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1. Introduction. Recently, the author [l] gave an application of the

following well-known result [2, p. 27]:

Let Y0, Yu ■ ■ • , YN be arbitrary real numbers, and let Yn, n = 0,1, • • •,

satisfy a homogeneous, linear difference equation of order N -f- 1 with

real, constant coefficients:

N+l

(1.1) Z arYn+N+1-r = 0      (a0aN+l ^ 0).

Then the generating function of Y„ is given by

(1.2) ly^E E^-rk/E^ (at-0,1,•••)■•

The series in (1.2) converges for |x| < |\|, where A is the root of 2Z^1arxr

= 0 with the smallest absolute value.

One purpose of this paper is to show how (1.2) may be applied to obtain

generalizations of results recently obtained by Carlitz [3], who gave

closed forms (necessitating two separate proofs) for

(1.3a) Zuknx*=Uk(x)/Dk(x),

(1.3b) Vk(x)/Dk(x),

where the numbers un and v„ [3, pp. 521-522, 529-533] are defined by the

sequences

(1.4) u0 = 1,   u,=p,   u„ = pun_! - qun_2   (n = 2,3, •••),

(1.5) ^=2,    iVi = p,   vn = pVn-i - qvn-2    (n = 2,3, ■••),

with p2 — 4o ?^ 0. In (1.3a) and (1.3b) (which are the generating functions

for the kih power of two special second order sequences), Uk(x) and Vk(x)

are polynomials in x of degree g k for k ^ 1, and D*(x) is a polynomial in

x of degree k + 1. It should be pointed out that the desired form for Dk(x)

[3, p. 530, (6.5)] in terms of ar (i.e., our (2.4) with m = 1) is given, with a
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different proof, in the joint paper by Jarden and Motzkin [4, Theorem l].

An English translation of [4], which is in Hebrew, appears in [5, pp.

42-45]. Riordan [6] gives a recurrence relation for the sum function in

1.3a), where u„ is the Fibonacci sequence. In [3], recurrence relations

for the sum functions in (1.3a) and (1.3b) are also given.

In this paper, relations (1.1) and (1.2) are applied to establish five

theorems on generating functions for products of recursive sequences.

Theorem 1, a generalization of (1.3a) and (1.3b), gives a closed form for

Z\ hwnn+Jx" (ft.m-1,2,—),
n-o[_ s-1 J

where w„ = pw„_i — qwn_2, p2 — 4o ^ 0 (n = 2,3, • • •), with w0 and Wx

arbitrary real numbers, and i„, s = 1,2, ••-,k, are positive integers or zero.

An identity for generalized Fibonacci numbers, (3.1), as well as Fibonacci

identities (3.9) and (3.10) are obtained as applications of (2.3) in Theorem

1. The generating functions in (4.2) and (4.3) of Theorem 2 are gener-

alizations, respectively, of the generating functions in (2.5) and (2.6)

of Theorem 1 for the case p = 0.

Theorem 3 gives a closed form for

ZTliy^y    (k = i,2,...),

where yn = Cjri^)Rn (n - 0,1, •••), with R^O a real number,

and ms^0, s = 1,2, • • ■ ,k, are positive integers. Several applications of

Theorem 3 are given in §6, which includes binomial identities, an identity

for the generalized hypergeometric series, and two identities on gener-

alized Eulerian numbers.

Theorem 4, as a generalization of Theorem 3, gives a closed form for

±\ ft fiy%   J*" U-1,2,...),

where yf - CE^Cfit'-1)«? (n = 0,1, • ••), with arbitrary real numbers

Ri^O, i- 1,2,'"      and mf^O, bf 2 0, »-1,2, ••■,*<, i - 1,2,
are positive integers.

Theorem 5 gives a closed form for

iw^+Jh nyv^V (m-1,2,...),

which includes ^^o^m+^nV as a special case.

In §10, (6.2), which is a special case of Theorem 3, is applied together

with a theorem of Gould [7] on a binomial series transformation to illus-
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träte a general method for obtaining summation identities involving

binomial coefficients.

The author wishes to thank the referee for his many helpful suggestions.

2. Products of equally paced subsequences of a recursive sequence of

order two.

Theorem 1. Let w0,wup, and q be arbitrary real numbers, and define

(2.1) wn = pwn-i - qwn_2,   p2-4q*0      (n = 2,3, •••).

We will set un m wn if w0 =1, wx = p, and vn m wn if w0 = 2, wx = p (see

(1.4) , (1.5)). Let m = 1,2,---. and define

(2.2) W(n,k,m) = Y[wmn+ia      (k = 1,2, •••;« = 0,1, •••),

where i„ s= 1,2, ••■,k, are positive integers or zero. Then,

(i) for pq^O, m = 1,2,3,     we have

(2.3) £ W(n, k,m)x" =      £ arW(; - r, *, ro)   W £ arx',
n=0 ;=0|_ r-0 J     / r=0

lu/iere a0 = 1 and

(2-4) r L "m-lU2m-l---Wnn-l J

(r= 1,2,.-.,*+ 1).

The series in (2.3) converges for |x|< |X|, wAere X is tfte roof o/ ajk+1x*+1

+ • • • + OiX + a0 = 0 with the smallest absolute value;

(ii) for p = 0, m = 1,3,5,      and |x| < Igl-"1*72, we have

(2.5) £ W(n,A,m)x"= [W(0,k,m) + W(l,k,m)x]/[l + (- 1)*+W];
n-0

(hi) for p = 0, m = 2,4,6,      and |x| < Igl-**72, we have

(2.6) f) W(n,k,m)xn=W(0,k,m)/[l - (-q^x).
n-0

Proof, (i) Define (see (1.1), (1.2))

N+l N+l

(2.7) g(x) = Z arx"+1-      h(x) m xN+lg(l/x) = £ arxr.
r-0 r-0

It is well known that the roots of the characteristic equation, g(x) = 0,

determine the nature of the general solution to (1.1), which involves

N+l arbitrary constants.

Let Cf, Cfi*, j = 1,2, and C0, Cs, s = l,---,k, denote arbitrary constants.

If a   ß denote the roots of x2 — px + q = 0 (see (2.1)), then wn = C*a"
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+ Ctß" and «w., = C,V«"" + C&\8"". Observing that

k

(2.8) W(n,k,m) = ZCs[amik-s)ßm*}n     (n-0,1(---),

we now conclude that W(n, k, m) satisfies a homogeneous, linear difference

equation of order k + 1 with real, constant coefficients, and that amik~s)ßm,

s = 0,1, • • •, k, are the distinct roots of the corresponding characteristic

equation. Thus, Y„=W(n,k,m) satisfies (1.1) with N = k, and from

(2.7), we have

(2.9) g(x) m A [X - an,*-»r]       (Oo = 1),
s=0

* *+l

(2.10) h(x) = II [1 - aml*-s)0™x] = £ a,*'.

Replacing Y„ in (1.2) by W(n,k,m) and setting N = k, we obtain (2.3),

where the an as given by (2.4), are defined by (2.10). (From [3, p. 530,

(6.3), (6.4), and (6.5)], we note that Dk(x) = h(x) for m = 1. The ar, as

given by (2.4), are obtained by a modification of the proof for (6.5), i.e.,

in (6.4) we replace z by (ß/a)m and x by a^x.)

It may be of interest to note that (2.9) may be written as

k

n [x - 0™]

(2.11) ( "ff2[x2-<JfflV-2j1r + 91                   (* = 1,3,5,-..);
J ;=o

I (*-2)/2
( (x-a*2)  If [i2-f\M1x + ^]      (A = 2,4,6, • ••).

To see this, let R„ = am(*-"/J"", s = 0,1, If k = 1,3,5, • • •, we have

an even number of roots, R„ and thus (k + l)/2 pairs, [(x — Rj)(x — Rk-j)],

j = 0,1, •••,(*- l)/2. Since a/3 = o, iv, = a" + ßn, n = 0,1, • • •, we have

RJ + Rk_J = qnjvm{k_2j-) and RJRk.J = qmk.

If & = 2,4,6, • • •, we have an odd number of roots, R„ and thus k/2

pairs, [(x - R;)(x - Rk_j)}, j = 0,1, (* - 2)/2. The linear term,

(x — Rk/2) = (x — <7m*/2), accounts for the unpaired root, i.e., the middle

root, Rk/2.

(ii) If p = 0, then ß = - a, and (2.8) simplifies to W(.n,k,m) = £*=o

C.[(- lPa"1*]". Since m is odd, Y„ = W(n,A,m) = Cf(a"*)" + C2*(- a"T

satisfies (1.1) with AT - 1. Since 17= - a2, we have qmk = (- l^a2"1*, and

from (2.7), *(x) - (1 - «"**)( 1 + a^x) = 1 + ( - D^'o^x2, where a0 = 1,

a, = 0, and a2 = (- l)*+1g"*. Thus, (1.2) yields (2.5) for N= 1.
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(iii) Since p = 0 and m is even, (2.8) becomes Yn = W(n, k, m) = C1*(amk)n,

which satisfies (1.1) with N = 0. Noting that h(x) = 1 - a^x = 1
_(_9)mt/2X) (12) yields (26) for N=0

3. Remarks. Application to Fibonacci sequences. If m = 1, is = 0, s = 1,2,

then (see (2.2)) W(n,fc, 1) = u* for w0 = 1 and wx = p, and for pg

^0, (2.3) yields (1.3a); but if u>0 = 2 and ^ = p, then W(nAD = i;n,

and for pg ^ 0, (2.3) yields (1.3b).

If p = 0, the sum functions of (1.3a) and (1.3b), for k > 1 are more

cumbersome to evaluate than (2.5), and, indeed, for m = 1 and i„ = 0 in

(2.2) with the proper choices of w0 and wx, Uk(x)/Dk(x) and Vk(x)/Dk(x)

must reduce to the corresponding right-hand side of (2.5).

Consider the generalized Fibonacci sequence, Hn, where H0 = b, Hx = c,

and Hn+2 = Hn+X + Hn, n = 0,1, • • -. As an application of (2.3) and (2.4),

we will show that

HnHn+lHn+3Hn+4 = Hn+2 ~ (H\ ~ H0HXH3H4)

= m+2 - (b4 + 2b3c - b2c2 - 26c3 + c4)

for n = 0,1, • • •. If b = 2, c = 1, then Hn = Ln, the Lucas sequence, and

(3.1) simplifies to

(3.2) LnLn+xLn+3Ln+4 = Lt+2 — 25    (n = 0,1, •••);

if b = 0, c = 1, then r7„ = Fn, the standard Fibonacci sequence, and (3.1)

simplifies to

(3.3) FnFn+xFn+3Fn+i = Fn+2 - 1      (n = 0,1, • • ■).

In [8, p. 401], it is noted that (3.3) we stated by E. Gelin (1880) and

proved by E. Cösaro (1880). Closed forms for

N N

Z HnHn+xHn+3Hn+t   and   Z (— l)"HnHn+xHn+3Hn+i
n=0 n=0

may be obtained from (3.1) by a method of summation identical to that

used on (3.3) by the author [9].

To prove (3.1), set p = — g = 1 in (2.1), and note that when W(n,4,1)

= H4n+2 or HnHn+xHn+3Hn+4, the denominator in (2.3) is given by 1 — 5x

- 15x2 + 15x3 + 5x4 - x5 = (1 - x)(x4 - 4x3 - 19x2 - 4x + 1). The values,

ax = — 5, a2 = — 15, a3 = 15, a4 = 5, and a5 = — 1, were calculated from

(2.4) . Omitting the cumbersome algebra, we obtain from (2.3)

Yi [H*+2 — HnHn+xHn+3Hn+4]x" = (H\ — H0HXH3H4)/(1 — x)
n = 0

(3.4)

= Z(Hi- H0HxH3H4)x".
n=0
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If we equate coefficients of x" in (3.4), we obtain (3.1).

Results obtained from (2.3) may lead to summation identities. For

example, using (2.3) and (2.4), we find that

OD

(3.5) £ FnFn+lFn+2x" = (2x)/(l - 3x - 6x2 + 3x3 + x4),
n=0

(3.6) ZFl+1Fn+2xn = (1 - x)/(l - 3x - 6x2 + 3x3 + x4).
n=0

Addition of (3.5) and (3.6) gives

(3.7) jlFn+lFl+2xn= (l + x)/(l-3x-6x2 + 3x3 + x4);
n = 0

addition of (3.6) and (3.7) gives

(3.8) Z Fn+xFn+2Fn+3x" = 2/(1 - 3x - 6x2 + 3x3 + x4).

Since 1 - 3x - 6x2 + 3x3 + x4 = (1 - 4x - x2) (1 + x - x2), the series in

(3.5), (3.6), (3.7), and (3.8) all converge for |x| < (a/5 - 2). If we multiply

both sides of (3.6) by 2/(1 - x) and note (3.8), we obtain the following

identity:

(3.9) 2ZF]+1FJ+2= Fn+1Fn+2Fn+3      (n = 0,1, ■ ■ ■).

If we multiply both sides of (3.7) by 2/(1 + x) and note (3.8), we obtain

the following identity:

(3.10) 2£(-l)JFJ+1F]+2= (-l)"Fn+lFn+2Fn+3      (n = 0,1, • ■ ■).

4. Unequally paced subsequences. A generalization of Theorem 1 is called

for if we consider (2.1) and (4.1) (instead of (2.2)), where

(4.1) W*{n,k) = \\wman+h      (* = l,2,...;n = 0,l,...),

and ms ^ 0, s= 1,2, ■••,k, are positive integers.

The case po^O for (2.1) is difficult, and for arbitrary k in (4.1), the

author was unable to give the complete set of values for ar as required

by (1.2).
The case p = 0 for (2.1) is readily obtained for arbitrary k in (4.1), and

the proof of Theorem 2 is omitted, since it is similar to that of (ii) and

(iii) for Theorem 1.
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Theorem 2. Let W*(n, k) satisfy (4.1), where wn satisfies (2.1) with

p — 0, g ^ 0. Let M = rtii + m2 + • • • + mk. Then,

(i) * if at least one ms, s = \,2, • ■ • ,k, is an odd integer,

Z W*(n,k)x"=[W*(0,k) + W*(l,k)x]/[l - (-q)Mx2]
(4.2) n"°

<\q\-M/2y,

(ii) * if all the ms, s= 1,2, • • •, k, are even integers,

(4.3) ZW*(n,k)xn= W*(0,k)/[l- (-q)M/2x]      (\x\ <\q\-M/2).
n = 0

We note that if m, = m^0, s= 1,2, • then (4.2) and (4.3), re-

spectively, reduce to (2.5) and (2.6) of Theorem 1.

5. Subsequences of a sequence of higher order. Thus far, we have assumed

that p2 ̂  4o in (2.1). In [3, p. 535] the case p2 = 4q requires a method of

proof different from that used to obtain (1.3a) and (1.3b). We will now

establish a general result which, as a special case, contains the generali-

zation of the case p2 = 4q.

Theorem 3. Let y„, n = 0,1, ■ ■ ■ ,N, be arbitrary real numbers, and let

yn be the general solution of (1.1) with

(5.1) ai=(-Ry{    i    )      (i = Q,l,...,N+l),

where R p^O is a real number. Let M = mx + m2 + • • • + mk, where ms ^ 0,

s= 1,2, •••,k, are positive integers, and set

k

(5.2) Q(n,k) m Uym,n+l,     (* = 1,2,...;» = 0,1,...),

where i3, s= 1,2, ■•■,k, are positive integers or zero. Then, for \x\ <\R\~M

and N = 0,1, • • •, we have

(1 - RMx)kN+1ZQ(n,k)xn

(5.3)

=     Z(-l)rÄMr(^r+1)Q(;-r,/fe) >.

Proof. Using (2.7), we note that g(x) = (x - R)N+1 and, hence, yn

= (Zf-i1 Cjn'-^R", where the Cj, j = 1,2, • N+ 1, are arbitrary con-

stants. Since

,N+l . , kN+i .

ymsn+,s = ( Z C/n^-'j fl-"   and   Q(n, *) - ( E     V-1 j RMn,
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where C* and C** are again arbitrary constants, we conclude that Q(n,k)

satisfies a homogeneous, linear difference equation of order kN + 1 with real,

constant coefficients, whose characteristic equation is g*{x) = (x — RM)hN+1

= 0. Thus, Q(n, k) m Yn satisfies

Z a* Yn+kN+l_r = 0,     where a* = (- 1YR» {"  J   ),
kN+l

z
r-0

r-0,1, .".W+l.

An application of (1.2) (in which N is replaced by kN) yields our result,

(5.3).

6. Binomial and other identities. The generalizations of the cases (1.3a)

and (1.3b) for (2.1) with p2 = 4q (as given in [3, p. 535]) are obtained

from (5.3) when N = 1.
Setting R = 1, y„ = nN, n — 0,1, ■••,m, = m and i,= b, s=l,2, ■•■,k,

and kN = c in (5.3), we obtain

(1 - x)c+1 Z (mn + byx"
n=0

(6.1)

= Z{Z(-Ur{   r   )(m(j-r)+by~\xi (\x\<l).
y-oL i-=o J

A less elegant version of (6.1) may be found in [ 10, p. 99, (171), • • •, (175)].

The derivation of (6.1) for m = 1 and 6 = 0 was given previously by the

author [l], as well as by others (see [l] for references).

For iV=0,the following identity (valid for |x| < 1)

- r » /c,n + ki\N-,

-l[£<-»^+i)ör^+*)>
where Cj, i = 1,2, • • •, a, are positive integers, and k = kx + k2 + ■ ■ ■ + k„,

with ki= 1,2, i = 1,2, • •-,cr, is obtained from (5.3) by setting R = 1,

yn = nN, n = 0,1,-■ ■, and

ms = cu i, = s, s= 1,2,

ms = c2, t's = s - *i,     s = kL + 1, kx + 2, • • -.kx + *2;

(6.3) .

(T — 1 p   g— 1 —I p   ff — ,1 -|

^. ■ C„ i.« « - E kit s =   Z *i I + !»I Z *ij +2,
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Generalized Eulerian numbers, A{'l, whose properties are given in [11,

p. 240, (9)], occur in (6.2) when a = 1 (i.e., k1 = k) and cx = 1, where

Recently, Marx [12] pointed out that the following identity,

n=0

(6.5)

is obtained by an application of a well-known transformation formula for

the hypergeometric series [ 13, p. 105, (1), (2)], i.e.,

F(a, b; 1; x) - (1 - x^'Fll - a, 1 - b; 1; x).

But from (6.2), with N = 1, <r = 2, c. = c2 = 1, = a — 1, and £2 = 6 - 1,

we obtain

L(x) = (1 - *)»—*

^l,[i(^(,+J"1)(i-:ti-1)(^-;t]-j)]^
where L(x) denotes the left-hand side of (6.5). Comparing (6.5) and (6.6),

we conclude that

(6.7)

Setting a = b = n in (6.7), we obtain, noting (6.4),

«.» ,w.(Y),4<-.>f\-i)(j'-;;+-r1)!-
Recalling the definition of the generalized hypergeometric series [ 13,

p. 182],

F I" au ■ ■ -,ap; x~l = ^, (fli)„ •■• (ap)nx"

P   " L    Pl, •••,P,   J        n=0 (Pl)n • • • (Pq)nn\ '

where (a)0 = 1, (a)„ = a(a + 1) • • • (a + n - 1) (n=l,2, ••■), we note

that (6.2), with N = 1, c, = 1 and k,■ = a, — 1, i = 1,2, • • -,<r = q + 1, may

written as
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-^[^c-«K?)gr;tr1)]-' cw<d.
where T(<7) = — <? + Z,1=ia>- ^ we set Oi — °2 = • • • = o«+i> the series

in (6.9) is then well-poised [ 13, p. 188], since 1 + ax = 1 + a2 = • • • = 1

+ a,+i. For the well-poised case, we observe (again) that the right-hand

side of (6.9), with a, = a, i = 1,2, • • -,q 4-1, is expressible in terms of

A<8+f»+I (see (6.4)).

From (6.2), with a = N = I, kx = k, and C! = 1, we obtain (noting (6.4))

(6.10) (l-x)k+l£(n + k)x" = ZA$+lxri (\x\<l).
n = 0 X     R     ' j-0

But [2, p. 30, (4)]

(6.11) (I-*)*"!) (""£*)*"= 1 (|*|<d-

Comparing (6.10) and (6.11), we conclude that

(6.12) Aft+i - t (- dr ( k+r 1) 0 " I+ k ) = 0      0 = 1,2,...,*).

I want to thank Professor H. W. Gould for the following comments and

references concerning (6.7). Since (6.7) is a polynomial identity for integers

a ando, it is also valid for all real a and b. Thus, (6.7), with a = x+ 1,

b = y + 1, and j = n, under the variable change r = n — k, becomes

(,18) s«-^(,-t,)(,,t*)('r)-(:)(:)
(all real x,y).

Using elementary transformations on the binomial coefficients, Gould (in

a letter to the author) shows that (6.13) is equivalent to an indentity of

Suränyi [14]. Carlitz [15], in a review of [14], points out that Suränyi's

identity is a special case of Saalschütz's formula [13, p. 66, (30)].

7. Subsequences of distinct sequences.

Theorem 4. Let iV„ i = 1,2, •••,t, be positive integers or zero, and for

n = 0,1, • ■ ■, let ynl), i = 1,2, • • -,t, be the general solution of

(7.1) £ W'Ww = 0       (ao"<+1*0),

with
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(7.2) af = (- Rt)J (    t 1)      (j - 0,1, • • .,Ni + 1),

öftere Ä, 0, t = 1,2, • • •, t, are real numbers. Let Mi = mi0 + m^'1 + • • •

+ m$, where m^ ^ 0, s = 1,2, • • •, ife,-, and kit i = 1,2, • • •, f, are positive

integers, and set

*,■) = 17y'V) (/-i,2,...,f,»-o,i,...);

(7.3)

= 11 Q(n,*.-) 0=1,2,...),

wnere oj'1, s = 1,2, • • •,£„ i = 1,2, •••,t, are positive integers or zero. Let

R = Y\ULRfiand N = ZUxkiNi.  Then, for |x| < \R\~\ we have

(7.4)      (1 - Rx)N+l Z Q*(n)x» = Z [ £ (- l)rRr ( N + 1) Q*(j - r)lx».
n=0 ; = 0 L r-0 \       '      / J

Proof. Noting the proof of Theorem 3, we observe that

Q(n,k,) = ( Z Cj^-'J/?]"■",      Q*{n) = ( Z Cfn^jR",

where C, and C* are arbitrary constants. Thus, Q*{n) satisfies a homo-

geneous, linear difference equation of order N+1 with real, constant

coefficients, whose characteristic equation is g(x) = (x — R)N+1 = 0. Since

Q*(n) = Y„ satisfies (1.1), where

ar= (- l)rÄr(iV+1),      r = 0,1,...,A/4-1,

an application of (1.2) yields (7.4).

8. Another binomial identity. We note that for t = 1, (7.4) reduces to

(5.3) . Generalizations of (6.1) and (6.2) may be obtained from (7.4).

Indeed, for i = 1,2, • • t, let R = 1, Ä, = 1, AT,- = 0,1, • • - ,y{n = nN', n
= 0,1,       it,-=1,2, ••; ki = ZJ-ikiJ' where f*v} and {ci;|, ;'= 1,2,
<r„ are positive integers, and define (see (6.3))

raffen, b? = s, s=l,2,...,fc„;

mi" = ca, bf = s - *a,    s = fca + 1,fta + 2, • • •, fe;, + feß;

■i" -     fc.w = s - °Z *«. s = [ °Z *«] + 1. [ Z *«] + 2, • • ; k.
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With the above definitions, (7.4) yields the following identity, where N

(i-x)»»±\hfifan+kAN']x>
^ n = 0 |_ i-1 /-I V "       ' J

" -frt<-i»'(Arr+1)rin(^V,+*f> (w<».
9. An additional factor taken from a sequence of order two.

Theorem 5. Let Q*(n) (see (7.3)), N, and R be defined by Theorem 4,

and wn by (2.1), with pq ^ 0, of Theorem 1. Let m = 1,2, and ix = 0,1,

• Let |a|<|0|, where (x - a)(x - ß) = x2 - px+q. Then, for \x\

<(\R\\ß\m)~\ we have

(1 - vmRx + qmR2xY+l Z uW..Q*(n)xn

(9.1)
2jv+1 r-  j -.

= Z     Z OrWmO-D+i, Q*(j - r) X*.
;=o Lr=0 J

innere

(9.2)   ar=(-Rvt(Nil)(rS_s) ^~r<?m,r s)      (r = 0,1,..., 2N + 2).

Proof. From the proof of Theorem 4, we recall that

/'it1 \

<?*(")= ( £c?nJ-l\R",

and from the proof of Theorem 1, (i), we recall that wmn+n = Cja™ + C2ßmn.

Thus,

,N+l

Yn - wm+ilQ*(n) = ( Z C.Cfn'1 j (amfl)n

tJIQC/b'-1 (W,     a = 0,1,.-.,

satisfies a homogeneous, linear difference equation of order 2(N + 1) with

real constant coefficients, whose characteristic equation is

g(x) = (x- amR)N+l(x - ßmR)N+l = (x2 - vmRx + qmR2)N+i = 0

(since aß = q and um = «m + ßm). Noting (2.7), we see that Z^oVx'

= (I - vmRx + qmR2x2)N+l, and the expression for ar (see (9.2)) follows
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from [2, p. 30, Example 3]. Thus, (9.1) is obtained by an application

of (1.2).

It should be noted that our method of proof for Theorem 5 could also

be used to obtain the generating function for W(n,k,m)Q*(n) (see (2.2)

and (2.8), where pq^O). We observe that WQ* satisfies a homogeneous,

linear difference equation of order (k + 1)(N + 1); and if g(x) = 0 (see

(2.9)) is the characteristic equation for W, then [g(x/R) = 0 (i.e., a

polynomial equation in x of degree (k + l)(iV+ 1)) is the characteristic

equation for WQ*. The desired result, obtained by an application of (1.2),

is cumbersome, since the expressions for ar (the coefficients of the char-

acteristic polynomial) are formidable.

10. Evaluation of sums of products of binomial coefficients. We will now

show how Theorem 3 may be used in conjunction with a result of Gould

to obtain identities, closely related to convolution identities. The binomial

series transformation [7, (2.1), (2.2), 3.1)], referred to as a Vandermonde

convolution transform, is defined as follows:

Let f(k) be independent of n and /(0) = 1. Set

(10.1) F(n) = t(-l)k(nk)(a+nbk) f{k).

Then

(10.2) £{a\bk)f(k)z>=x'Z{-\yF{n)[(x-l)/x}" (x*0),

where z = (x — l)/xb. Moreover,

(10.3,       ("+/>>-ij-^^^(^)m].

For our purpose, we take 6 = 1. Then (10.2) may be written as

(10.4) (1 - z)° Z ( n + a )f(n)z" =Z(- l)"F(n)^.

For proper choices of a and f{n), (10.4) yields different identities (i.e.,

other than (10.3)) provided a closed form for the left-hand side of (10.4)

is known. For simplicity, only (6.2), a special case of Theorem 3, will be

used with (10.4) to illustrate the ideas involved.

For our first example, consider (6.5), which may be written as

no,, «i-r-+'f(nr)("rV-t(„)(;y <m<».
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Let

«»-('*')•

Multiplying both sides of (10.4) by (1 — z)c+1, we obtain, upon comparison

of (10.4) with (10.5),

£ (n) ( nV = (1 " 2)0+1 i(-DnF(n)z"

(10.6)

"St'" "tin-!)«»]'■
Upon equating coefficients in (10.6), we obtain.

aw        (;)(;) -(-irzCtiK
With 6=1 and our choice of f(k), (10.1) and (10.3) yield, respectively,

aw) «*-£(-«•(;)(•:*)(•+*).

<">•» (•i")(*:")-£(-«,(*+::}"*K
Neither of the identities (10.7) and (10.9) seems to be an immediate con-

sequence of the other.

It is of interest to note that with b = a = 1, (10.1) has only two nonzero

terms, i.e., when k = n - 1 and k = n, with f(k) arbitrary. Thus, (10.1)

becomes

(10.10) F(n) = (— l)nA(nf(n — 1)),

where Ag(n) = g(n + 1) -g(n). Qf course, (10.4) yields (10.10) for a = 1.

Moreover, (10.3) (with 6 = a = 1) reduces to the trivial identity, (n + l)/(n)

= E2-oAj>/(*-l)].
To avoid notational confusion, replace now a in (10.5) by p. Then, set

a = 1 in (10.4) and define

,(».(p+*)(<+*)/(t+i,.

Multiplying both sides of (10.4) by (1 - z)p+c, we obtain, upon comparison

of (10.4) with (10.5),
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t ( n ) ( n V = d " Z^"+Ci <" D"^(")^Vre/\n/ £0

(10.11)

-£[<-a-£(:^)'»>

Equating coefficients in (10.11), we obtain (recalling (10.10)),

g)ü)

uoia  - *- oo-j- l)] •

uo,3, e)(;)=<-»-i(pr)(ct*)4<-»'(rj)]-

de«, (:)(:)-i(-.)-'(';')('r)('„+:+')
where (10.13) is obtained from (10.12) by summation by parts, and (10.14)

is obtained from (10.13), using

We note that (10.14) is precisely (6.13), which was previously obtained

by comparing (6.5) with (6.6).

Suppose now that the expansion

(1 -z)m+1j*h(n)z%-'ZcjZi
n-0 j-0

is valid for |z| < 1, where ft(re), re = 0,1, • • •, are given, and the cp j = 0,1,

• ",m, are to be determined. Then, our procedure, when a = 1 in (10.4),

yields the explicit representation of c,. Indeed, suppose

■   /      ,   i\N AN

(10.15)       (l-x)kN+1Z(   i       *" = 2>^ (|x|<l),

where k and N are positive integers, and c, are unknown constants. Put

a = 1 and

/(n) = (" + *)"/(«+ 1)

in (10.4), with z = x. Upon multiplication of both sides of (10.4) by

(1 - x)*N, we obtain, in view of (10.10) and (10.15),
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(10.16)

(see (6.4)).

Our procedure, when applied to (10.4) for a ^ 1, will, in general, lead to

new summation identities, provided the multiplier of (10.4) is (1 — z)m,

with m 9^\. This point has already been illustrated in the derivation of

(10.7). Moreover, (6.2) (with c, fi l), when used with (10.4), furnishes

new identities.
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