

where
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I/o        . d \
= 2{ôx-%)    and    n = M-

By

The map /—» T(/) is a continuous linear map of C into F(X) (if n ^ m)

with the properties

T(l) = I,    Tiz) = T   and   SptT(-) = ff(T).

Let f,gECn; let y',A,/ denote non-negative integers and, finally, let a,ß

denote ordered pairs of such number. Using Leibnitz's rule, we obtain:

nfg) = Z %   Z   sarnsiiyg)
Jim  ¿    \a\ + \H\Sj

= Z Z w £ Z s(Di)S(iyg)
Asm Is«   ¿ |a | SA |0| s'

= Tif)Tig).       Q.E.D.

Since sums of commuting spectral operators of finite type are not neces-

sarily spectral (cf. [9] and [14]), it follows from Corollary 2.15 and Prop-

osition 3.1 that the converse of Proposition 3.1 is false in general, even

for real operators on a reflexive Banach space. However, the converse is

true for m = 0 and X weakly complete.

3.2. Theorem. In a weakly complete Banach space, an operator is of class

C if and only if it is spectral of scalar type.

Proof (for the "only if" part). By Lemma 2.7, TE (C(A)) for A = oiT),

in the sense of Definition 1.2. Let T(-) be a C(A)-operational calculus for

T. For xE X and x* E X* fixed, x*Ti-)x is a continuous linear functional

on C(A). The Riesz Representation Theorem states the existence of a regular

Borel measure a = ui- \x, x*) on A such that

(1) x*Tif)x = jjiz)uidz\x,x*),       fECiA),

and

(2) ||x*T(.)x|| = ||p(.|x,x*)|

(the norms are understood in the usual way).

Let 6 be a fixed Borel subset of A. The uniqueness of the Riesz repre-

sentation implies that uiô\x,x*) is a bilinear form on X X X*, which is

bounded according to (2):

\uib\x,x*)\ i\\ui.\x,x*)\\ = \\x*Ti.)x\\ i¡Ti.)\\ \\x\\ |**|,

where ||T(-)|| is the norm of the continuous map F(-): C(A)—»F(X).

Let c8 be the characteristic function of b, and let /„G C(A), 0 i /„ i 1,

/„ f cä. It follows from the uniform boundedness of p(- \x,x*) and from the
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Lebesgue Dominated Convergence Theorem that [x*T(/„)xj is a Cauchy

sequence for every x E X and x* E X*. Since X is weakly complete, { T(/„)}

converges in the weak operator topology to a bounded operator, which we

denote by T(cs) or F(b). A standard check shows that F(b) does not depend

on the particular sequence [fn], i.e., F(b) is well defined. Also ||P(ô)||

^ || T(-) ||. The multiplicativity of T(-) on C(A) implies its multiplicativity

on characteristic functions. Hence, for Borel subsets 5 and « of A,

F(b)F(e) = T(c5)T(ct) = T(c¡Ct) = T(cin.) = F(í n«).

We also have x*F(b)x = p(b\x,x*). Therefore P(-) is finitely additive on

the Borel subsets of A, P(0) = 0 and F(a(T)) = T(l) = 7. The <r-additivity

of x*F(-)x implies the strong ¡r-additivity of F(-), so that the integral

X(T)f(X)dF(\) makes sense in the strong operator topology, and is equal

to T(f) according to (1). In particular, T = T(z) = £mzdF(z), and it

follows that T is spectral of scalar type by Lemma 6 in [3].

Remark. Without the weak completeness hypothesis, the same proof

shows that if T is of class C, then T* is a scalar type spectral operator of

class X (cf. Theorem 18 in [3]).

3.3. Corollary. 7re Hubert space, an operator is of class C if and only if

it is similar to a normal operator (cf. [20]).

3.4. Theorem. 7re Hilbert space, an operator is of class C with norm-

decreasing C(a(T))-operational calculus if and only if it is normal (cf.

Lemma 2.7).

Proof. It is well known that the operational calculus for normal opera-

tors is norm-decreasing as a map of C(<r(T)) into B(X). Therefore, we have

only to prove the "only if' part of the theorem.

Let TE (C) and let T(-) be a norm-decreasing C(a(T))-operational cal-

culus for T (cf. Lemma 2.7). Thus

(1) ||T(/)imi/||,       fEC(a(T)).

For f E R, let fAz) = exp(if Re 2).

We consider the group of operators T(ft), t£R. By (1), \\T(ft)\\ S 1,

and therefore || T(ft) || — 1 because T(ft) is a group. Using Sz.-Nagy's

argument in [16], we conclude that T(ft) is a group of unitary operators.

Its infinitesimal generator is therefore of the form ¿77, with 77 selfadjoint.

Since f—>T(f) is continuous, we obtain:

¿77 = limt^nf) - 7] = lim T -)
!-^0 Í-.0      \ f /

= T(¿Re2) = ¿T(Re2).

Hence T(Re2) is hermitian.
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Considering the group Tigt) with gtiz) = exp(iilmz), we show in the

same way that T(Imz) is hermitian. Since T(Rez) commutes with T(Imz)

and T= F(z) = T(Rez) + iT(Imz), we conclude that T is normal.

We proceed now to prove a partial converse of Proposition 3.1 for m 2: 1.

This will be achieved in a series of lemmas.

3.5. We consider now operators of class C for n^l. Since Rez and Imz

are in C, wecan write Tiz) = T(Rez) + ¿T(Imz). Now T(Rez) and T(Imz)

are commuting operators of class C with real spectrum (cf. Lemma 2.5).

This shows that any operator of class C is of the form A + iB, where A

and F are commuting real operators of class C We may therefore restrict

our study to real operators of finite class. We recall the convention (cf.

§2.16) that, whenever real operators are involved, C stands for C(R)

and 2 is defined with respect to R.

If d> is a continuous linear functional with compact support on C, then

it has a representation of the form:

(1) *(/) = lí/u)(í)#)        IImJ^NI.    (O^j^n),
jin J

where a¡ are regular finite Borel measures on R with supports in a neigh-

borhood of Spt<¿> (cf. Theorem XXVII in [17, p. 91]). In general, (f> has

many representations of this form. Uniqueness can be obtained by restricting

in some ways the kinds of measures entering in (1).

3.6. Definition. A continuous linear functional d> on C with compact

support is singular if it has at least one representation (1) in which all the

measures u¡, j è 1, are singular with respect to Lebesgue measure. Such a

representation will be called a singular representation of d>.

3.7. Lemma. If <j> is a singular continuous linear functional on C with

compact support, then it has a unique singular representation.

Proof. Using the notations of [17], we have to show that if Z;"=op]j) = 0

and p-j are singular for j è 1, then /¿, = 0 for j = 0,---,n. We have

(Z;"=im]'' x')' = — p-o, i-e., the distribution Zi-iMJ71' is a primitive of a meas-

ure. By Theorem II, p. 54 in [17], this distribution is a function of bounded

variation gx.

Next, if n ^ 2, we have (Z^^"2')' = - Mi + £i- Thus, as a primitive

of a measure, /"-zur"'2* is a function of bounded variation g2. Continuing

this process, we get finally:

(*) P-'n=   - P-n-l+gn-l,

so that un is a function of bounded variation gn. But p„ is singular; hence

gn = 0 a.e. and pn = 0. Going back to (*), we get p.n_x=gn_x; if n è 2,

p„_i is singular, and it follows as before that p„ i = 0. The same argument
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is used to show that p¡ = 0 for ;'^ 1, and hence also p0 = 0, since p0

+ pi + • • • + pf = 0.
3.8. Definition. Let F(-) he an operator-valued additive set function

on the Borel subsets of R, which is countably additive in the weak opera-

tor topology. Consider the Borel measures x*F(•)x for x E X and x* E X*.

If all these numerical measures are singular with respect to Lebesgue meas-

ure, we say that F(-) is singular.

3.9. Definition. Let T be a real operator of class C. For x E X and

x* E X* fixed, x*T(-)x is a continuous linear functional on C" with compact

support. We say that T is singular if x*T(-)x is singular (cf. Definition 3.6)

for every x,x*.

3.10. Lemma. Let T be a singular real operator of class C on a reflexive

Banach space. Then there exists a unique ordered set of re + 1 operator-valued

additive set functions [ P0( •),•••, Pn( • )}, such that:

(1) Fj(-) are uniformly bounded and strongly a-additive on the Borel sets

o/R 0 = 0,...,re).
(2) Pj(-) have compact support contained in an arbitrary neighborhood of 2.

(3) For j ^ 1, P;(.) are singular.

(4) T(f) =¿"=o//ü)(í)dPJ(f) ¿re free strong operator topology.

Proof. We have

x*T(f)x = t  (fu>(t)dpAt\x,x*),       fECn,
;=0 J

where p¡ are regular Borel measures on R with compact support (contained

in some compact neighborhood A of 2) such that p, are singular for ;^1.

The bilinearity of x*T(f)x in x and x* and the uniqueness of the singular

representation for x*T(-)x (cf. Lemma 3.7) imply that p;(ô|x,x*) is a bi-

linear form in x and x*, for each fixed Borel set b and fixed j. Furthermore,

\»Á&\x,x*)\ è lk(-|*,**)|| è ||x*T(.)x|| g ||T(.)|| ||x||||x*||(a). Since X
is reflexive, there exists a unique operator P,(ô) with bound á||T(-)||,

such that p,(ô|x,x*) = x*P;(ô)x (0 £/ £ n). The lemma follows.

3.11. Lemma. Let p¡ and v, (J — 0, ••-,/») be Borel measures on R such that

Pj and vj are singular for j 2: 1. Suppose that

Z(itY*pAt) = Í(itytAt),     tER.
;=0 j=0

Then pj = Vj (j = 0, ■ ■ -,re). (p. denotes the Fourier-Stieltjes transform of p.)

Proof. Let /((s) = e"8 (s,t E R)- The Fourier transform <¿ of a continuous

linear functional (b on C" with compact support is defined by ¿(f) — <t>(ft).

(3) ||T(-)|| denotes the norm of the C"(A)-o.c. for T (cf. Lemma 2.7).
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lf<t> = Z"=oMyj is a representation of <f>, then <¿(í) = Z£»o(&)'£/(*)• The map

«->« is 1-1. Indeed, if /GF1>B(R) (i.e., t'fit) G^i(R) for 0 ^;"^ n), then

its Fourier transform f is in C and

*(/) = f fit)*® at.

Therefore, if </> = 0, also $(/) = 0 for all fELXn, and since Fln is dense in

C, we have <¿> = 0. In particular, if </> is singular and <f> = Z>-o/i}') is its

singular representation, then <¿ = 0 implies p; = 0 for j = 0,---,n. This

proves the lemma.

3.12. Lemma. Let T be a real singular operator of class C, and let F,(-)

be as in Lemma 3.10. Write F,(-) = j\Fji-) and F/(i) = f eitsdEjis) HER).

Then:

EÎit)EAu) = Ei'+rit + u),       l + rin,

= 0, / + r > n

(i,uGR; l,r = 0,---,n).

Proof. Taking /,(s) = e"5 in Lemma 3.10 (4), we obtain:

eUT-Í{-^Efit).

Thus, for any pair itx, t2) of pure imaginary numbers,

= Zt-ÎZJ   fe<^dE1+,<.)
Í=0Í! r=0r! J

= e«!^' = Z j,  fe^dE^e^.

Thus:

£4^*[bIH-£<J,,!*[M-
where ds/i stands for dais). For x G X, x* G X* and t2 fixed, the measures

■^[riliVM
are singular for / ^ 1, because each measure x*Ei+rx is singular for I ^ 1,
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r^O (cf. Lemma 3.10(3)). Similarly, the measures (l/l\)x*El(.)e'*1x are

singular for / ^ 1. Therefore, by Lemma 3.11,

^ds£-2Pí+r = ds7¿,e^,       ¿ = 0,...,re.
r=0r!

Multiply both sides by elts (t E R) and integrate with respect to s over R

(integrals are understood in the strong operator topology):

Z -)  (e^dEi+As) = Pf(f)e'2Ï = ¿ -,  fe^ds[EÂt)EAs)}.
r=0 r- J r=0 r- J

For x, x*, I and f fixed, the measures

x*EÂt)EA-)x=[[EÂt)]*x*]EA-)x

are singular for r^l (cf. Lemma 3.10 (3)). Similarly, the measures

eUsdx*Ei+As)x are singular for r ^ 1 (I = 0, ■ • -,re; r ;£ re — I). Therefore,

by Lemma 3.11 (with f2 variable), we obtain:

e^dE^As) = EAt) dEAs),       r = 0,...,n-l,

and

E[(t)dEAs) =0,       re - / < r ^ re,

a = 0,...,re).
Multiplying these equations by elus (u E R) and integrating with re-

spect to s over R, we obtain the identities of the lemma.

3.13. Theorem. A real operator on a reflexive Banach space is singular of

class C (re è 1) if and only if it is spectral of type re and its nilpotent part N

and resolution of the identity E(-) are such that NE(-) is singular.

Proof. If T is a real spectral operator of type re, then its Cn-operational

calculus is given by

T(f) - Z J/Ü)W d \jE(s)~\ .       ft C-

Thus the functional x*T(-)x has a representation Zl=ov)'] with p;

= p,(.|x,x*) = x*(N'/j\)E(-)x. For ;fcl, we  write

pA-) = \[(N>-Yx*)NE(.)x.

Therefore p¡ are singular for j^l if NE(-) is singular. This proves the

"if" part of the theorem.

Suppose now that T is a singular real operator of class C\
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Taking / = r = 0 in Lemma 3.12, we see that

EÔit + u) = EÔit) EÔiu),       t,uER.

This implies that the map Si-): f-^ffit) dE0it) is multiplicative over

the algebra of functions / of the form fis) = ZJ-iCjexpiiiys) (c, G C, t¡ G R)■

Since this algebra is dense in C(<r(T)) and since F0(-) is uniformly bounded,

Si-) is multiplicative on C(<r(T)). Taking /= 1 in Lemma 3.10 (4), we

see that S(l) = F0(R) = T(l) = I. We conclude that Si-) is a C-operational

calculus, and the operator S = Sit) = ftdE0it) is of class C. By Theorem

3.2, S is a spectral operator of scalar type (its resolution of the identity

isF0(.)).

Next, we write N = EX(R).

For 1 ij in, take I = j — 1 and r = 1 in Lemma 3.12:

Ej'it + u) = E~_xit) Ex'iu),        lijin.

For u = 0, this gives F/(i) = E~_xit)N. Hence

Eût) = E0\t)NJ,       Oijin.

Interchanging the roles of / and r, we obtain also

F/(í)=iVJF0"(í),       Oijin.

Equivalently, for Oijin and t E R,

E'it) = [E0i-)NJYit) = [NJEoi-)]\t).

Since the Fourier-Stieltjes transform is 1-1, it follows that

(1) EJi-) = Eoi-)XJ = NJEoi-),       Oijin.

Next, we take I = n, r = 1, t = u = 0 in Lemma 3.12. We obtain F„(R)Fi(R)

= 0; using (1) and remembering that F0(R) = / and EX(R) = N, we con-

clude that Nn+1 = 0. We rewrite now equation (4) in Lemma 3.10, using

(1) and recalling that Ej(-) =y!Fy(.)  (write also F for F0):

Tif)=£^ (fU)is)dEis),       fEC.
j_0 J-   J

Taking in particular fis) = s, we get:

T = Tis) = fsdEis) + N = S + N.

Since S is spectral of scalar type, Nn+1 = 0 and N commutes with S by

(1), it follows that T is spectral of type n. Furthermore, NEi-) is singular,

since NEi-) = Exi-) by (1) (cf. Lemma 3.10 (3)). Q.E.D.

4. Characterizations of real operators of finite class. A simple characteriza-



1965] CLASSIFICATION OF OPERATORS 213

tion of real operators of finite class is given in Theorem 2.14 in terms of a

growth condition on the group euT, t E R- Our purpose in this section is to

characterize a given class (Cn) of real operators. In this case, the necessary

condition ||e,tT|| = 0(|f|") and the sufficient condition \eltT\ = 0(\t\n~2)

(for re ̂  2) do not match together (cf. Lemma 2.11 and Remarks 2.16).

We look first for criteria given in terms of the group eal. One way of

getting such criteria is to consider dense subalgebras of C" on which there

is a natural definition of T(f).

For re = 0,1, • • -, we denote by Lln the subspace of L^R) consisting of

those fELx(R) for which tJf(t)ELx(R) for O^j^n. Clearly, iffELx¡n,

then its Fourier transform / is in C".

We recall that if A is a compact subset of R, and /E Cn,

i/iu=¿7,suPin.
j-oJ¡     à

4.1. Theorem. The following statements are equivalent for a real operator T:

(1) T is of class Cn.

(2) There exists a positive number M and a closed finite interval A such that

/
f(t)elUdt < M||/|U,A   for all fELXtn.

(3) There exists a positive number M and a closed finite interval A such

that, for every real vector (tx,---,tm) and every complex vector (cx,---,cm),

m = 1,2, •••, the following inequality holds:

Zcjexp(itjT)
j=i

<M Zcje*P(itjt)
;=i n,;l

When (2) or (3) hold, we have <r(T).ÇA.

Proof. (1) =^> (2). The C-operational calculus for T is an extension of

the analytic o.e., so that euT=T((bt), where <bt(s) = elts (s.fER). Since

||e"r|| = 0(|f|"), the integral ff(t)e"Tdt converges in the uniform opera-

tor topology for f E Llin. The continuity of the map T(-) implies that

jf(t)euTdt = jf(t) T(0«) df = T ( J*/«</>« df)  = T(f),

and (2) follows.

(2) =#> (1). Let Lln denote the subalgebra of C consisting of the Fourier

transforms of functions in Lln. We define a map  T(-): LXn—>B(X)  by

T(<b)
/

f(t)e"Tdt,       where/EL1,„,/=0.
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Condition (2) shows that T(</>) is well defined as a convergent integral in

the uniform operator topology. Since Lhn is dense in C(A), we extend the

definition of T(-) to C(A) by continuity; this is possible in view of (2),

and we have

|T(/)||^M||/|U,A   forall/GC(A).

The map T(-): C(A)—>F(X) is linear and continuous. In order to prove

its multiphcativity, it is enough to check that F(</>*) = T(</>) T(*) for

<f>,VELhn. Let f,gELhn be such that /*=</> and g = *. Then 0*

= if*g), and by Fubini's theorem:

T(**) = J* if*g)it)e"Tdt = j jfit - s)gis) dseUTdt

= Jfit)eUTdt - fgis)e"Tds = Ti<t>)Ti*).

The use of Fubini's theorem is justified, since (2) implies that ||e"T|

= 0(|i|"). Indeed, as we have already remarked, (2) implies the conver-

gence of the integral ffit)eaTdt in the uniform operator topology (for

fCzLx¡n). Therefore, for unit vectors x and x*, we have:

1/fit)x*eulxdt áMH/lL^MU/IU,

where ||/|| i,n = Z;"=olUJ/W 11 and || • || j is the F,-norm. Thus the map

f—>ffit)x*e"Txdtis a bounded linear functional on the Banach space LXn

(normed by ||-|i,„), with bound i M. This implies that ||el/T|| =0(|i|").

In order to show that F(l) = / and Tis) = T, it is sufficient to check

the identity:

( *) TM = eUT   for <M«) = ¿*       H, s ER).

The wanted result then follows by expanding both sides of equation ( *) in

powers of t.

Choose a sequence fm¡tELXjn such that ||/m,(||i = 1 and fm,t—>(bt in C(A).

Then /m, converge to the delta measure ôt concentrated at t, in the weak-

star topology of measures. We have:

x*T(«k)x= lim   ffm,is)x*elsTxds
m— co J

= \ x*e'slxdbiis) = x*euTx.

We conclude that T is of class C(A); hence TEiC)   (cf. Lemma 2.7).

The equivalence (1) <##> (3) is proved in a similar way.
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Remarks. We may look at Conditions (2) and (3) as growth conditions

on averages of eltT (compare with Theorem 2.14). For re = 0 and X reflexive,

Theorem 4.1 reduces to Theorem 6 in [10].

Other criteria of the same kind may be obtained by considering other

dense subalgebras of C(A). For example, we have the following criterion:

A real operator T is of class C if and only if there exists a positive number

M and a finite closed interval A such that || p ( T) || g, || p (f) || „ A for every

polynomial p(f).

4.2. We give now a characterization of real operators of class C" which

is "constructive" in the sense that it exhibits the C-operational calculus

in an explicit form.

Let CJ be the subalgebra of C" consisting of all functions in C which

have compact support.

For reèO; t,vER and m = 1,2, •••, let

Km(t,u, v) = —- exp - [(v/m)2 + u\v\ + ivt]

and

Gm(t,u) = fRKm(t,u,v)e»Tdv,

where T is an arbitrary real operator. The integral defining Gm converges

in the uniform operator topology.

If/E Co", let

Tn(f;u)= jj(t)Gm(t,u)dt       («è0; /re = 1,2,...).

We can state now a criterion for TE (Cn) in terms of the sequence of

maps Tm:  Q X [0, <*,) -» B(X).

4.3. Theorem. A real operator T is of class C if and only if, for every

fECS, the sequence Tm(f;u) converges weakly to an operator T(f;u) (when

m—» °o), uniformly with respect to u (u ^ 0), and, for some positive constant

M and some compact interval A, ||T(/;u)|| ^M||/||nA (re^O).

In this case, the C- operational calculus for T is given by T(f) = T(f0; 0),

fE Cn, where /0 E Co is such that /0 = / on A.

Proof. Sufficiency. For u ^ 0, we have the identity T(f; u) = T(g; u) when-

ever /, g E CS are such that f = g on A. This follows from the inequality

|| T(f;re)|| ^ M|/||„,A. We may therefore extend the definition of T(f;u)

to C by setting

(1) T(f;u) = T(f0;u),       fECn,
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where f0 G Co is such that /0 = / on A.

Let ftis) = e"8 (s,i G R). For u > 0, we have the identity

(2) Tift;u)=e-u^eltT,       t£R

(cf. Lemma 5 in [10] and the following remark there).

Now, for /G Co fixed, and m = 1,2, ■■-, Tmif;u) is a continuous func-

tion of u in the uniform operator topology. Since x*Tm(/; u)x—>x*T(/; u)x

uniformly with respect to u (u ^ 0), it follows that T(/; u) is weakly right

continuous at u = 0. According to the convention made at the beginning

of the proof, this is true for / G C" as well. In particular, taking / = ft, we

get T(/,;0) = lim^0+F(/(;u) = e"T (by (2)).

We check now that T satisfies Condition (3) in Theorem 4.1. Since the

map/—> T(/;0)isobviouslylinear,wehave(forc,G Candi,GR;/ = 1, ---.N):

IIZ^I = llZc,T(/1;;0)|| = ||F(Zc;/i;;0)|| ̂M||Zc/0IU,A.

Necessity. Let A be a compact interval containing 2 in its interior. Fix

xGX and x*EX*. We have:

>* = Z fl
j-o J

x*T(/)x = Z     fu>'(«) dpj(8\ x,x*),       fEC,
;-0 J

where p; are regular Borel measures with supports in A and

lkll=l|r(.)||||x||||x*||

(cf. footnote 3).

In particular,

xvTx=z(ii)^reitedMj(S|x,x*),
j=0 J

so that

x*Gmit,u)x = Z J jKmit,u,v)iiv)Je^dvduJis\x,x*)

= Z    fa* * gu) W(S - t)dujiS | X, X*),
;=0 J

where Fm(i) = (2jr)~1/2me"1'""2 and^u is the measure on R defined as follows:

for u = 0, gu = b (the delta measure at the origin) ; for u > 0, gu is absolutely

continuous with density function (u/(u2 +i2))/7r. Notice that vargu = 1

for u ^ 0.

Now, for /GQ, we obtain by integrating by parts:
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x*Tm(f, u)x = ZJ ffU)(t)(Lm*gu)(s - t) dtdpAs\x,x*)

= ¿ ((Ln*fU(t)d(gu*pj)(t).
j=0 J

Since/has compact support and /E C", Theorem 1.1.1 in [2] implies that

Lm */0) —>/w uniformly on R (for m —> <»; j = 0, ■ ■ ■, re). Since vargu = 1 and

varp^||T(.)||||x||«x*||, we obtain:

x*Tm(f;u)x-Z (fW(f)¿(Zu*ßj)(t)
j=o J

á¿||Lm*/w-/w|U-var(gu*p;)
1=0

í|ÍX-)||x||**|¿|I*./»-/»|.-0
;=0

when m —> œ, uniformly in re (u S: 0).

But

¿ í/ü,(í)dte.*/y)(í) = ¿ f(/u,^u)dp;
;=0 J j=0 J

= Z  ((f*gu)U>dpJ = x*T(f*gu)x\
i=o J

Hence Tm(f; u) converges to T(f*gu) in the weak operator topology, uni-

formly with respect to u, u ^ 0. Therefore T(f; u) = T(f*gu). Since vaigu

= 1, we have \\f*gu\\n.A á |/IU,a, so that

||T(/;")|| = ||T(/*g»)|| ^ ||T(.)||||/*gu||n>A^ ||T(.)|| ¡/lu

Finally, T(/;0) = T(f*b) = T(f) for fECS, and the proof is complete.

4.4. Example. Let T he as in Example 1.3 (c). We find that

(e"7)(x) = e"Y(x) + itj eite/(s)ds,

fELp(0,1), 0 iS x s; 1. Let <t>ECl. A straightforward calculation leads to

the identity:

[Tm(<b;0)f](x) = ^p f<b(u + x)me-^2duf(x)

+ t¿72 f JV(«* + s)me-^2duf(s) ds.
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Applying Theorem 1.1.1 in [2], we obtain:

[T(0;O)/](x)=lim[Tm(0;O)/](x)

J>= <t>(x)f(x)+\   4,'is) fis) ds.

This is precisely the o.e. proposed without justification in §1.3.

4.5. Theorem (Characterization in terms of the resolvent, case

n = 0). A real operator T is of class C if and only if the integral

(*) J(s|x,x*)= (\x*[Rit-is;T) - Rit+is;T)]x\dt

is uniformly bounded when s—>0, for unit vectors x and x*.

Remark. This is a generalization to nonreflexive Banach spaces of the

last part of Theorem 6 in [10].

Proof. Necessity. For s > 0 and u,t£R, the functions it — u ± is)~\ con-

sidered as functions of u, are in C, and Rit± is; T) = Tu((i — u± is)'1),

where the subscript u of T(-) indicates that it — u± is)'1 is considered

as a function of u. Thus:

J(,\x,x>)-f  U.(((J» + >i),U

-2 dp(u|x,x*) dt
= 2J   \) it-u)2 + r2

^2Í f {t_Su)i + s2d\u\iu\x,x*)i2«varu.i.\x,x*)

i2,\\Ti-)\\\\x\\ix*\\,

where p(-|x,x*) is the measure corresponding to x*T(-)x as a continuous

linear functional on doiT)) and ||T(-)| is the norm of the C(<r(T))-o.e.

forF.

Sufficiency. Let A be a compact interval containing oiT) in its interior.

For s > 0 and u£E, we have:

(1)

g-Wgirt = J_  f'elut[R(t -is;T) - R(t + is; T)]dt
2irl JR

¿■Kl Ja

where || Oí (s) || i Const s (the constant depends on A and T, but not on u)

and all the integrals are taken in the uniform operator topology. Applying



1965] CLASSIFICATION OF OPERATORS 219

Condition (*), we conclude that emTis uniformly bounded for u£R. There-

fore the integral

(2) j f(u)e^e'uTdu,       fELx(R),

exists in the uniform operator topology, and (by (1) and Fubini's theorem)

is equal to

(3) -^ ff(t) [R(t - is; T) - R(t + is; T)]dt + 02(s),
¿irl Ja

where ||02(s)|| á Const ||/||iS. Hence, for unit vectors x and x*,

è ^- J(s | x, x*). sup I f\ + || 02(s) ||.
¿IT A

\x* f f(u)e-s^emTdux

Since eiuT is uniformly bounded, the left-hand side converges to

t)eiuTduxx*jf(u)

whens—>0+ (by Lebesgue's Dominated Convergence Theorem). Condi-

tion (*) implies therefore that || J" f(u)emTdu\\ ^ M supA|/] (27rM is a uni-

form bound for J(s|x,x*) when s—>0); hence TE(C) by Theorem 4.1.

4.6. Remarks. If T is a real operator of class C, then T(f) = ff(t)e"Tdt

for /E LX(R) (cf. proof of Theorem 4.1). Thus:

T(f) = lim   f/(f)e-s|VTdf
s-0+ J

= lim —^ \ f(t) [R(t - ¿s; T) - R(t + is; T)]dt
S-.0+ ¿wl J

in the uniform operator topology. The last integral is over any (finite or

infinite) interval containing a(T) in its interior. Since LX(R) is dense in

C(A) for any compact interval A, Condition (*) implies that

(4) T(f) = lim -L ff(t) [R(t - is; T) - R(t + is; T))dt
s^o+ ¿irl J

for all /E C (remember that 2 = a(T)), the limit being now in the weak

operator topology. This is an explicit representation of the C-operational

calculus for T (for real TE(C)), which is well known for the special case

of hermitian operators in Hilbert space. Compare with Theorem 2 in [18].

The representation (4), as well as Theorem 4.5, are easily generalized to

the case re>0 (cf.  [18]).
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5. Limits and sums of real operators of finite class. Let Ta he a net of

operators converging strongly to the operator T. If each Ta is a real opera-

tor of finite class, then || exp(¿fTa) \\ = 0(\t\n") for some non-negative integer

re„. Suppose that there exists an integer re ̂  0 and a constant M > 0, both

not depending upon a, such that

||exp(¿fTa)|| =£M|í|n,       fER

Then, by the Uniform Boundedness Theorem, we have also \\eUT\\ ̂ M|f|",

and therefore T is of finite class (in fact, it is of class C1"2; cf. Lemma 2.11).

In particular, if Ta are all of the same class C", the condition

sup|f|-B|exp(»iT0)H < co
a

is sufficient for TE (Cn+2). This is quite unsatisfactory, because we cannot

conclude by this argument that T is in the same class C" as all the T„. A

more precise result may be obtained by applying Theorem 4.1.

5.1. Definition. Let TEB(X) and let A be a compact interval. The

reth variation of T over A is defined by

|>„(T;A) = sup Íf(t)eltldt

where the sup is taken over all / E L1>n for which | f\\ „ A = 1 (4).

In general, vAT;A) = œ. Theorem 4.1 states that u„(T;A) < » if and

only if T is a real operator of class C (in this case, o(T) ça).

Furthermore, since T(cf>) = ff(t)e"Tdt for <f> = / and fELXn, and since

Lln is dense in C(A), we have:

vAT; A) = sup(|| T(<b) || ; 0 E L~n, ¡0|n,A = 1)

= sup(|[T(0)||; <l>ECn(A), 1*1,^-1)

= ||T(.)||,

where T(-) is the C"(A)-operational calculus for TEC" (cf. Lemma 2.7)

and |T(.)|| is the norm of T(-) as a continuous linear map of C(A) into

B(X).

5.2. Theorem. T/Cf Ta be a net of operators converging strongly to the opera-

tor T. Suppose that, for some fixed integer re è 0 and compact interval A, the

nth variations of Ta over A are uniformly bounded. Then T (as well as all Ta)

is of class C with spectrum in A, and T(f) = \imTa(f) in the strong opera-

tor topology for all f E C".

( ) We set vAT; A) = œ if the integral does not converge in the uniform operator topology

for some /G LliB with ||/]|„.A = 1.
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Proof. By Theorem 4.1, TaEiCn) and aiTa) ÇA. It follows in particular

that

||exp(¿íTa)|| = ||Ta(e,te)|| i \\ Tai-)\\ |Ó|„,A

^ün(Ta;A)Z|í|J-
j=0

There exists therefore a constant K > 0 which does not depend on a such

that || exp(iiTa) || ^íí(|í|n+l). If/GFX(R) vanishes outside some finite

interval (— A,A) (so that, in particular, /GFln), then, by Lebesgue

Dominated Convergence Theorem for nets (cf. [5], p. 124),

/
fit)eu'dtx lim

/
fit)eUI°dtx iM\\x

where M = supau„(Ta; A) < ». Now if fELXn, there is a sequence /*

GFX(R) such that (i) each fk vanishes outside some finite interval, and

(ii) f\t\J\fit)-fkit)\dt^O when A^» iO i j in). By (ii), fk-*f in
C(A). Since \\eUT\\ ̂ F(|i|"+1), we have:

jfit)eUTdt- jfkit)eitTdt |U Fj (|í|"+l)|/(i) -fkit)\dt^0

ik—>œ). Therefore:

/•
fit)e"Tdt     = lim jhit)euTdt    ^MIÍhisupI/aIU

= M|/||„,A    for all fELx,n.

By Theorem 4.1, TE (C). The identity T(tf.) = limTo(0) is valid (in the

strong operator topology) for <j> E Lx¡n, and therefore for every <j> E C, since

Lx'n is dense in C(A) and 2 = oiT) ça (cf. [5, p. 55, Theorem 18]).

Theorem 5.2 generalizes Theorem 7 in [10] and Theorems 2.3 and 2.6

in[l].

5.3. Sums of operators of finite class. According to Corollary 2.15, sums

and products of commuting real operators of finite class are of finite class.

In general, this statement is no longer true if we replace "finite class" by

"class C" for some fixed n, not even for n = 0 and X reflexive (cf. [9] and

[14]). Consider the special case of a sum F+ S, where T commutes with S,

Tis real of class C and S is real of class C. By Corollary 2.12, T+ S is of

class C+2. In order to conclude that T + S is of class C, we need a certain

boundedness condition, which is automatically satisfied in Hilbert space

We state first an elementary result.

5.4. Lemma. Let E, (/= 1,---,N) be projections such that EjEk = 0 for
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for j jí k and 27£, = 7. Let T be a real operator of class Cn which commutes

with Ej(j=l,---,N). Finally, letL=T + Zui&NajEj, a, E R- Then L is of
class C", and its Cn-operational calculus is given by

(1) L(f)=ZT(fa)E]t       /EC",
i=i

where /a(f) = f(t + a), t,a E R.

Proof. Define L(f) by (1). The map f—>L(f) is a continuous linear

map of C" into B(X). We have L(l) =£T(l)£, = ££,= 7 and L(t)

= ZT(t + aJ)E] = Z(T + ajI)Ej=L. If f,g ECn,   then

Ufg) = Z T([fg]aj)Ej = Z Tifa) T(gaj)Ej

= Z Z Tifa) T(ga)EjEk = L(f)L(g).
i    *

We have used here the commutativity of T with E¡, which, in turn, implies

the commutativity of T(f) with E¡ for every fECn and j — 1,---,N (this

is obvious if / is a polynomial; since polynomials are dense in C"(A) for a

compact interval A, the result follows). Finally, L(-) has the compact sup-

port Uf.i (2 + a).

5.5. Theorem. Let T and S be commuting real operators. Suppose

(i) TEC".
(ii) S is spectral of scalar type.

(iii)   SUp||X1S;S,vT(/a;)P(a,)||  < oo,

where E(-) is the resolution of the identity for S, and the sup is taken over

all finite partitions [ax,---,aN] of a(S) into disjoint Borel sets, with arbi-

trary choice of ajE <¡¡, and over all /EC" with ||/||„,A =1 (A is some fixed

compact interval).

Then T + S is of class C", and its Cn-operational calculus is given by

(*) (T+S)(f) = JT(ft)dE(t),       fECn

(the integral exists in the strong operator topology).

Proof. Denote w = {o-j,a;-| j =!,■••,N], where a, are disjoint Borel

subsets of a(S), a(S) = U a¡ and a¡E <*,. Let

LT=T + ZajE(aj).
j=i

We have limLT = T + S in the usual sense. By Lemma 5.4, each LT is of

class C" and its C- operational calculus is given by
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L,(/) = Er(/aj)%).
¿-i

Condition (iii) means that the nth variations of FT over A are uniformly

bounded. Therefore, by Theorem 5.2, T + S is of class C; furthermore

limFT(/) exists in the strong operator topology, and gives us the C-opera-

tional calculus for T+S. On the other hand, limFx(/) is by definition

the "strong" integral fTift)dEit).

5.6. Corollary. Let T and S be commuting real operators in Hilbert space,

which are respectively of class C and of class C. Then T + S is of class C

and equation (*) in Theorem 5.5 gives its o.e.

Proof. By Lemma 4 in [3], there exists a constant M depending only on

S such that
N

ZTV,)FU,)
;=i

i M sup H T(/aj.) ||

for any collection a¡ (1 i j'• i N) of disjoint Borel sets. Let A be a compact

interval containing Ao + ct(S), where Ao is a compact interval containing

o-iT) in its interior. Let K be the norm of the C(Ao)-o.c. for T. Taking

o-jEoiS) and OjEo-j, we have:

«T(/aj)||^F|/aj|U,Ao=F||/|U,Ao+ajáF||/||n,A.

We conclude that condition (iii) in Theorem 5.5 is satisfied, and the corol-

lary follows.

Theorem 5.5 generalizes Theorem 7 in [6] about sums of commuting

spectral operators (for the case of real spectrum). The uniform boundedness

of the Boolean algebra of projections generated by the resolutions of the

identity Ex and F2 of T and S respectively (T and S scalar) implies condi-

tion (iii) in Theorem 5.5.
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