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1. Introduction. We shall study the relations between an infinite family

of finite graphs and the eigenvalues of the corresponding adjacency matri-

ces. All graphs we consider are undirected, finite, with at most one edge

joining a pair of vertices, and with no edge joining a vertex to itself. Also,

they are all connected and regular (every vertex has the same valence). If

G is a graph, its adjacency matrix A = A(G) is given by

1 if i and j are adjacent vertices,

0 otherwise.

The line graph L(G) (also called the interchange graph, and the adjoint

graph) of a graph G is the graph whose vertices are the edges of G. With

two vertices of L(G) adjacent if and only if the corresponding edges of G

are adjacent.

There have been several investigations in recent years of the extent to

which a regular connected graph is characterized by the eigenvalues of its

adjacency matrix, especially in the case of line graphs (see [4] for a bibli-

ography, and [2]). Most germane to the present investigation is the

result of [4], which we now briefly describe.

Let n be a finite projective plane with re + 1 points on a line. We re-

gard n as a bipartite graph with 2(re2 + re -f- 1) vertices, which are all

points and lines of n, with two vertices adjacent if and only if one is a

point, the other is a line, and the point is on the line. Let L(n) be the line

graph of n. A useful way of visualizing L(n) is to imagine its vertices as

the l's in the incidence matrix of n (see [4]), with two l's corresponding

to adjacent vertices if and only if they are in the same row or column of

the incidence matrix. Then L(n) is a regular connected graph with (re + 1)

• (re2 + re + 1) vertices whose adjacency matrix has

(1.1) 2re, - 2, re - 1 ± y/n

as its distinct eigenvalues. It is shown in (4] that any regular connected

graph on (re + 1) (re2 + re + 1) vertices whose distinct eigenvalues are

given by (1.1) must be isomorphic to the line graph of a plane n with

re + 1 points on a line. (It is, of course, impossible for (1.1) to distinguish
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between nonisomorphic planes of the same order n.)

In this paper we generalize this result to symmetric balanced incom-

plete block designs (also called X-planes). An SBIBn(i/, k,X) can be con-

ceived as a bipartite graph on v + v vertices, each vertex having valence

k, with any two vertices in the same part adjacent to exactly X vertices

of the other part. It is assumed that 0 < X < k < v, and it is well known

that

(1.2)
v — 1

Just as in [4], one readily shows (see §4) that L(n) is a regular connected

graph on vk vertices, and its adjacency matrix has

(1.3) 2k - 2, - 2, k - 2± V(k - X)

as its distinct eigenvalues. We then raise the question: if if is a regular

connected graph on vk vertices, with (1.3) as the distinct eigenvalues of

its adjacency matrix, is H isomorphic to some L(n(v, k, X))?

The answer is yes, unless v = 4, k = 3, X = 2, in which case there is

exactly one exception.

2. Outline of proof. A (three-fingered) claw is a graph consisting of four

vertices 0,1,2,3 such that 0 is adjacent to 1,2,3 but i is not adjacent to

(i,j = 1,2,3). We shall denote such a claw by the notation (0; 1,2,3).

It is clear that a line graph contains no claw, and, conversely, if we can

show under suitable hypotheses that H contains no claw, then the re-

mainder of the proof that ifsL(n) will be quite straightforward. Our

central problem then is to prove H contains no claw.

Let A = A(H), and consider the matrix

(2.1) B — A2 — (2k — 2)1 — (k — 2) A.

We shall show below in §4 that, for each i,

(2.2) 2>i;(6,;-l) = 2(X-l)(fc-l).

Consider also

(2.3) C = A2 - (2k - 2)1 - (k - 2)A - (J - I - A),

where J is a matrix of all l's.

We shall show in §4 that, for each i,

(2.4) 2>*(c„--l) = 2(0-*)(*-A).
J

After further preliminaries, we consider the case when we assume that

H is edge regular (i.e., every edge is contained in the same number of

triangles). With this additional hypothesis, the nonexistence of claws is
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readily established, the only case requiring any effort being k = 4. Next,

we consider the case when H is not edge regular. Then claws must exist

satisfying certain properties. But we show that, apart from the exception

cited in the introduction, these claws would produce violations of (2.2)

or (2.4). These violations are the result of a counting process, and the

counting is facilitated by showing that certain graphs cannot be sub-

graphs of H. (The discussion of the edge regular case also uses the non-

existence of some subgraphs.) A list of the "impossible" subgraphs is

given in §3, and we now explain the principles used in proving these sub-

graphs impossible. They are based on elementary facts about eigenvalues

and eigenvectors of symmetric matrices.

The first principle is: if K is a subgraph of H, if M = M{K) is the ad-

jacency matrix of K, if — 2 is an eigenvalue of M, and x the corresponding

eigenvector, then the sum of the coordinates of x must be zero.

The reason is as follows. Let y be the row vector with vk components

obtained by adjoining to the vector x additional coordinates all zero. It

easily follows that yAyT = — 2yyT. Since — 2 is the minimum eigenvalue

of A, y is an eigenvector of A corresponding to the eigenvalue — 2. Now

2k — 2isalsoan eigenvalue of A, corresponding to the eigenvector (1,1, •••,!•)

(see [3] for a brief justification). In a symmetric matrix, two eigenvectors

corresponding to different eigenvalues must be orthogonal. Hence, y must

be orthogonal to (1,1, • - •, 1), i.e., the sum of the coordinates of x is 0.

Thus, the graph

cannot be a subgraph of H, since (— 2,1,1,1,1) is an eigenvector of (2.5),

with — 2 the corresponding eigenvalue.

Our second principle is that, if the sum of the coordinates of x is 0,

then, if a is any vertex of H not in K, the sum of the coordinates of x

corresponding to vertices of K adjacent to a must be 0. The proof is a

direct application of the minimum characterization of the least eigenvalue.

♦

whose corresponding adjacency matrix is

(2.5)

0 1 1 1 1\
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0
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This principle makes the following graph impossible:

a
■ •

d • '

where the dotted line indicates that there may or may not be an edge

of H. For the graph K whose vertices are b,c,d,e has (1, — 1,1, — 1) as

eigenvector of the corresponding adjacency matrix.

3. Impossible subgraphs. We first list some subgraphs impossible because

of the first principle. Accompanying each vertex will be a latin letter (for

later reference) and a number giving the coordinate of the corresponding

eigenvector.
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We now list some subgraphs impossible because of the second principle.

The "other" vertex is denoted by the letter a. A dotted line signifies

that the edge may be present or absent.
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4. Some preliminaries on matrices. We begin with two lemmas.

Lemma 4.1. Ler G be a regular connected graph on 2v vertices, A

The distinct eigenvalues of A are given by
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(4.1) k, -k,y/{k-\), -y/(k-X)

if and only if G is n(v,k,\).

Proof. Assume G^U(v, k, X). Then A may be written as

(4.2) *«»-(2'o)'
where £ is a matrix of order v, and

(4.3) BBT = BTB = (k-X)I + \J.

It is well known [ 3 ] that this form means that the eigenvalues of A are

the numbers whose squares are the eigenvalues of BBT. But from (4.3),

the eigenvalues of BBT are k2 and k — X. Also since the multiplicity of

the eigenvalue k of the matrix A which is the adjacency matrix of a regular

connected graph is 1 [3], A2 is a simple root of BBT.

Conversely, if the distinct eigenvalues of A = A(G) are given by (4.1),

then G is bipartite [3], hence of the form (4.2). It follows that BBT is a

matrix of order v, whose distinct eigenvalues are k2 and k — X. Further,

because G is regular, every row and column sum of B, hence every row

and column sum of BBT is the same. Therefore, if we set u = (1, • ••,!.),

u is an eigenvector of BBT, corresponding to the dominant eigenvalue of

BBT, so we must have BBTu = k2u. Further, J commutes with BBT.

Hence the eigenvalues of BBT — ((k — X) I + XJ) are all 0. Therefore,

since BBT is symmetric BBT = (k — X)I + \J, which was to be proven.

Lemma 4.2. Let H = L{n(v,k,X)). Then the distinct eigenvalues of A(H)

are given by

(4.4) 2k - 2, - 2, k - 2 + y/(k - X), k - 2 - y/(k - X).

Conversely, let H be a graph with vk vertices, and known to be the line graph

of a regular connected graph with 2v vertices. If the distinct eigenvalues of

A(H) are given by (4.4), then Ho* L(n(v,k,X)).

Proof. Assume H= L(n(v,k,X)). Let K be the matrix with 2v rows (the

first v rows corresponding to one part of U.(v, k, X), the remaining rows

corresponding to the other part of n(v,k,X), and vk columns corresponding

to the edges of U(v, k, X). An entry in K is 1 if the corresponding vertex

and edge are incident, 0 otherwise. Then

(4.5) KKT = kl + A(G),

where A{G) is as in (4.2).

(4.6) KTK = 2I + A(H).

The nonzero eigenvalues of KKT and KTK are the same. Further, 0 is

an eigenvalue of KrK, since K has more columns than rows, and 0 is an
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eigenvalue of KKT since the sum of the first v rows of K minus the sum

of the last v rows is 0. Hence KKT and KTK have exactly the same set of

distinct eigenvalues. From (4.5), (4.6) and (4.1), we infer (4.4).

Conversely, if H is the line graph with vk vertices, if H = L(G), where

G has 2v vertices, and if the distinct eigenvalues A(H) are given by (4.4),

then the above discussion is completely reversible unless the rows of K

are not linearly dependent, (i.e., G is not bipartite). This would mean that

A(G) has for its distinct eigenvalues k, \/ (k — X) and —\/(k — \). Then

the polynomial of G (see [3]) would be

hx2- (A-A)),
A

so

(A(G))2 — (k — \)I = ^ J.

In other words, the diagonal element of (A(G))2 would be k — X -f X/2.

But since G is regular and k is the dominant eigenvalue of A(G), every

row sum of A(G) must be k. Therefore, every diagonal element of (A(G))2

must be k. This is a contradiction.

Henceforth, we assume H is a regular connected graph with vk vertices,

and A(H) has (4.4) as its distinct eigenvalues. We also write A = A(H).

Lemma 4.3. The matrix A satisfies the equation

(4.7)(A + 2/)(A - (k-2 + V(k-\))I)(A - (k - 2 - V(k - \))D = 2XJ.

Proof. See [3].

Lemma 4.4. If B is defined by (2.1), then (2.2) holds. If C is defined by
(2.3), then (2.4) holds.

Proof. It is clear that (2.2) and (2.4) can be established if we can cal-

culate the diagonal element of any power of A, and of any power of A

multiplied by J. Since the row sums of A are all (2k — 2), it follows that

A'J = (2k — 2)'J. Also, we know the diagonal entries of I, A, and A2.

Since the left side of (4.7) is a third degree polynomial in A, we can cal-

culate the diagonal entires of A3. Multiplying (4.7) by A, we can then

calculate the diagonal elements of A4.

5. Some preliminaries on claws. In this section, we assume a claw 0,1,2,3,

in the form
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The subgraph of H determined by the vertices xu---,xn will be written

as H(xu ■ ■ -,xn). We define

Si = {x\ x is adjacent to 0 and i, but not to j or k}.

Sij= \x\x is adjacent to 0, i and j, but not to k}.

Note that no vertex is adjacent to 0,1,2,3. If a vertex (say 4) is ad-

jacent to 0,1,2,3, then H(0,1,2,3,4) = G^a.c.d.e.b). (The equality

H(0,1,2,3,4) = Gx(a,c,d,e,b) means that the graph Gx is the same as the

graph H(0,1,2,3,4) and the vertices (0,1,2,3,4) are respectively identified

with the vertices (a,c,d,e,b).) Also, every vertex other than 1,2,3 ad-

jacent to 0 must be in some S, or some S,j. Otherwise, we would have

graph G2. Thus, using |S| to denote the number of elements in S, we have.

(5.1) Z\Si\ +Z\S,j\ =2*-5,

since the valence of 0 is 2k — 2.

We also define

S,= {x\x is adjacent to i, but not to 0}.

Note that x £ S, implies x is not adjacent to either j or k, for if x is ad-

jacent to both i and j, then

H(0, x, i,j, k) = #i(a, d, b, c, a).

We define a clique to be a graph of which each pair of vertices is adjacent.

Lemma 5.1. // S, ^ 0> and j ^ i, then Sj is a clique.

Proof. Assume otherwise. Then there are two vertices, say 4 and 5, in

Sj, which are not adjacent. Let 6 be any vertex in S,. Since {0;6,j,k\ is

a claw, by a previous remark, neither 4 nor 5 is adjacent to 6. It follows

that #{0,       4,5,6} = H2{a,b,c,f,d,e,a j.

Lemma 5.2. // Sy ̂  0, and k ^ i,j, then Sk = 0.

Proof. To fix ideas assume k — 3, and let 4 £ S3, 5 £ S12. Since there

are at least three vertices (namely 1,3,4) adjacent to 0 but not to 2, there

must be at least 3 vertices 6, 7, and 8 in S2. They form a clique, by Lemma

5.1. Either 5 is adjacent to at least two vertices in S2 (say 6 and 7), or 5

is not adjacent to at least two vertices in S2 (say 6' and 7'). In the former

case, the graph H(0,1,2,3,4,5,6,7) = G3(a,d,e, b, c,f,g, h). In the latter

case, the graph H(0,1,2,3,4,5,6',7') = Gt(a,d,e,b,c,f,g,h).

Lemma 5.3. |S„| ^ 10.

Proof. To fix ideas, assume i= 1, ;*= 2, and let 4£S2. Now let x,y,

£ Si2, and assume 4 is adjacent to neither x nor y. Then x must be ad-

jacent to y, otherwise H(l,2,x,y,4) = //[(a.d, 6,c,a).   Next, assume 4
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is adjacent to both x and y. Then x must be adjacent to y, otherwise

H(l,2IilyI4) = H3(fl,i,c1(J,fl). To summarize, the subset Si* of con-

sisting of vertices each of which is not adjacent to 4 must be a clique; the

subset S12 consisting of vertices each of which is adjacent to 4 is also a

clique. If |S12| > 10, then, since S,2 = SfiUSfi* either |S£ | ^ 6 or |S?2*|

^ 6.
In the former case H(4,1,2,5,6,7,8,9,10) = G5(a,b,c,d,e,f,g,h,i) where

5,6,7,8,9, and 10 are 6 vertices of S*2. In the latter case

#(4,1,2,5,6,7,8,9,10) = G6(a,btc,d,e,f,g,h,i)

where 5,6,7,8,9 and 10 are 6 vertices of S*2*.

6. The nonexistence of claws in the edge regular case. The graph is called

edge regular if every edge is contained in the same number of triangles.

Since H is edge regular, and each diagonal entry of A3 is 2(k — l)(k — 2)

(from 4.7), it follows that every edge of H is contained in exactly k — 2

triangles. Assume a claw as in §4.

Lemma 6.1. For each i, S; contains two nonadjacent vertices.

Proof. To fix ideas, take i = 3. Since the valence of 3 is 2k — 2, S3 must

contain k — 1 vertices. We assume they form a clique, and will establish

a contradiction. Because S3 is a clique, each edge joining 3 to a vertex in

S3 is contained in k — 2 triangles where the third vertex is in S3. Con-

sequently, by the edge regularity, 0,3, and all vertices adjacent to 0 and

3 form a clique. In turn, this implies that all vertices adjacent to 0 but

not to 3 form a clique. But 1 and 2 are adjacent to 0 and not to 3, yet 1

and 2 are not adjacent to each other.

Lemma 6.2. // k j£ 4, then H contains no claw.

Proof. By Lemma 6.1, each S, contains two vertices not adjacent to

each other. By Lemma 5.1, this means each S, is empty. Using the edge

regularity condition on the edges (0,1) (0,2) and (0,3), and adding, we

have

2 T.\s>j\ = 3(* - 2) = 3k - 6.

By (5.1),

2 231 Sol =4* - 10.
Therefore, k = 4.

Lemma 6.3. If k = 4, then H contains no claw.

Proof. Assume k = 4, and we have the claw 0,1,2,3. By edge regu-
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larity, 15,21=15,31=15231 = 1, and let {4} = S,2, {5} = S13, {6} = S;
We then have

The valence of each vertex of # is 2k — 2 + 6. There must be a vertex

(say 7) adjacent to both 1 and 4, since k — 2 = 2, and 7 cannot be ad-

jacent to 0. If 7 is adjacent to any vertex in {2,3,5,6}, it must be ad-

jacent to at least one other, otherwise #(1, 2,3,4,5,6,7) would be #4 or #5.

Suppose 7 is adjacent to 5. Then, in order to avoid both #4 and #6, 7

must be adjacent to 2 or 3. Without loss of generality, we can take 7

adjacent to 2 and 5. #{0,2,5,7,1} is H3(a,c,d,b,a). Hence 7 cannot be

adjacent to 5. In a like manner we can show that 7 is not adjacent to 2.

Suppose 7 is adjacent to neither 2 nor 5, but is adjacent to 6. Then

#{4,6,0,7,2} = H3(a,b,d,c,a). Hence 7 is not adjacent to 6. Similarly

7 cannot be adjacent to 3.

Therefore, 7 is not adjacent to 2,3,5, or 6. In like manner we can find

distinct vertices 8,9,10,11,12 all distinct, with 8 adjacent to 2 and 4,9

adjacent to 2 and 6,10 adjacent to 6 and 3,11 adjacent to 3 and 5,12 ad-

jacent to 5 and 1. Referring back to (2.1) and (2.2), we have

12

£ M&q,- - 1) = 6 X 2 • 1 = 12 ̂  2(X - 1) • 3.

Therefore, A-1^2orX^3. Since k = 4, this means X = 3. v - 5, vk - 20.

Now we shall use (2.3) and (2.4). If a vertex /' is not connected to 0 by a

path of length 2, then coj = — 1. This means that the number of vertices

at distance greater than two from 0 must be at most one.

Now each of {l,---,6} has valence 6, and we have already identified,

for each, 5 adjacent vertices. Therefore, there are at most 6 more vertices

at distance two from 0. If there were exactly 6 such vertices, we would

have identified 18 vertices at distance one or two from 0, and not yet have

a violation of (2.4). But if there are fewer than 6 such vertices, we would

have a violation of (2.4).

Let 13 be adjacent to 4, but not to 1 or 2. If 13 were adjacent to 5, then

{13,4,0,5,1} would form a graph #3. Similarly, 13 cannot be adjacent to

6. If 13 were not adjacent to 3, we would have #{1,2,3,4,5,6,13}
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= H^a, c, e, b, f, d, a). Therefore, 13 must be adjacent to 3, so we do not

have six additional vertices at distance two from 0, and hence have a

violation of (2.4).

7. Proof that H is edge regular if k > 3. In this section, we assume H

is not edge regular and k > 3, and show this leads to a contradiction.

If H is not edge regular, then there is some edge (say (0,1)) contained

in k — 3 — a triangles (a ^ 0), and every edge of H is contained in at

least k — 3 — a triangles.

Lemma 7.1. There exists a claw {0,1,2,3).

Proof. If no such claw existed, then we would have k + a vertices ad-

jacent to 0 and not adjacent to 1 all forming a clique. For each such vertex

(A2)^ would be at least k + a — 1. For each other vertex adjacent

to 0, we have (A% is at least k — 3 — a. Therefore, (A3)oo would be at

least (k - 2 - a) (k - 3 - a) + (k + a) (k + a - 1), which exceeds 2(k - 1)
• (* - 2).

Lemma 7.2. ^ = S2 = S3 = 0.   \S23\=k-2 + a.

Proof. The same reasoning which established the claw proves that Si

is not a clique. Therefore, S2 = S3 = 0, by Lemma 5.1. Since the number

of vertices adjacent to 0 and 1 is k — 3 — a, the number of vertices ad-

jacent to 0 but not adjacent to 1 is k + a, which means |S23| = k — 2 + a.

But k — 2 + a > 0, which (by Lemma 5.2), implies S, = 0.

Lemma 7.3. If k> 3, H is edge regular.

Proof. If H is not edge regular, the previous lemmas of this section

apply, and we have a claw {0; 1,2,3) with |S23| = k - 2 + a, \S12\ +|Si3|

= k — 3 — a. Without loss of generality, we can assume

By Lemma 5.3, |S23| = k - 2 + a ^ 10. Therefore, k ^ 12.

Now let us make the tentative assumption that X < k — 1. By (1.2),

this means that, in case k = 12, for example, X ̂  6. Therefore, the right

side of (2.2) is at most 110. But, in (2.2), the left side is at least b23(b23 - 1)

+ b2i(b21 — 1), which is

Since a ^ 0, this is a contradiction. This line of reasoning eliminates all

possible values of k, 4 ^ k £ 12, with X < k - 1, except k = 9.

If k = 9, and X < k — 1, then X = 6 or X g 4, X ̂  4, the above reasoning
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applies. If A = 6, then, from (1.2), v = 13. By (2.3) and (2.4), c23(c2;j - 1)

= \Sa\ ■ (|S;a| - 1) § 24.  But \Sa\ ^ 7, a contradiction.

Therefore, all we need consider is the case A = A — 1, so v = k -\- I.

Since the right side of (2.4) is then 2, it follows that |S23| g 2. Since A - 2

^ |S23|, we have only to consider the case k = 4. When £ = 4, |Si2| = 1,

I Sal =2. Therefore, in (2.4), c2;, = 2. Since, in general (A3)oo = 2(k - 1)

(& — 2), the number of edges in the graph subtended by vertices adjacent

to 0 must be (k - \)(k - 2), or be 6 for the case k = 4. But |S12| = 1,

'S23| = 2 already picks out six edges, so that, if S23 = {4,5}, and S12 = (6),

we have, in the graph subtended by {2,3,4,5,6} the graph Hx.

8. The main theorem.

Lemma 8.1. Let H be edge regular and contain no claw. Then

(8.1) every edge of H is contained in exactly one clique of order k,

(8.2) every maximal clique of H contains k vertices,

(8.3) every vertex is contained in two cliques of order k,

(8.4) there are 2v cliques of order k.

Observe first that if 0,1 are adjacent vertices, then the k - 1 vertices

adjacent to 0 and not to 1, together with 0 must form a clique of order k.

Clearly every edge of H is accounted for in a clique exactly once this way,

which proves (8.1), (8.2) and (8.3) are equally obvious. Let T denote the

total number of cliques of order k. Since every vertex is contained in two

cliques, kT = 2vk, or T = 2v, which is (8.4).

Theorem. Let H be a regular connected graph on vk vertices, such that the

distinct eigenvalues of its adjacency matrix A — A(H) are

2k - 2 - 2, k - 2±V(k - A).

Then H s L(\\(v, k, A)) unless k = 3, A = 2, when there is exactly one ex-

ception.

Proof. If k > 3 H is edge regular and contains no claw and Lemrna

8.1 applies. Let H be the graph with 2v vertices corresponding to the

cliques of order k in H, and two vertices of H adjacent if the correspond-

ing cliques of H have a common vertex. By Lemma 8.1, H is a regular con-

nected graph on 2v vertices, and H is its line graph. The therorem will

then follow from Lemma 4.2.

By Lemmas 6.2, 6.3 and 7.3, the theorem holds if k > 3. If k = 3, and

A = 1, 1 4] applies. If k = 3, A = 2, and the theorem does not hold, H is not

edge regular, and A = 2. In this case k — 2 = 1. Since H is not edge

regular, there exists an edge (a, b) which is not contained in a triangle.

Since the number of triangles containing a given vertex is (k — l)(k — 2)

= 2, we must have the following subgraph.
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7K
_w

In case k = 3,\ = 2,v = 4,vk = 12, the polynomial of the graph is (x3 — 4x)/4.

Therefore there must be exactly eight paths of length 3 from a to b. This,

however, is impossible unless c and d are adjacent, so our subgraph becomes:

a b

Now in order that (A3)ff = 4, it is necessary that there exist vertices i

and; such that /, i,j form a triangle. Since the valence of every vertex is 4,

vertex i cannot be adjacent to a,c,b, and d. Vertex t must be adjacent to

at least one of e,g, ft otherwise the vertices a,b,c,e,f,g,h,i would subtend

a graph H8. But i cannot be adjacent to e, otherwise {a,e,f,c,i} would

subtend H3. Vertex i cannot be adjacent to both g and ft, otherwise verti-

ces i,g,h,d,f will subtend Hi. So i is adjacent to exactly one of g and ft,

say g, and we have

By the same argument, j cannot be adjacent to e and must be adjacent

to one of g and ft. Now there are two possible cases. In the first case we

assume j to be adjacent to ft. In the second case j is adjacent to g. Let

us consider the first case. In this case vertex ft cannot be adjacent to e,

otherwise vertices \e,c,d,h,j\ subtend a graph Hj. Hence there is a new

vertex k adjacent to h and to fulfill A%, = 4, and k must be adjacent. In

the subgraph \a,b,c,d,e,f,g,h,i,j,k\ valence of every vertex other than

i, g and e is 4. Vertices i and g are already adjacent. We have shown that

vertices i and e cannot be adjacent. Hence the twelfth vertex / is adjacent

to i. It is easily checked that we get the following graph:



k

However for this graph ^rbfr(bfr — 1) = 2, where the summation is over

all the vertices. This violates (2.2). Hence this graph does not satisfy

the hypothesis.

Now let us consider the second case when / is adjacent to g. In this case

it is readily checked that we get the following graph

and this graph does satisfy the hypotheses.
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