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1. Introduction. The ordinary, self-adjoint differential equation

(A) [r(x)yln)](n) + p(x)y = 0

is considered for r(x) and p(x) continuous and r(x) > 0, p(x) ^ 0 on [a, œ).

For re = 1, this equation has been the subject of many investigations over

a number of years. For re = 2, J. H. Barrett [l]-[3] and W. Leighton and

Z. Nehari [7] have recently considered equations of this type. For arbitrary

re, similar equations have been investigated by W. T. Reid [8], by H.

Kaufman [6], by H. M. and R. L. Sternberg [6], [9], and by the author [5].

In the present paper, a general boundary problem is considered for a solu-

tion y (x) of (A); namely,

y(a) = y'(a) = • • • = y^'^a) = yx(a) = --.= y[^'-l)(a) = 0,

(B)
y(b)=y'(b) = ---=y{'-1)(b) = 0

for 1 ^ i ^ re, b > a, and yi(x) = r(x)y{n)(x). If y(x) satisfies the first of these

conditions, then y(x) is said to be a solution of (A) with a zero of order

2re — i at x = a, i.e., after the (re — l)st derivative of y(x), derivatives of

yi(x) are used. For i = re, this is similar to boundary problems considered

m [l]-[9] • In general, however, the techniques utilized in these latter investi-

gations are dependent on the fact that i = re. In §2, a basic property of zeros

of solutions of (A) is established. In §§3 and 4, separation and oscillation

properties of solutions of (A) are established for p(x) > 0 on [a, oo).

2. A basic property of zeros of solutions of (A). Consider the equations

(1) [r(x)yw]w + p(x)y = 0,

(2) [r(x)y(T> - p(x)y = 0,

both of which have r(x) and p(x) continuous and positive on [a, œ). An
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important general property of zeros of solutions of (1) and (2) is then con-

tained in the following theorem.

Theorem 1. If i is an even [odd] positive integer and y(x) is a nontrivial

solution of (1) [(2)] with a zero of order ^2re — i at x = a, then y(x) cannot

have a zero of order ¡z i on (a, <»), i.e., there does not exist a nontrivial solution

satisfying the conditions (B).

Proof. Suppose that, for i ^ n,y(x) has a zero of order 2re — i at x = a

and has a zero of order i at x = b on (a, <») and that y(x) has m zeros on

(a, b), m^O. Let cE ia,b] be the first zero of y(x) on (a, 6]. It shall then

first be established that yi"_1)(x) must have a zero on ia,c], regardless of

whether i is even or odd.

Note that yia) = y'ia) = ... = yi(o) = yiia) = ... = y<"—«(a) = 0

(where, if i = re, y[~l)ia) is interpreted as y(n_1,(a)) and y(6) = y'ib) = •••

= y(l_1)(6) =0. Then successive application of Rolle's Theorem to y(x),

y'ix), •••,yli,(x) gives that y(,)(x) has at least m + i zeros on (a,6), a zero

of order 2(re — ¿) at x2 a, and does not vanish at x = b. Continuation of

the process shows that yi(x) has at least m + i zeros on (a,b), a zero of

order re — i at x = a, and does not vanish at x = b. Then finally, yi"_1)(x)

must have at least m + 1 zeros on (a, b). Suppose that yí"_1)(x) #0on (a, c].

Then yi"_1,(x) has at least m + 1 zeros on (c,6) and hence yin,(x) has at

least m zeros on (c, 6). But yin)(x) = ±p(x)y(x) and thus y(x) would have

m zeros on (c, 6), a contradiction. (If m = 0, the last three statements are

not necessary.) Note that yi"_1)(x) has exactly m + 1 zeros on (a, 6).

Now let x = x0 be the first zero of yî"_1,(x) on ia,c] and assume, with no

loss of generality, that y(x) > 0 on ia,c). Then yi'^ia) ^ 0 regardless of

whether i is even or odd. From (1)

yl^^xo) - yi"-» = - y(r1}ia) - - f °p(x)y dx < 0,

andyi"-1>(a) > 0. Similarly, using (2), yf-*(W < 0. If I = 1, the last state-

ment is a contradiction and the special case of the theorem for i = 1 and

equation (2) is established.

Suppose i > 1 and note that yi""2)(x) must have a zero on (a, x0) since

the rei + 1 zeros of yin_1,(x) fall between the extreme zeros of yí"~2,(x) on

ia,b). This comes from the first part of the proof. Also, yi"~2)(x) has exactly

m + 2 zeros on (a, b). Similarly, yi"~3)(x) must have a zero before the first

zero of yS""2)(x) on (a, x0); and yi""3)(x) has exactly m + 3 zeros on (a, 6).

This same type of reasoning can then be followed to establish that yi"_l)(x)

must have a zero on (a, x0) before the first zero on (a, x0) of yS""'+1)(x) and
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y(n_,,(x) has exactly m-\-i zeros on (a,b). If i = 1, of course, this entire

procedure consists only of the statement that yln_1)(x) vanishes at x0 on (a,c\.

Then, using (1), yí"~2,(x) must begin at x = a with positive slope and have

a zero before its derivative has a zero. This is possible only if yi"~2)(a) < 0.

Then yS"~3,(x) must begin at x = a with negative slope and have a zero

before its derivative does so, implying that yi""3>(a) > 0. Successive appli-

cations of this argument yield the fact that y[n~''(a) < 0 if i is an even

integer. This is a contradiction since y(x~l)(a) > 0. Hence, the portion of

the theorem regarding (1) and even values of i is established. In an analo-

gous way, using (2), yixn~i>(a) < 0 if ¿ is odd; and a contradiction results.

The theorem is now proved for i g re. For i > re, it suffices to note that

the change of variable x = a — t-\-b leaves (1) and (2) unchanged while

transforming x = a into t = b and x = b into t = a. Thus, a solution y(x)

with a zero of order 2re — i at x = a and order i at x = b is transformed

into a solution with a zero of order i at t = a and order 2re — i at t = b.

Then the case i > re can be taken care of by the above proof. This completes

the proof of the theorem.

Included in Theorem 1 is a generalization of Lemma 8.2 in [7, p. 358],

which states that no nontrivial solution of (1) for re = 2 has more than one

double zero (i.e., a zero of order two). Theorem 1 includes the fact that

no nontrivial solution of (1) has more than one nth-order zero. In fact,

using the following definition, the following corollary holds.

Definition. The number yx(a) is the smallest number b on (a, œ) such

that the boundary conditions

y(a) = y'(a) = ■ ■ ■ = y<»-»(a) = 0 = y(b) = y'(b) = •. • = y»-l>(b)

are satisfied nontrivially by a solution y(x) of (1) or (2). This is the type

of boundary problem considered in [l], [3], [5], [7], [8], [9].

Corollary 1. If re is even [odd], then r¡x(a) does not exist for (1)  [(2)].

3. Separation properties of solutions of (1). First of all, Theorem 1 can

be utilized to give the following generalization of Lemma 9.1 in [7, p. 361].

Theorem 2. // y(x) and z(x) are linearly independent solutions of (1)

which have zeros of order ^ 2re — 2 at x = a, then the zeros of y(x) and z(x)

separate each other on (a, œ ).

Proof. If y(x) has consecutive zeros between which z(x) has no zero, a

basic result contained in [7, Lemma 1.2, p. 327] gives the existence of a

constant k such that y(x) — kz(x) has a double zero in the interval between

the zeros of y(x) under consideration. But y(x) — kz(x) is a solution of (1)

with a zero of order 2re — 2 at x = a and cannot have a zero of order two
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on (a, oo ) by Theorem 1. Also, y(x) and z(x) cannot have a zero in common

for then a constant k could be chosen so that y(x) — kzix) has a double zero

at the common zero, a contradiction. Therefore, the zeros of y(x) and

z(x) must separate each other on (a, œ).

Let |u¿(x)} (i = 1,2,3, •••,») be a set of solutions of (1) which satisfy

the boundary conditions

[u¿(x)]l;_1) = 0    for x = a    and i,j = 1,2, • • -,re,

(4) ["¿,i(x)]0_1) = ôij   for x = a   and i,j = 1,2, • • -,re

and u¿>1(x) = r(x)u,(n)(x).

Also, let {Uiix) }  (i = 1,2, ...,re)  be a set of solutions of (1) satisfying

the conditions

S„   for x = a    and i,j = 1,2, • •-,«,

0   for x = a   and ¿J' = 1,2, •••,n

and t/u(x) = r(x)Lrin,(x).

Theorem 3. Consider the sets ju,(x)j and j {/¿(x)} (i = 1,2, ••-,«-) o/

solutions of (1) satisfying the conditions of (4) ared (5), respectively. Then tht

zeros of u„(x) ared írée zeros of any member of the set { [/¿(x)} (i = 1,2, • • •, re).

or of ju,(x)( (i = 1,2, • •-,re — 1),  separate each other on   (a, œ).

Proof. The proof uses similar techniques to that of Theorem 1. Consider

first, the set { f/,(x)} (i = 1,2, • • -,n), and let l/,(x) be one of the member:

of the set and y¿(x) any linear combination of £/¿(x) and u„(x). If it car

be established that y¿(x) cannot have a double zero on (a, » ), it will follov

as in the proof of Theorem 2 that the zeros of u„(x) and í/¡(x) must separat'

each other. Thus, suppose that y,(x) does have a double zero on (a, °°) a

x = 6 and that y,(x) has m zeros on (a,b), m è 0. Also, let x = c on (a,t

be the first of these zeros to the right of x = a. It will first be establishei

that, under these assumptions, y!"_1>(x) must have a zero on (a,c]. Reca

y¡,iix) = rix)y\n\x).

Successive applications of Rolle's Theorem to yi(x),y,'(je), • ••,yj,-u(a

show that yj"(x) must have at least m + 1 zeros on (a, 6). Then, similarb

yti-1)(x) must have at least m + 1 zeros on (a, 6). Suppose yl.V'Hx) dot

not have a zero on (a,c]. Then it has m + 1 zeros on (c, 6) and hence y\nxii

ory,(x), has m zeros on (c, b), a contradiction. Note that if m = 0 and hem

b = c, the latter part of the argument is unnecessary. In any case, it follov

that y\nx~1>(x) has a zero on (a,c]. Note that yu_1,(x) has exactly m +

zeros on (a, b). Note, also, from the above argument that y\"(x) must ha'

[Ui(x)}^ =

(5) [t/uW]0"1^
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exactly m + 1 zeros on (a, b) and that these zeros lie between the first and

last zeros of y}'_1,(x) on (a, b).

Now, let x = x0 be the first zero of yt\~1)(x) on (a,c\ and assume, with

no loss of generality, that y(x) > 0 on (a,c). This implies that yl'_1)(a) > 0.

Then

ylr^o) - y£r»(a) = - y^Aa) - - fa°P(x)y dx < 0,

and y\"x~l)(a) > 0. Thus yff2)(x) must be zero and have positive slope at

x = a which implies that y\nx~2)(x) > 0 in a right neighborhood of x = a.

Next, y/"~3)(*) must be zero and have zero slope at x = a, with positive

slope in a right neighborhood of x = a, so that yi"f 3)(*) > 0 in a right

neighborhood of x = a. This same property must hold for the succeeding

functions yi"x~4)(x), ■■-,yf>(x). Then yl'_1)(x) must begin at x = a with posi-

tive slope and have positive slope in a right neighborhood of x = a. Further-

more, by the comment following the first part of the proof, y(i_1)(x) must

have a zero before its derivative yM(x) has a zero on (a, b). These properties

are possible only if y(1_1)(a) < 0, a contradiction. Thus, the zeros of u„(x)

and those of any member of the set {t/,(x)} (i = 1,2, • • •, re), separate each

other.

The proof of the latter part of the theorem follows the same lines as

that above. Using the same notation, the proof that y¡"x~1)(x) must have

a zero on (a, c] is obtained as before by successive applications of Rolle's

Theorem. Hence, in this case, yi'{(x) has at least m + l zeros on (a, b);

and, furthermore, yi""1^*) has at least m + l zeros on (a,b). If y¿"_1)(x)

did not have a zero on (a,c], a contradiction would result as before. Also,

y}'i(x) must have exactly m + l zeros on (a, b) and these lie between the

first and last zeros of yf+1)(x) on (a, b).

Finally, as before, it follows that upon assuming y(x) > 0 on (a,c), and

hence that y¡l,x~1>(a) > 0, y\'r1)(x) must have slope zero at x = a and positive

slope in a right neighborhood of x = a. Furthermore, yil¡x1>(x) has a zero

before its derivative has a zero. This gives yi,x~l)(a) < 0, a contradiction.

This completes the proof of the theorem.

4. Conditions for oscillation of solutions of (1). The main result of this

section is contained in the following theorem.

Theorem 4. Suppose that

/   (*InÇ)p(x)dx=~

and
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iwhere XI" denotes the nth iterated integral). Then there exists a set of 2re

linearly independent, oscillatory solutions ^infinitely many zeros on [a, &>))

of (1) with one oscillatory solution whose zeros separate the zeros of each of the

other oscillatory solutions (re > 1).

Proof. Assume that the theorem is false, and consider the solution y(x)

= unix) with a zero of order 2re — 1 at x = a. Let x = b be the last zero of

y(x) on [a, œ), and let m be the number of zeros of y(x) on (a, œ), m ^ 0.

All zeros of y(x) on (a, œ) must be simple by Theorem 1. Assume, with no

loss of generality, that y(x) > 0 on (6, œ). Then if m is even, y(x) > 0 be-

tween x = a and the first zero of y(x) ; if m is odd, y(x) < 0 between x = a

and the first zero of y(x).

By repeated application of Rolle's Theorem, it follows that in each interval

between consecutive zeros of y(x) there exists exactly one simple zero (in

order, right to left) of each of the functions y'(x),y"(x), • ..,yi(x),yi(x),

• ••,y[n~1)(x); and none of these functions have zeros coinciding with those

of y(x). If one of these functions had more than one zero on such an interval

or a zero coinciding with one of y(x), further application of Rolle's Theorem

would show that yin,(x) = — p(x)y(x) had a zero on that interval, an im-

possibility. Furthermore, y'(x),y"(x), • • -,yi(x),yi(x), •• -,y¥~l)ix) are all

positive for x = 6 (unless b = a in which case the functions are all positive

in a right neighborhood of x = b — a) since they are all positive in a right

neighborhood of x = a for m even and all negative in a right neighborhood

of x = a for m odd and all vanish m times on (a, b).

It will now be shown that y'(x),y"(x), • • -,yi(x), • •■,y'x~2)ix) do not have

any zeros at all on (6, œ ) and hence are all positive on (6, œ ). Assume that

y'(x) has a zero at x = c on ib, œ ). Then, by repeated use of Rolle's Theorem,

y"ix),y'"ix), •■■,yxix), •••,yi""1)(x) all have zeros on (6,c) and are thus all

negative on (c, œ ), as is y' (x), since another zero of any of these functions

on (c, co) would lead to another zero of y(x) on (6, œ). But y(x) cannot

remain positive on (c, co) if y'(x)' and y"(x) are negative on that interval

and hence a contradiction results. By the same reasoning, it follows that

y"(x), y'"(x), •••,y<" "(x) cannot have zeros on (b, co).

Next, suppose that yi(x) has a zero at x = c on (b, <*>). Then y'x(x),yx(x),

•••,y'i~l)(x) must all have zeros on (6,c) and remain negative on (c, œ)

and yi(x) is negative on (c, œ). Now

y("-«(x) = y^ic) + JVw dt

= y^1>iO+(Xy-^rdt.
Je   rit)

Since y(x) is an increasing function on (c, <*>) and yi"_1,(c) < 0, it follows

that
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yir1)(x)=yri](c)-JcXp(t)y(t)dt

p(t)y(t)dt< -y(c)Jc p(t)dt.

Further  integrations   and   the   conditions   on   yi(x),yi(x), • • .,y[""2,(x) at

x = c thus yield

yAx)<-y(c)ïInp,

where cVp is the nth iterated integral of p(x).

Then

y<»-»(x) = y^-'^c) +       ^f dtÇ'yA
Je   r(i

< y"-D(c) _ y(c)      ^-^dt
Jc    r(

tTnp)

(W
and, using the hypothesis, y(n 1](x) —» — œ as x—> œ. Then y(" u(x) must

have a zero on (c, °=), a contradiction. By the same argument as used for

y'(x),y"(x), ■ ■ .,y(B_1)(*), it now follows that yi(x),yf(x), •. -,ylr2)(x) cannot

have zeros on (6, co ).

Now yin)(x) = — p(x)y(x) so that yi"'(x) is negative on (b, oo) and hence

yin_1)(x) is a decreasing function on (b, oo) and can have at most one zero

on (b, oo). Assume that yx'^1Ax) has no zeros on (b, oo). Note that yx(x)

è x"~2 on (xx, oo) for some xx ^ 6 since yi,yí, • • ■,yi,-1) are all positive func-

tions on (b, oo). Furthermore,

Then, because of the conditions ony(x),y'(x), • • -,y{n~2>(x) at x = xx, re — 1

integrations give

y(x)>^¿.

From these results,

f  yin,(x)dx= lim yry(x) -yf-^xj

=  - J   P(x)y(x)dxi  -J       (V^y2)   p(x)dx=  -  oo,

and hence yx'~1>(x) does have a zero for some value x = c on (xx, œ). But

then yi""2,(x) is positive on (c, oo) while y[n~lAx) and yi"'(x) are negative

on (c, oo), an impossibility. Thus, y(x) = u„(x)- cannot have a "last" zero

on (a, oo ) and must be oscillatory. From Theorem 3, the zeros of u„(x)

separate those of any member of the sets j UAx) ] (i = 1,2, • • -,re), and
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{Ui(x)} (i = 1,2, ■■-,n — 1); and thus each of these solutions of (1) must

oscillate. This completes the proof of the theorem.

Corollary 2. If f°x2n ~2p(x) dx = œ and y°° (x"_1/r(x))dx = oo,then

there exists a set of 2re linearly independent solutions of (1) as in Theorem 4.

Proof. faixInif2/rit)))pix)dx= œ implies /eox2"-2p(x) dx = co and

fixrp/rit)) dx = œ implies that /" (*B-1/r(*)) dx = co. The result of the

corollary then follows.

For re = 2, the following corollary generalizes Theorem 11.4 of [7] which

Leighton and Nehari have for the case r(x) = 1.

Corollary 3. ///" (x72r)p(x) dx = co and f° HxPp)/rix)) dx = œ, then

(1) if or re = 2) is oscillatory.

Proof. By Corollary 9.10 of [7], the solutions of (1) for re = 2 are either

all oscillatory or all nonoscillatory. Application of Theorem 4 then proves

the desired result.

Corollary 4. If f" ixI"itn~2/rit)))pix) dx = » and f"{xPp)/r(x)dx

= œ, then any solution of il) with a zero of order 2re — 2 at x = a is oscillatory.

Proof. Theorem 2 and Theorem 4 combine to give this result.
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