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BY

DAVID LISSNERf1)

1. Introduction. Let R be a commutative ring with identity, V an n-dimen-

sional free i?-module and A( V) the exterior algebra on V; as is customary we

identify Vwith A'(V). In this paper we investigate the question of decom-

posability of vectors in \"~1(V); in particular we would like to know, for

certain classes of rings, whether all (n — 1)-vectors are decomposable. Of

course An_1( V) is isomorphic to V, and if this isomorphism is properly chosen

the exterior product i>i A-- - Af„-i corresponds to the usual outer product

[tfi. •••>'>n-i] in V, so we are in effect asking whether all vectors in V can

be expressed as outer products. Rings having this property will be called OP-

rings. A well-known theorem of Hermite [2], originally proved for the

integers, is valid in all such rings; we will describe the relation between these

two properties more precisely in §2. Also in §2 we develop the basic properties

of the outer product and use these to show that principal ideal domains are

OP-rings. In §3 we give some examples of rings which are not OP-rings,

including one to show that this property is not equivalent to the one studied

by Hermite. Finally, in an appendix we show that all Dedekind domains are

OP-rings.

2. Conventions and elementary properties. Let W = R" = R® • • • ffi R and

let {ei, ■ • -,en) be the standard basis for W, i.e., each e< = (0, • • - ,0,1,0, • • - ,0),

with the 1 occurring in the ith place. R„Xm will denote the set of n X m

matrices with entries in R, and if A G Rnx n we use | A | for the determinant

of A. For wu ■ ■ wk G W we will use col(u;i, • • •, wk) to denote the k X n

matrix whose rows are the it\'s; i.e., if u), = (aiu ■ • ■, aj„) for each i then

col(u>i, ■■•,wk) =

L a*i • • • Ofe,

Again for vectors u>,G W, [wu •••,u»»_i] will denote the usual outer prod-

uct (see, e.g., Graeub [l] for a discussion); that is, [wu ■•■,wn-\\ is the

vector in W whose ith component is (— 1)'+1 times the determinant of

the matrix obtained by deleting the ith column from the matrix

col^!, •• -.i^n-i). Finally, we have the usual inner product in W: if
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w= (au.... a„) and w' = (bu ■ ■-,bn) then

(w,w') = a^iH-\-anbn.

Now let V be any n-dimensional free i?-module and let {au •••,«„} be

a basis for V. As mentioned before we will identify V with the subspace

Al(V) of A(V); then the vectors

for i = 1, • • •, n form a basis for A" 1(V), and y = ax A • • • A «n is a basis

for A"(V). For each i> = 2>;a,eV let i>' = (oi, ■••,o„)EW and for

ui= (61( ...,bn) G W let <Mu>) =2>iftGA'-1(V); then the maps i>->i>'

and cb are isomorphisms of V with W and W with A"-1( V) respectively,

and the following identities hold for all i>, G V:

(1) i>i A #(i>2) = (»tA)y,
(2) p» A • • • Af»-i =       -'X-t], and

(3) i^i A • • • Avn = IcolM,•■•,v'„)\y = i^AÄ-'-X] = {v'u[v2,---,v'n])y.

Two remarks are worth making. First, according to (2) the isomorphism

<t> sends outer products in W into exterior products in An_1(V), as men-

tioned in the introduction; hence a given vector w can be expressed as

an outer product if and only if <t>{w) is decomposable. Second, by (3) (or

simply by the Laplace expansion) we have

we will often wish to express the determinant in this way.

If A^Rnxn we will use A* to denote the cofactor matrix of A, that

is, the n X n matrix whose i,j entry is the cofactor of the i,j entry of A.

In terms of the outer product this can be described very simply: if A

= col(u;i, •■•,wn) then A* is the n X n matrix whose ith row is (— 1)'+1

• [wu • • •,Wi-uu>i+i, '•■,«)„]. If \A\ is a unit in R then A is invertible and

its inverse is given by the familiar formula:

in particular, if | A| = 1 then A* = (A V so (A*)* = A and all the rows

of A are outer products of the rows of A*. As a consequence we have

Proposition 2.1. Let w0,wxE W and (w0,Wi) = I. Then w0 is an outer

product if and only if u>i is.

Proof. Suppose w0 = [w2, ■■-,wn] and let A = col^x,w2, ■■■,wn). Then

IAI = (wu[w2, ■■■,wn]) = (wuw0) = 1,

so all the rows of A are outer products, and in particular this is true of wx.

ßi= (- 1)'+1«1 A • • • A £*i-l A Olj+l A ■ • ■ A oB

\col(wl,---,w„)\ = (wlt[w2,---,wn]);

A~l =
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Of course the proposition has an equivalent formulation in terms of

exterior products: if u0,uxE An_1(V) and (0_1(wo)»0_1(wi)) = 1 then u0 is

decomposable if and only if ux is.

Let w= (au ■•■,an) E W. The ideal in R generated by the a,'s will be

denoted by I(au •••,a„) or I(w), and w will be called unimodular if I(w)

= R. For vE V or uEA"-l(V) we define I(v) and I(u) to be I(v') and

f(0_1(w)). respectively, and again v or u is unimodular if the corresponding

ideal is R.

Corollary. Let w be a unimodular vector in W. Then <t>(w) is decom-

posable if and only if there are w2, • ■ ■ ,wnEW such that

\co\(w,w2,---,wn)\ = 1.

Proof. Suppose such u;,'s exist and let w0 = [w2, • • -,wn]. Then <b(w0) is

decomposable, and (w,w0) = |col(u>,w2, ■•■,wn)\ = 1, so <p(w) is decom-

posable also. Conversely suppose <p(w) is decomposable. Since w is uni-

modular there is a w0E W such that (w,w0) = 1, and then <t>(w0) is also

decomposable so w0 is an outer product; say w0 = [w2, ■ ■ wn]. Then

I col(u;, w2, ■ ■ •, wn) I = (w, w0) = 1, as desired.

In 1849 Hermite [2] showed that if R is the ring of integers and w is

unimodular then there always do exist vectors w2,---,wn satisfying

|col(u;,W2,'">wn)| = 1; we will refer to rings with this property as fi-

rings. It is easy to show (see, e.g., [4, §2] for a proof) that this holds for

any ring for which all finitely generated projective modules are free, and

by the previous corollary it certainly also holds for OP-rings; in fact the

relation between H-rings and OP-rings can now be easily described: R

is an H-ring if all unimodular (n — 1)-vectors are decomposable and an

OP-ring if all (n — 1)-vectors are decomposable. Hence one would expect

that there are H-rings which are not OP-rings, and this is indeed the case;

we will give an example of such a ring in the next section.

Now let / be an Ä-module endomorphism of V; then / induces an endo-

morphism /* of An_1(V) defined by

f*(viA ••• A= (M A ••• A (fa-O

for all Vi E V. Let P be the matrix for F with respect to the basis {au • • ■, an j;

then [f(v) \ = (v')P for all vEV, and the matrix for /* with respect to

the basis [ßw-,ßa\ is P*, so we also have

f*(<p(w)) = AwP*)

for all wEW. Applying this to the defining equation for /* gives

UK • • ;<-i]P*) - 4>W, ■ ti-iP]

for all ViE V, or, equivalently,
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(4) [wu-'-.w^P* = [WlP,...,wn^P]

for all wtE W.
Let ,5f denote the set of all vectors in W which can be expressed as

outer products. Then

(5) (au ■■•,an) E ^ implies (dau ■ ■ -,dan^,an) E 't for alldEfi,

(6) if P is invertible then w E . ̂  if and only if wP E    , and

(7) if dE /(ai, •••,aB_i) then (a,, ••■,a„) E .5f if and only if

(oi, •••,aB_i,a„ + d) E if.

Proofs. (5) is a special case of (4) since diag(d, • • -,d, 1) = [diag(l, • • •, l,d)]#.

In (6) we have P= (P"1) 1 = |P| ((P"1)7)*, and if u>E .<# it again fol-

lows from (4) that wüP'1)7)* E M-, and hence that wPE since M-

is certainly closed under scalar multiplication. Finally if d = axbx +

• ••+an_i6„_1 then (7) is the special case of (6) obtained by taking

P =
0

Lo...

6i

1

0 1

Now let V*o be the submodule of V generated by      •••,«„_!} and W0

the corresponding submodule of W. The vectors (— l)'+1ai A • • • A

A<*;+i A • • • A«»-i form a basis for a""2(Vo), and just as before an ele-

ment of a""2(Vo) will be decomposable in a(Vo) if and only if its co-

ordinates with respect to this basis form an outer product in Wo. Let

"o = zZl=iai(- A ••• A a,_! A a,+i A ••• A a„_i be such a vector.

Then since v0 is decomposable <b(au •••,an_i,0) = v0 A an is decomposable

also; this proves

(8) if (oi, • • -.a,,-!) is an outer product in W0 then (au •••,an-1,0) is

an outer product in W.

Now we are ready for

Theorem 2.2. Principal ideal domains are OP-rings.

Proof. Let R be a principal ideal domain, n an integer ^ 2 and V an

n-dimensional free i?-module. We wish to show that every uGA""'(V)

is decomposable, and this is trivial if n = 2 so we may do an induction on

n. Let u = <b(w) where w = {au • • - ,a„) E W, and let I(au ■ ■ - ,a„_i) = 1(d).

Then each a; = d6, and by (5) it will be sufficient to show that (bu • • •, 6n_1; a„)

E c*- But       • • = Ä so by (7) it will actually be sufficient to

show that • • •, 6„_i,0) E .Sf, and this of course follows from (8) and

the induction hypothesis.

Corollary. Let R be a principal ideal domain, n an integer ^2, wE Rn
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and dEl(w). Then there are vectors w2, ■ • ■, wn £ R" such that

\co\(w,w2, ■■■,&„){ = d.

(This is the result actually obtained by Hermite in [2], but we prefer to

reserve the title of H-ring for rings satisfying the somewhat more restricted

condition described previously.)

Proof. By the hypothesis on d there is a u>0£ Rn such that (w,w0) = d,

and by the theorem w0 = [w2, • • •, wn ] for some w,£Än. Then

|col(u;,u;2, ■ • •, u;n) | = d,

as desired.

3. Counterexamples. In this section we give some examples of rings in

which the various properties under discussion fail. Specifically, we give

rings which are not OP-rings, i.e., do not satisfy Theorem 2.2, rings which

do not satisfy the corollary to Theorem 2.2, rings which are H-rings but

not OP-rings, and finally rings which are not even H-rings. The last ex-

ample raises an interesting question; we close with a discussion of this

problem.
The examples we wish to consider first are polynomial rings over fields,

and we will make use of the theory of ideals in such rings, in particular

of their primary decomposition and properties relating to their dimension.

As usual, if / and J are two ideals in R we use T. J to denote {x £ R \ xJ C I}.

We begin with rings which are not OP-rings.

Theorem 3.1. Let F be a field, R = F[xu ■ • ■, xk] and v £ R", where k^n

^ 3, and suppose diml(v) = k — n. Then v(£ .Sf.

Proof. Let v = (au ■ • - ,an); for each i = 1, • we will use /(••• Aj•••)

to denote the ideal I(au • • •,ai_1,ai+1, • • -,an). In general if J is an ideal

of dimension r and a is any polynomial in R then it follows (Lang [3, p. 36,

Theorem 11]) that dim(J,a) is either r, r — 1, or — 1; hence if (J,a) ^ R

we have d\m(J,a) g dim J ^ dim(J,a) + 1. In our case diml(v) = k

— n — 1 since k ^ n, so I(v) ^ R and so dim /(■ ■ • Ö, • • ■) g dim I(v)

+ 1 = k — (n — 1). But /(• •• Aj • • •) is generated by n — 1 elements, so

it follows by a theorem of Macaulay (van der Waerden [10, p. 70]) that

/(• ■ • dj • • •) is in fact an unmixed (k — n + 1) -dimensional ideal; that is,

all the prime ideals belonging to /(•••£,•«•») have dimension k — n + 1.

For the same reason, of course, I(v) is an unmixed (k — n) -dimensional

ideal. Now let Pi, —, ör be the distinct prime ideals belonging to /(• • • d; • • •);

that is

/(•••«!•••) - Alf) ■•• PI Qr,

where each q, is prprimary, and the p,'s are all distinct. Suppose that
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for some j we have o, G Py- Then I(v) C p;-, and p, is a prime ideal, so

p; contains one of the prime ideals belonging to I(v). But the prime ideals

belonging to I(v) all have dimension k — n and the dimension of p, is k — n

+1, so this is not possible. Thus a,(£ py for any j, so

/(...ä,...):/(a,) = /(---di---)

(for a proof of this see Northcott [6, p. 23, Theorem 6]) and this of course

holds for all i = 1,

Now suppose v = [vu ■ ■ ■, 0„_i]. Then for any k = 1, •••,» — 1 we have

(vk,v) = (y*,K---,u„_i]) = |col(Dik,i;1,---,i;n_1)| =0,

since the matrix in question has two equal rows; hence if vk = (bu ■■■,bn)

thena^jM--\-anbn = 0 and so o, £-!(••. d, •••):/(a,) = /(•••£,-••) Ql(v)

for each i. Thus 7(t>A) c I(v) for all A, and since v = [pj, •••,i'B_i] implies

that /(c)cI]/M it follows that I(v) C/(e>),_1 C/(p)* and hence that

/(") = /(f)2. But this is impossible, since the only idempotent ideals in

F[xu •••,xn] are (0) and (1), both of which are precluded by the restric-

tion on the dimension.

Now let v,w(E R". Then (v, w) is a vector in R2" and I(v, w) the ideal

in R generated by its components, i.e., I(v, w) is the ideal generated by

the components of v and the components of w. With this understanding

we can state

Theorem 3.2. Let F be a field, R = F[xi,---,xk] and v,w(Z-Rn, where

n^3 and k^2n, and suppose dimI(v,w) = k — 2n. Then there do not

exist vectors v2, • • • vn £j Rn such that

|col(D,y2, ■••,!>,,) I = (v,w),

although certainly (v, w) G

Proof. We have dim I(v, w) ^ - 1 since k - 2n ^ 0, so I(v, w) ?± R. Then

it follows from the dimension theorem, just as in the previous proof, that

dim I(v) f dim I(v, w) + n = k — n. From this it follows, again by the same

sort of argument, that dim I(v) = k — n.

Now suppose there do exist v2, ■ • •, v„ G R" such that

\col(v,v2,---,vn)\ = (v,w),

and let u = [v2, ■ ■■,vn]. Then {v, u) = | co\(v, v2,---,vn)\ = (v, w) so (v, u - w)

= 0, and dim 7(f) = k — n so we can apply the argument used in the pre-

vious theorem to conclude from this that the coordinates of u — w must

all be in I(v). Then I(v, u) = I(v,w), so dim/(i;, u) = k - 2n and it fol-

lows as before that dim I(u) = k - n. But then u (£ _5f by the previous

theorem, and this is a contradiction.
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Next let F be a field and R = F[[x,y,z, •••]], the ring of formal power

series in k variables, k finite and *z 3. Then R is of course a local ring, and

it is well known that finitely generated projective modules over such rings

are free, so R is an H-ring. But we claim that R is not an OP-ring.

Proof. Let v = (jc,y,z) E R3, and suppose v=[a,b], a = (ai,a2,a3),

b = (bub2,b3), and a„6;Efi for all i. Then {a,v) = (b,v) = 0, i.e.,

and

Oi* + a2y + a32 = 0

bxx + b2y + b3z = 0.

Computing the linear terms in x, y, and z in these expressions shows that

the a,'s and 6,'s must all have 0 constant terms. Hence 0263 — 62a3 can

have no linear term, so the equation

x = a2b3 — b2a3

cannot be satisfied and u cannot be an outer product.

Finally, Kaplansky has given examples of rings which are not H-rings

(see Swan [9, §4, Example l] for a discussion); we will describe one of

them here because it leads to an interesting question. Let F be a subfield

of the real numbers, p the polynomial x

R = F[x,y,z]/(p), and a—>a~ the natural

Then we claim that Hermite's theorem is false for R; in particular there

does not exist a 3 X 3 matrix over R with first row (x,y,z) and determinant

1, although certainly 1 E I(x,y,z).

Proof. Suppose such a matrix does exist, say

x y J

di a2 a3 I

bi b2 b3

where a;,6;E F[x,y,z], and let u=[(x,y,z), (au a2,a3)]. Then

* + y» + **-l m F{x,y,zl
map of F[x,y,z] onto R.

x y z

Oi a2 a3

bi b2 63

= l+PQ

for some qE.F[x,y,z\, and the coordinates of v are polynomials in x, y,

and 2 so v is a continuous function of the vector (x,y,z), and of course v is

orthogonal to (x,y,z). If (x.y.z) ES2 (the unit sphere in R3) then p = 0

so (v, (bu b2, b3)) = 1 and so v ?± 0. Hence the existence of such a matrix

would imply the existence of a nonvanishing tangent field on S2, contrary

to the well-known theorem.
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This raises the following question. Let Q be the rational numbers and

R = Q[x,y,z]', do there exist polynomials <?,Gfi such that

1 G /(* + qip,y + q2p,z + q3p),

where p is the polynomial given in the above example? Suppose such poly-

nomials do exist, and let v = (x + <7iP,y + q2p,z + q3p) E R3- If Hermite's

theorem is true for R there will be vectors v2, v3 E Ä3 such that | co\(v, v2, v3) \

= 1, and then reducing modp yields a matrix over Q [x,y,z]/(p) with

first row (x,y,z) and determinant 1, which we have just shown is not

possible. Hence the existence of the o/,'s would imply that Hermite's theo-

rem does not hold for Q[x,y,z], which would answer a well-known question

raised by Serre in [7].

Appendix. We will show here that Dedekind domains are OP-rings; this

generalizes slightly a classical result of Steinitz, who proved in 1912 [8]

that Dedekind domains are H-rings. (Of course Steinitz stated his theorem

for the ring of integers in an algebraic number field, but his proof is valid

in any Dedekind domain.)

Let D be a Dedekind domain and a an element of D which is neither 0

nor a unit. Then D/ (a) is a principal ideal ring, and in fact a finite direct

sum of local rings fi* whose radicals are principal ideals generated by nil-

potent elements. (For a proof of this and a discussion of Dedekind domains

in general see [11, Chapter 5].) Hermite's theorem for the J?*'s is clear

(since I(au ••-,an) = Rk only if one of the a,'s is a unit) and the theorem

carries over immediately to direct sums; hence D/(a) is an H-ring.

We will use some standard terminology from matrix theory. Specifically,

SLn(Rk) will denote the group of n X n matrices of determinant 1 over

Rk, I the n X n identity matrix and {ey\ i,j = 1, • • •, n } the usual basis for

RnXn. For i^j and any A£ß

By(\) = I + teij,

and for a transposition (i j) G ©n (the symmetric group on n objects)

Pf,,) is the matrix obtained by performing the permutation (i;') on the

rows of /. Finally for any XER let A(X) = diag(l, - •, 1,X, 1, -• •, 1), with

the X occurring in the ith place (i.e., D,(X) = 7 + (X — l)e,i). The matrices

7Jy(X) are certainly in SLn(Rk); we define ELn(Rk) to be the subgroup

generated by all these matrices, and we note that since A( — l)P(O)

= Bji(l)Bij( - l)B;i(l) this group contains matrices equal to the P(l,)'s

to within a minus sign.

Now if x and y are any two elements of Rk then either x divides y or

y divides x; using this and the fact that ELn(Rk) contains matrices which

act like the P(i»'s one shows by a very standard argument (see, for example,
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MacDuffee [5, the proof of Theorem 22.4]) that for any A ESLn(Rk) there

is a P G ELn(Rk) such that PA is a diagonal matrix. But if i ^ j and u is

a unit in i? then

and it follows from this (provided n ^ 2) that all diagonal matrices of

determinant 1 are in EL„(Rk); hence PA£ELn(Rk). Then A£ELn(Rk)

also, and A was any matrix of determinant 1, so SLn(Rk) = ELn(Rk) for

all rt 2i 2. Now the obvious inclusion of SLn(Rk) into SL„(D/(a)), namely

A—* I + ••• + 7 + A + / + ••• -\- I, sends the Bv (X) matrices into matrices

of the same form, and hence sends ELn(Rk) into ELn(D/(a)) for each k.

Since SLn(D/(a)) = SLn(Rk) = Z*© £LB(fit) it then follows that

SLn(D/(a)) = ELn(D/(a)), and hence that the map of SLn(D) into

SLn(D/(a)) induced by the natural map of D onto D/(a) is actually

onto, since the range of this map certainly contains ELn(D/(a)). With

this established we are now ready to prove

Theorem. Dedekind domains are OP-rings.

Proof. (We wish to thank the referee for the following simplification

of the author's original proof.) Let (au • • -,an) G Dn; we must show that

(au •••,a„) G 3f. If all the a,'s are 0 this is certainly true, and if one of

them is a unit it follows immediately from the corollary to Proposition

2.1. Hence we may assume that some a, is neither 0 nor a unit, and we

may of course take this to be ax. Let D = D/ (a) and a —»ä be the natural

map of D onto D. Since D is a principal_ideal ring there is a d£fJ with

I (au ■ ■ ■ ,ä„) = I (b); let tx; = -y;6 h, E Ö) for each t. It follows from the

representation D = Z© ^* that the 7/s can be chosen so that I (yu • • - ,y„)

= D; we will suppose that this has been done. We may of course further

suppose that n ^ 3, the theorem beingjtrivial if n = 2. Then since D is

an H-ring there is a matrix in SL„_!(D) with first row (72, •••,7»), and

by the previous discussion this lifts to a matrix M0 G <SL„_i(Z)); let

(c2, • • •, c„) be the first row of M0. Then 7; = cj for each i so ö; = c] 6;

hence for each i = 2,        there is a d;GD such that

A(u)A("_1) =        - w:2)5J1(-u-1)5i;("-l)BJ1(l),

a, = d,ai + c,6.

Let

r 1 d2

0

d„-|

M = »

M0
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then MESL„(D) and (aub,0, • • -,0)M = (aua2,. • -,aa), so by (6) of §2

(au ■ • •,a„) G Stf if and only if (aub,0, ■ • -,0) G Jtf• Since the theorem

always holds for n = 2 this last statement follows immediately from (8),

or for that matter one can easily write down vectors whose outer product

is (ObM. •••.<>).
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