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Throughout the present paper, R will be a simple ring, where we shall

understand by a simple ring a total matrix ring over a division rings. If

S' is any subring containing the identity element 1 of R, we denote by

VS(S') the centralizer of S' in R, v%(S') = VR(VR(S')) and by @(S',B)

we denote the group of all automorphisms of R which are the identity on

S'. We shall be concerned with a fixed S' which is denoted by S and shall

consider primarily subrings S' of R which contain S. We abbreviate

VR(S) = V, V%(S) - H, ®(S,R) =©. A subring S' of R is said to be
regular when S' and VR(S') are both simple. Further, if S' is regular

and coincides with fixed ring J(&(S', R), R) of ®(S',R) in R, then we

say that R is Galois over S'. In particular, if R is Galois over S and V

coincides with the center of R then we say that R is outer Galois over S.

If, for each finite subset F of R, the ring S[ F] generated by S and F is a

finitely generated left S-module, then we say that R is left locally finite

over S. If s* is a simple subring containing the identity element of R then,

as is well known, any subring T of R containing S* contains a linearly in-

dependent left (right) basis over S*. By [T:S*], i[T:S*]r) denote the

left (right) dimension. In case [T:S*]/= [T:S*]„ then they are denoted

by [jP:S*]. If M is any subset of R, we denote by M; (Mr) the set of

left (right) multiplications determined by elements of M. For any regular

element a of R, we shall denote by (a) an inner automorphism O/a^1 of R

and by (M) denote the set of inner automorphisms determined by regular

elements of M. In our papers cited in the references, (M) has been denoted

as M. We shall understand by a Hom(ß, Ä)-module M a right Hom(fi, R)-

module M. For any subset 5 of Hom(ß, R), and for any subset M of R,

we denote by 31M the restriction of 5 to M and by # (31M) denote the

cardinal number of 3|M.  We shall consider the following conditions:

(A/): (i) S is regular and ©ßr is dense in HomS((Ä,R) in the finite topo-

logy, and

(ii) R is left locally finite over S.

(Bj): (i) R is Galois over S and R is s( Vp/tVirreducible, and
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(ii) R is left locally finite over S.

(C;): (i) R is Galois over S and R is Sr Vr-Rrirreducible, and

(ii) R is left locally finite over S.

(D,): (i) R is Galois over S,H is simple, and [ Vl(S'): H], = [ V: VR(S'))r

for every regular subring S' with [S':S],< oo, and

(ii) R is left locally finite over S.

(Ei): (i) S is regular and R is Galois over every regular subring S' with

[S':S],< oo, and

(ii) H is simple and [ R': H]t = [ V: VR(R')]r for every regular sub-

ring R' containing H with \R':H]i < oo, and

(iii) R is left locally finite over S.

(Et): (E,) plus the conditions that V%(S') is simple and V\(R') = R'.

We shall also consider conditions (Ar)—(E*) obtained by interchanging

/ and r, and left and right in (A()—(E*).

Recently in [4], the present author and H. Tominaga succeeded in con-

structing a Galois theory of simple rings under the condition (E*) which

we called "hereditarily Galois (abbreviated, h-Galois) and left locally

finite." That theory contained the theory of Walter [10] since Galois

extensions of division rings satisfy (E*). In [5], we also presented some

useful results under the condition (A;). One of our purposes is to prove

that the conditions (A;) —(E*) are all equivalent. Another one is to char-

acterize regular subgroups of ©, which will be defined later, and we shall

present a more desirable Galois correspondence than that of [4] under the

conditions (A,) — (E-*).

The next propositions (a,ß, and 7) will play important roles. We also

require the fundamental theorem of simple rings and the fundamental

theorem of [4] for our last theorem. Otherwise, this paper is self contained.

Proposition a. Let R satisfy (A;) over S. Then, we have:

(i) // S' is a simple subring of R with [S':S]i< 00, then R is completely

S'i-Rr-reducible. If, in addition, VR(S') is a division ring, then R is S'i-Rr-

irreducible [5, Lemma 2].

(ii) If T is a subring of R left finite over S such that R is TrRr-irreduci-

ble, then J(<$(T,R),R) = T [5, Lemma l].

(iii) // S' is a regular subring of R with [S': S]t < 00, then R is Galois

over S' [5, Theorem 2].

Proposition ß. If®* is a finite group of outer automorphisms of R, then

J(®*,R) is simple and R is finite and outer Galois over J(®*,R) (and

®(J(&*,R),R) - ®*) [l]. In general, if R is outer Galois and left locally

finite (or right locally finite) over S, then every subring S' containing S is

simple, and R is outer Galois and two-sided locally finite over S'. If ®*

is a subgroup of © such that J(©*,Ä) = S, and if [S':S]i< 00, then

J(®(S',R)n ©*,ff) =S',[S':S],= [S':S]r= #(Ö*|S'),  and  S' = S[a]
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for some a ES' [2], [3, Theorem 1.1 and Corollary 1.4], [4, Lemma 1.8],

and[9].

Remark. If B is Galois over S, then Ha = H for any o-E ®, and

J(&\H, H) = S. In addition, if H is simple and // is left locally finite (or

right locally finite) over S, then H is outer Galois over S.

Proposition y. Let R be Galois over S, H simple, and H left locally finite

(or right locally finite) over S. Let T be a subring of R left finite over S such

that R is TrRr-irreducible. Then we have:

(i) HHJ(®(T,R),R) is finite over S [5, Lemma 5].

(ii) // [T:HnT]t=[V: VR(T)]r, then

UomSl(T,R) = (®|T)Är= (®*\T)Rr   and ®\T=®*\T

for any subgroup © * of © such that<$*^{V) and J( © *, R) = S. In parti-

cular, ifHH T=Sand[T:S]t = [V: VR(T)]r, then Homs,(T,B) = ((V)\T)Rr
and <$\T = (V)\T (its proof is similar to that of [4, Lemma 3.1]).

Throughout this paper, we shall use the following conventions: R

— ̂ Dey, where e,/s are matrix units and D= VR({eij\) is a division ring.

In case V ( = VÄ(S)) is a simple ring, we set V = ^Ugpq, where the

gpq's are matrix units and U = Vv({gp,)) is a division ring.

In case H ( = V|(iS)) is a simple ring, we set H =^^Kdhk, where the

dM's are matrix units and K= V^jdw,}) is a division ring.

C will be the center of R, and C0 the center of V, which coincides with

the center of H.

1. On Galois conditions. Now, we shall begin our study with the follow-

ing lemma.

Lemma 1. Let P and Q be subrings of R containing 1 such that xy = yx

for every x in P and every y in Q. If R is PiQrRr-irreducible, then we have:

(i) R is a completely reducible homogeneous PrRr-module.

(ii) VR(P) is a simple ring; if VR(P) is a division ring then R is PrRr-

irreducible.
(iii) [Vfl(-A): VR(P)]r^ [P:A]t for any simple subring A of P such that

IE A and [P:A]t< °o. A similar result holds for any simple subring B

of Q such that IEB and [Q: B], <

Proof. Let M be a minimal submodule of the PrBr-module B. Then

B = PQMR = QM = ^x&qxM, where xM is 0 or PrBr-isomorphic to M,

that is, xM is 0 or PrBr-irreducible. The assertion of (ii) is a direct con-

sequence of (i). Set VR(P) =£Ffij, where the fjs are matrix units and

the centralizer F of {/<, ( in VR(P) is a division ring. Set P' = £P/V Then,

noting here P'F = PVR(P) D PQ, R is Pi FrRr-irreducible. Since VR(P')

= F (division ring), fl is P,'-Br-irreducible. Clearly, for nonzero v of B,
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(oi\P')Rria (left) P^-(right) Rr-irreducible in Hom(P',P), and x-> (v,|P')xr

is a module-isomorphism of R onto (vi\P')Rr. Set A' = VR(A). Then we

have (A!\P')RrCüomAl(P',R) and

[(A11 P')Rr: Rr]r ̂  [HomAi(P', Ä): Rr]r = [P':A]i= [P>: P],[P: A],.

Since [A':F]r=[A':VR(P)]r[ VR(P): F]r and [ VR(P): F]r = [P': P],, it

suffices to prove that [A': P]r = [(A! | P')Rr: Rr]r. Hence, we shall show

that for any subset W of A', Wi\P' is linearly dependent over Rr if and only

if W is linearly right-dependent over F. Assume that

2>*. = Q (viEW.XiEF)

is a nontrivial relation. Then, for any yEP', we have

0 = (I>*i)y = 2>y*i = y£>i;|P')xir).

This implies that Wi\P' is linearly dependent over Rr. Conversely, assume

that

i>„|P')xir = 0 (ViEW.XiGR)
i

is a nontrivial relation of shortest length. Since (^|P')Pr is (left)P^-

(right) Pr-irreducible, without loss of generality, we may assume that xx

= -1; (vu\P') =J^2(vu\P')xir. Then, for any ygF, we have

0 = yr(vxl\P') - (vu\P')yr = zZ(vu\P')(yxl - x,y)r.
2

This implies that (yx, — x,y)r = 0 and so yx, = x,y for any yEP'- Hence

XiEF (i = 1, •••,»). We have therefore a nontrivial relation zZ"vixi = ®

(x>EF).

Corollary 1. Let P be a subring of R containing 1 such that R is PrRr-

irreducible. Then [ VR(A): VR(P) ]r ^ [P: A]t for any simple subring A of

P such that IE A and [P:A]i< °°.

Corollary 2. Let S be simple and R left locally finite over S. Let T be a

subring of R containing S such that [e^CZT and [T:S]i< oo. Then

[V: VR(T)]r^ [T:S]iand [ V: VR(T) ], ̂  [T: S],. In particular, if HP\T
is simple, then [V: VR(T)]r ̂ [T:Hn T], and [V: VR(T)]i g [T:H(~) T]i.

Proof. For an arbitrary finite subset F of V, we set T = T[ F]. Then

7" is Ti-T'r-irreducible and Tf-T^-irreducible. Hence, by Corollary 1, we

have  [Vr(S):Vr(T)]r^[T:S}l  and   [Vr(S): Vr(T')} r ^ [T: S]t. Since

[VAS): Vr(r)]r=[Vr(S): VAT')],

and
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[VAT): VAT')]r=[VAT): VAT')]h

it follows that [VAS): VAT)]i = [VAS): VT(T)]r g [T: S]j. Noting here
VV(S) C V and VVCT) C VR(T), we obtain our assertion.

If two subrings T, S' of R satisfy the following conditions, then we say

that S' is left linearly disjoint from T: S' contains a linearly independent

left basis over T Q S' and for any linearly independent left basis j d,; i G I)

of R over TOS', the sum ]T,6/Tdi is direct and Td, is (left) T-isomorphic

to T. If S" is left linearly disjoint and right linearly disjoint from T, then

we say that S' is linearly disjoint from T. The next lemma is partially

similar to [4, Lemma 3.2].

Lemma 2. Let H be simple, and let S' be a subring of R containing S[{dkk\]

such that J(&(S',R),R) = S'. Then HC)S' is simple and S' is linearly

disjoint from H.

Proof. Set H' = HnS'. Then, noting that H' D [d^] and x~lES' for

any regular xGS', V^^d^]) is a division ring, and so H' is simple. Now,

choose a linearly independent left basis {d,;i£f) of S" over H'. Then

we have

^ Hdj = £ Kd^di      (K is a division ring).
i i,k,k

Hence, it will suffice to prove that \dhkdi\ is linearly left-independent

over K. If not, without loss of generality, we may assume that

dudi = £ ahkidhkdi   (ahki £ K)

is a nontrivial relation of the shortest length. Then, as there exists some

Ok'k'i' not contained in K(~)S', we can find some <x£ ®(S',Ä) such that

Qh'k'i' =V Oa'*y<7 (G X). Hence, we have a nontrivial relation of shorter

length:

0 = dudx - (dndi)(r = £(aMl - ahkia)dhkdi.

This contradiction implies that the d^d's are linearly left-independent

over X. Moreover, if we use similar method for a linearly independent

right basis \d*;jEJ\ of S' over H', then the djdM's are linearly right-

independent over X.

Corollary 3. Let R be Galois and left locally finite over S, and H simple.

Let T be a subring of R containing S[\eij},\dhk\] with [T: S]t < <x>. Set

T = J(®(T,R),R). Then we have:

(i) [HnT':S]< oo and V is linearly disjoint from H, and

(ii) Hx 7" is a simple ring for any subring HK of H containing H f) T'.

In particular, HT' is a simple ring.

Proof. Set H' = HC\T'. Then V is linearly disjoint from H by Lemma
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2. Further, H' is finite over S by Proposition 7(1). Let T, be an arbitrary

subring of V containing H'[T] with \Tr. H'],< °=. For any element a of

H, we set AT= H'[{ao,o(E ®(T',R)}], and

T\ = J(®(T',R)\Ti[N],Tl[N]).

Then N and Ti[N] are outer Galois over H' and 77, respectively; the

Galois groups of these are ®(T',R)\N and ®(T', ß) | T,[AT], respectively.

Hence, by Proposition ß, we have [H'[a]:H'} = # (®{T',R)\H'[a])

= #(®(T',R)\T'i[a]) = [T'i[a}:T'i]. Since 7" is linearly disjoint from

H over H' and 77' C TJ QT, it follows that

[7Y'[a]77: 77'], = [77'[a]77: 77'[a]],[77'[a]: «P]i

= [7V:if'MTT[a]:77], = [77[a]:H']<.

This implies that 77'[a] 77 = T',[a]D T,[a]. For an arbitrary subring 77,

of 77x containing 77' with [if<: H'] < °°, 77,= if'[a] for some a G 77, by

Proposition /J. Hence, T'[77x] = Uoewx.. T,{a] = U 77'[a]77 = 77XT'. Not-

ing that T'[Hx]D{eij\ and T'[HX] is left locally finite over S, 77x7" is a

simple ring.

Corollary 4. Lei ä 6e Gabis and left locally finite over S, and H simple.

If R is Galois over every regular subring S' of T containing S with [S':S]i

< oo, then R is left locally finite over any subring Hx of H containing S.

Proof. For any finite subset F of R, we set T = }, {dw j, F], and

HC)T=H'. Since R is Galois over T, HX[H']T is a simple ring and T is

linearly disjoint from 77 over 77'. Hence, by Proposition ß, we have

[HX[F]: 77x], ̂ [HX[H']T: 77x], = [HX[H']T: Hx[H'MHk[H']: Hx],

Proposition 1. (A,) => (B,) => (Ar) => (Br) => (A,). If one of these

is fulfilled, then R is two-sided locally finite over S and over 77.

Proof. (A() ==> (B;) is a direct consequence of Proposition a(i, iii).

Let R satisfy (B,) over S. Since R is S, VrRr-irreducible, 77 (= VR(S)) is

simple by Lemma l(ii). For any finite subset F of R, we set

T=S[{e,]\,{dhk\,F},     T' = J(&(T,R),R),   and   77' = 77 Pi T".

Then [ V: VR{T)]i ̂ [T: S], by Corollary 2, and VR(T) = VR(T), and

whence [V: VR(T')]t < oo. Hence, by Lemma 1 and Lemma 2, we have

(1) [T:H'}r=[T'H:H)r^[V2R(T'):H}r^[V:VR(T')}l< oo.

On the other hand, noting that R is 77-7?rirreducible, it follows that

(2) [r:H']r*[V: VR(T)]h

by the proposition symmetric to Corollary 1. Combining (1) and (2), we
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have [T':H']r= [V: VR(T')},. Hence, we have HomSr(T',Ä) = (®\T)Rt

by the proposition symmetric to Proposition 7(h). Since 7" D F and (1),

it follows that (B,) => (Ar), and R is right locally finite over S and over

H. (Ar) => (Br) ==> (A/) is the proposition symmetric to (A;) ==> (B()

==> (Ar), and so, T is left locally finite (over S and) over H.

Proposition 2. (Q => (A,), (D,) => (A,), (E,) => (A,), and (E,*)

=> (A,). Symmetrically, (Cr) => (Ar), (Dr) => (Ar), (Er) => (Ar),

and (E*) => (Ar).

Proof. In any case of the conditions (C,), (D;), (E,), and (E*), it is clear

that R is Galois and left locally finite over S, and H is simple (in case (C;),

H is simple by Lemma 1). For any arbitrary finite subset F of R, we set

T=S[\el]\,\dllk},F], T' = J(®(T,R),R), and H' = H(~) V. Then, by

Corollary 3, we have

(1) [H':S]<oo.

Since R is tf'[T]rÄr-irreducible and [H'[T]:Hf], < », we have [T':H']t

s> [H'[T]:H'], ^ [VR(H'h VR(H'[T])]r = [V: VR(T)]r = [V: VR(T')]r by
Lemma 1. This inequality and Corollary 3 imply

(2) [W): H}^ [HT: H]t = [T: H']t^ [V: VR(T')]r,

where [ V: VR(T')]r < ™.  Finally, we shall show that

[T: H']t = [ V: VR(T')]r

(and then [T":S]j < °o by (1) and (2)), and this and Proposition y(ii) will

imply Homs,(T",ß) = (®\T')Rr, which is the desired one. In case (C(),

we have [ V«(T'): H]t ^ [ V: VR(T')]r by the proposition symmetric to

Corollary 1. Hence, [T:H'], = [V: VR(T')]r by (2). In case (D,),

[VKT): H]i= [V%(T):H],= [V: VR(T)]r= [V: VR(T')]r.

Hence, [T: H']t = [V: VR(T')]r. In case (E,), we have T = T, and so,

HT' is a regular subring with [HT':H]i< °o by Corollary 3. Hence,

[HT: H], = [V: VR(HT')]r = [V: VR(T')]r. This implies that [V: H']t

= [V: VR(T'))r. Case (E,*) is contained in (E,).

Proposition 3. (A,) => (C,), (D(), (E,), and (Et). Symmetrically, (Ar)

=> (Cr), (Dr), (Er), and (E*). If R satisfies (A,) over S, then, for every

regular subring S' of R containing S with [S':S]i < od, R satisfies (A;) over

S', and [S':S],= [S':S]r.

Proof. Let R satisfy (A/) over S, and let S' be as in our Proposition 3.

Then, by Proposition a(i, iii) and Lemma 1, 2? is Galois over S' and

S/ Vfl(S')rßr-irreducible, and Vß(S') is simple. In particular, R is Galois

over S and Si VVßr-irreducible, and H is simple. Evidently, R satisfies
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(B() over S' and, hence, satisfies (A;) over S' by Proposition 1. Moreover,

(A;) ==> (C;) is a direct consequence of (A() ==> (Br) => (C().

Now, we set T = S'[{«„■}, [d^},\fuv}}, where the fjs are matrix units

of Vfi(S') (simple ring) such that the centralizer of [f^] in VR(S') is a

division ring. Set H' = H DT. Then, by Corollary 2 and Lemma l(iii)

and Lemma 2, we have

(1) [T:H']tZ[V: VR(T)]i 2i [V%(T):H]r Sr [TH: H]r = [T:H']r.

Similarly ((Aj) <=> (Ar)), we have

(2) [T:H']r^[V: VR(T)]r^[V2R(T):H]l^[HT:H}l=[T:H']l.

Combining (1), (2) and [H':S]i = [H':S]r (Proposition ß), it follows that

(3) [T:S],= [T:S]r  and   [V2R{T):H)l= [V:VR(T))r.

Since R satisfies (A() over S', there holds a similar result:

(4) [T:S'],= [T:S']r  and   [V&T): W)], = [VR(S'): VR(T)]r.

Hence, by (3) and (4), we obtain that [S':S],= [S':S]r and [V&S'): H]t

= [V: VR(S')]r. This implies (A,) => (D,).

Finally, we shall show (A,) => (E,) and (E*). Let R' be a regular sub-

ring of R containing H with [R': H]i < oo. Then there exists a regular

subring S' of R' containing S with [S': S], < » such that VR(R') = VR(S')

(note that [R':H],< »). Since (A,) => (D,), it follows that \V2R(S'): H]t

= [V: VR(S')}r, and so, [V2R(R'): Hl = [V: VR(R')]r. Moreover, R is

Si Vfi(S')rßr-irreducible, that is, R is R', VÄ(^)rflr-irreducible. Hence

[R':H]t* [V: VR(R')]r by Lemma l(iii). Noting here V&Ä') D Ä' D H,

we have Ä' = Vl(R') and [Ä':if],= [V: V«(Ä')],.

Theorem 1. The conditions (A,)—(Er*) are alt equivalent. If R satisfies

one of these over S, then R satisfies these over H, and, for every regular sub-

ring S' of R containing S with [S':S]t < °°, R satisfies these over S', and

[S':S]r*[V: VR(S')],= [V: VR(S')]r= [W): H]t

= [ VHS'): H\ = [S': H n S'], - [Sf: H n S' ]r.

Proof. The first assertion is a combination of Propositions 1,2 and 3. Evi-

dently, R satisfies (E,) over H. Let S' be as in our theorem. Then, R is

Si VR(S')rRr-irreducible and S'r VR(S')r-Rrirreducible. Hence, we have

[S':S],£ [V: VR(S')]r&nd [S'iS],^ [V: VR(S')], (Lemma l(iii)). Then, by
(D,), (Dr) and Proposition 3 (over S and over H), we obtain our last as-

sertion except for the equalities [VR(S'):H]r = [S': H C\ S'], = [S':HC\S']r.

To prove this, it suffices to show that [S': HD S'}, = [ VR(S'): H},. Since

R satisfies (A;) over HC)S', [S': Hf) S']/ = [ V&S'): H],. Hence, we shall

only show that [S'-.HnS'}^ \VR(S'): H},. Let H* be a subring of H
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containing (Hn S')[\dhk\] with [27*:S]<co. Set S* = S'[H*]. Then

S'CS*C V|(S'). Noting that VR(S') is outer Galois and locally finite

over S', S* is simple by Proposition ß, that is, S* is a regular subring finite

over S, and whence, 22 is Galois over S*. Hence, by Lemma 2, [S*: H C\S*]i

= [HS*:H]i g [\4(S'):#]i. Moreover, by Proposition 0 and its remark,

[S*:S']= #(®(S',R)\S*) = # (®(S',ß)|tf*)

= # (®(S',Ä)|/Yns*) = \Hns*:Hns'}.

We have, therefore, [S':#nS']« = [S*:HOS*],* [V%(S'):H],.
Remark 1. Let R satisfy (A() over S. For any finite subset F, set

T= S[{ev},F]. Then, Tis a regular subring finite over S. Hence, [T:Tp|2f]

= [V: Vr(T)]- Further, R is Tr22r-irreducible. Hence, if is a subgroup

of ® such that © * D < V) and J( © *, 22) = S, then ® | T = © * | T (Proposi-

tion y(u)) and so $|F= (9*|F. This result is contained in [4], which

will be required later.

Remark 2. Let R be Galois and left locally finite over S. If 22 is a divi-

sion ring, then 22 satisfies (A() over S, which is a direct consequence of

Jacobson's density theorem. On the other hand, this result is a direct con-

sequence of the equivalence (B;) <=> (A;).

Remark 3. Let 22 be Galois and left locally finite over S. If V is finite

over the center C0 of V, then 22 satisfies (A() over S [ 4, Theorems 2.2, 2.4],

and this proof is very complicated. However, this theorem is a consequence

of the equivalence (D;) <=> (A;). We shall show that 22 satisfies (D()

over S. Let S' be a regular subring of 22 containing S with [S":S]j < °=.

SetT = S'[jeyj,{d1,---,dn)],wherejd1JisaC0-baseof V. Then [V: Vfi(T)]r

?i [T.S], < - (Lemma 1), VR(T) C C0C V, VR(T) C VR(S') C VQ V%(T),
and je0}C V\(T). Hence, VR(T) is the center of the simple ring Vl(T).

Since [ V: VR(T)} < oo, VR( V) = 22 and VliS') are both simple (the funda-

mental theorem of simple rings). We have then [ V'R(T): VR( V)}= [V: VR(T)}

and [VR(T):V2E(S')]=[VR(S'):VR(T)]. From this, it follows that

[VUS'):H]~[V\ Vg(S')].
Remark 4. If, for any finite subset F of 22, there exists a subring of 22

containing F which is Galois and finite over S, then we say that 22 is locally

Galois over S. If 22 is Galois and locally Galois over S, then 22 satisfies

(A() over S, and this proof has been given in [4, Theorems 2.2, 2.3]. On

the other hand, this is an easy consequence of the equivalence (B;) <=>

(A/). We shall show that 22 satisfies (B,) over S. Let a be a nonzero ele-

ment of 22, and x any element of 22. Then, there exists a subring N of 22

containing \a, x\ which is Galois and finite over S. Since N satisfies (D()

over S (the fundamental theorem of simple rings), N is SiVN(S)rNr-

irreducible. Hence, N = SVN(S)aN3 x. This implies that 22 = SVR(S)aR,

that is, 22 is Si VTr22r-irreducible.
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2. On ©. This section is about the regular subgroups of ©. Now, we

shall recall the definitions of regular subgroups of ® as in [4]. Let 72 be

Galois over S, and let ®' be a subgroup of ©. Then VR(J(&',R)) will be

denoted by V(©'). In our paper [4], V(©') was denoted by V®-. Further,

by 7(©') we denote the subring of R generated by the set of regular ele-

ments inducing inner automorphisms belonging to ®'. Clearly, /(©')

C V(Ö')C®.
(i) If /(©') is simple and </(®')> C ®', then ®' is said to be N-regular.

If, in addition, [V:7(®')]r< 00, then ©' is said to be Nrregular.

(ii) If VC©') is simple and <V(@'»C ®', then ®' is said to be (*)-

regular{®' is (*)-regular if and only if©' is TV-regular and 7(©') = V(©')).

If, in addition, [V: V(©')]r< co, then ©' is said to be (*f)-regular.

(iii) If©' is (*)-regular and J(©',72) is simple, then ©' is said to be

regular. If, in addition, [V: V(©')]r< °°, then ©' is said to be f-regular.

Similarly, a regular subring S' of R containing S is said to be f-regular

provided that [V: VR(S')]r< ». If S' is a regular subring S' of 7? finite

over S, then S' is f-regular and ®(S",72) is f-regular (Theorem 1). In

general, if S' is an f-regular subring of 7?, then ©(S',7?) is (*f)-regular.

One will see later (Theorem 3) that ©(S',7?) is f-regular. On the other

hand, if ©' is f-regular then e7(©',72) is f-regular.

At first, we shall prove the next lemma which will play important roles

in our subsequent considerations.

Lemma 3. Let R satisfy (A,) over S. Then, for subrings R', V of R such

that R' D 77, VD V, VR(R') = V and VR(V) = 72', the following hold:
(i) If R' is a simple ring with [R': 77], < co , then V is simple, and [72': 77]

= [V:V'].

(ii) If V is a simple ring with [V: V']r < co, then 72' is simple, and [V: V]
= [R':H].

Proof, (i) Since 72 satisfies (A;) over 77 (Theorem 1), 72 is 72/-72r-com-

pletely reducible by Proposition a(i) (over 77). Since the center of V

coincides with the center of 72' which is a field, V is a simple ring, and

[72': 77]= [V: V] is a direct consequence of Theorem 1. (ii) If suffices

to prove that 72 is V7-72r-completely reducible. Since 72 is 77r Vr-7?i-irre-

ducible, [72': 77], g [V: V']r (Lemma 1). Set 72" = 72'[jeh•}] and VÄ(72")
= V". Then, by Theorem 1, we have [72": 77] = [ V: V"\ < co. We set here

V* = £ Vdu (simple), where 77 = £Kdhk. Then, [72": K] = [ V*: V"],

VR(V*) = K and VR(V") = 72". Since 72 is 77,Vr72r-irreducible, 72 is also

Ki V,*-72r-irreducible. Noting here VR(V*) = K (division ring), 72 is V?-

72r-irreducible (Lemma 1). Hence, by Proposition y(n), Hornet V*, 72)

= ((72")| V*)Är = £,(*.! v*)Rr (direct sum) with some ai'aE (R"), where

one may remark that each (ot\V*)Rr is (left)  ^-(right) 72r-irreducible,
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and is (module) isomorphic to fi under the mapping x<-> (<r,j V*)xr. Ac-

cordingly, the (left) Vr*-(right) fir-submoduleHomK,'(V*,fi) of Homv/( V*, R)

is completely reducible: HomV{( V*, R) = (direct sum), and each

Wy is (left) V*-(right) Rr-isomorphic to V*)Rr for some of^M- If

Wj3tj*-*<r'j\ V* E (o-'j I V*)fir under the above isomorphism, then, xr%

«-►**(*;I V*) = (of I V*)(x*e'j)r**tj(x*<,j)r for each x*E V*. We have,
then, x*(j = tj(x*a'j)r, whence, it follows x% = (l«,)(x*o-;'). Hence, W;-

= tjRr= WjUji\ V*)Rr with u; = 1«,. Further, for any x*E V", we have

x*fj■ = x*(lf;) = x*Uj and x*e; = u;(x*a;'), and so, x*Uj = Uj(x*o'j).

Now, let Vafi (a E V*) be a V7-fir-submodule of R such that the

composition series of V'aR as fi-right module is of the shortest length

among the V7-fir-submodules {V'aR;aEV*\. Then, V'aR is a K/V7-

fir-module. If M' is an arbitrary minimal Kt V7-fir-submodule of V'aR,

then M' = e' R (e' E V*) as a submodule of a KrÄr-completely reducible

module R (note that if R = M' ® M" for some Kr fir-module M", then

l = e' + e" and e',e" E VR(K) = V*), and so, V'aRD M' = V'eR. We

have, therefore, V'aR = V'efi = M'. This implies that V'aR is a irreduci-

ble Ki V'i-Rr-submodule of fi. For an irreducible V/-fir-submodule V'xR

of V'aR, we have V'afi = KV'xR = £yeÄ V'yxfi. It follows that V'aR

= Y^iV'XiR (direct sum), where Vx.fi is V7-Är-irreducible.

Since V'a C V*, we have

(Vo)l;-= (Vr/o)0-ju;/Är= u,((V'a)o-;)Ä

= u^Vo^-1))^) = Uj((V'aR)a'j).

Noting that R is VI-Hornvj (fi, fi)-irreducible, there holds that

R= (V'a)Horn»j(Ä,Ä) - (V'a) (Hom^LR, fi) | V*)

Finally, we shall show that u,(( V'x,fi)<7,') is 0 or a V/-fir-irreducible mod-

ule for every i, j. Since Vx^fi is Vrfir-irreducible, (V'x,fi)o-;' is (V'<r;)r

fir-irreducible. Noting here u;(x*o-j) = x*u) for any x*E V', the mapping

(VxiR)aj = VWjiXifffiR-nijiV'oDiXioftR = V'Ujix^R is a right fi-linear
and left V'a]-semilinear homomorphism. Hence u,(( Vx.fi) o-;') is 0 or a

Vf-fir-irreducible module.

Remark. Let fi satisfy (A() over S. If ®' is a (*/)-regular subgroup of G,

- (V'a) Horn^ V*. fi) = (V'a) Z™j = Z (Va)SW;

= EZ«;((^,iiM).
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then J(®',R) CJ«V(®')),R) = VR(V(®')) and so

V(Qb') - VR(J(®',R)) D V2R(V(&')) D V(©').

This implies that V|(V(©')) = V(®'). Hence, by Lemma 3, we have

[V7: V( ®')],= [V: V( ©')],. In particular, if ©' is /-regular, then

[V: V( ©')],= [V: V( ©')],. On the other hand, if S' is an /-regular

subring of R, then Vs(VR(S')) = V«(S'). Hence, by Lemma 3, we have

[V: VR(S')]r=[V: VÄ(S')],.

Lemma 4. Lei R satisfy (A,) oi«r S. If ©' is a subgroup of © such that

[j(®'n ©(#,ä),ä):/f]/< »./ach [«/(®',ä):«/(®',ä)n/f],< co.

Proof. Set ®*={aG®';rf»*ff = dtt for each dttG{rfikt}}. Then (©':©")

^ n^wi # {d«o-; a G ®'} < 00 • Hence, by Proposition ß,

[J(®",R)C)H:J(<$',R)nH] g (©': ©") < ».

Since J(©",ß) D {d«j, it follows (Lemma 2) that

[A ®",R):J{®",R)nH]l= [HA ®",Ä):if]j

^[J(@"n ®(/f,Ä),Ä):/f]/= [«/(©'D ®(H,Ä),Ä):H],< -

(note that ®" f| ®(H,Ä) = ®' f| ®(H,Ä)). Hence,

[J(®',Ä):J(®',Ä)nH]/^[J(®',Ä):«/(®',Ä)nH]t

= [^©».Äji^ö'.ÄjnHiM®*^)!-!«:^®',;?) nfl]i< ».

This completes the proof.

Remark. Let R satisfy (A,) over S. If ©' is a subgroup of ©, then

J(®',R) f~]H is /-regular. By Corollary 4, R is left locally finite over

J(®',Ä)nH. Since Ä is S, VrÄr-irreducible, Ä is (J(©',Ä) H H)iV,-Rr-

irreducible. Hence R satisfies (B() (and so (A,)) over J(©', R) D H. If, more-

over, ©' is (^-regular then ©' n ®(H, Ä) D (V(®')> and [ VÄ( VC®')): #]

< oo (Lemma 3). Hence, by Lemma 4, [J(@',Ä): J(@',Ä) fl H], <» .

As in [4, p. 84], we may place the finite topology on the group ®. Here

a basis for the neighborhoods of a £ © consists of the sets U(a, F)

= (r£G; t\F = <t\F\, where F runs over all the (nonempty) finite sub-

sets of R (or subrings of R finitely generated over S). Then © is a topo-

logical group which is totally disconnected, and U(a,F) is not only open

but also closed. If ©' is an /-regular subgroup of ©, then J(©',fi) is an

/-regular subring with [J(®',Ä): J(®',Ä) OH], < ». Hence, by The-

orem 1, R satisfies (A/) over Jf®',/2). Moreover, by Remark 1 of The-

orem 1, ®'|F= ®(J(®',Ä),Ä)|F for any finite subset F of Ä. Since

®(J(@',Ä),Ä) = PI ®(S[F],Ä) (F runs over all the (nonempty) finite

subsets of </(©',/?)), ©(</(©', R),R) is a closed subgroup of G. Hence ©'

is dense in the closed /-regular subgroup ©(J(©', R), R). In particular,

if©' is a closed /-regular subgroup of ©, then ®(«7(®',Ä),Ä) = ©'.
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Lemma 5. Let R satisfy (A,) over S. 7/ ©' is a closed f-regular subgroup

of ©, then ©'( V) is a closed f-regular subgroup of © and so

®'(V)= ®(Hrv(@',Ä),Ä).

Proof. Set S' = J(©',ß) and H' = HC\S'. Then, by the remark of

Lemma 4, R satisfies (A,) over tf' and [S'\ H'] < ». Set 7= je«}].

Then T is a regular subring of Ä with [T:H']< <*>. Hence, [TiffflT]

= [V:Vfl(T)], and R satisfies (A,) over tfpT (Theorem 1). Noting

here TD fi is T,-ßr-irreducible. Hence, by Proposition 7(h), we have

&(HC\T,R)\T= (V)\T. This implies that ©(tfp = ®(T,Ä)<V>.
Since J(@'|ff,H) = H' and [Hfl T: H'} < co, ©(#',#)|Jfp| T = ©'|7Y
fir (Proposition /3 and its remark). Hence, for &'\HC)T = \ ai\HC\T;

i=l,...,n=[HnT:H'}\ (#,£»'), we have

®(H',Ä) = U ®(HnT,R) ffi=U ®(T,ß)(Vi)ff,,

Since ©' is closed and /-regular, 0' = ©(«/(©', Ä), Ä) = ®(S', Ä) by the

remark of Lemma 4, and from this it follows that ©(T, Ä) C ©'• This

implies that 0(H',Ä) = U ©(T,Ä) <V>, C ©'<V). On the other hand,

®(H',R) D 0'<V>. Hence, ©(77',Ä) = 0'<V>, which is a closed /-regular
subgroup of ®.

Lemma 6. Lei R satisfy (A,) ouer S. // an N-regular subgroup ©' 0/ ©

contains a closed f-regular subgroup ©* suc/i i/iai 7(©') = /(©*) (= V(©*))

and (©': © *) < 00, i/ien ©' is closed and f-regular.

Proof. Set S' = J(©',Ä) and S* = J(®*,R). Then, by Lemma 5,

@(77pS*,ß) n ©' = ©*<V)n ©'• For any ff in this intersection, we

may write <r = T(a), tE©*, (a)E(V). Then (a) = t^VE (/(©'))

= (/(©*)) C ©* and so o- = r(a) E ©*. This implies that <$(HnS*,R)

p ©' = ©*. If, for a in©', a\H(-)S* is the identity, then 0- is in ©(77pS*,.R)

p @' = ®*, so that o-|S* is the identity. It follows that for an auto-

morphism a in ©', a\S* is the identity if and only if o-|77pS* is the

identity, and that

0= > (©': ©*) = #(©'|S*) = #(©'|77pS*) = [HnS*:HnS']

(Proposition ß). Now, let S** be a subring generated by U„ew S*<r. Then,

noting that (/(©')> is a normal subgroup of ©' and S*CVÄ(J(®*))

= J«7( ©')),/?), S** is a subring of VÄ(/(@*)) containing S*. By the

remark of Lemma 4, Ä satisfies (A() over S*. Hence, S** is simple by

Proposition ß and its remark. Moreover, we have #(©'|S**) ^ (©': ©*)2

< od . If, for an automorphism a in ©', a\S** is an inner automorphism

(a) of S**, then, <r|S* = <a)|S* and (a)E(V), so that o-|77pS* is the

identity. Hence, a\S* is the identity an so a is in VR(S*) = /(©*). Not-

ing here S** C V«(7(©*)), (a)\S** is the identity. Thus @'|S** is a
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finite group of outer automorphisms of S**, and, hence, S** is finite outer

Galois over S' (and S' is simple). Since # (©'|S*) = # (®'\S'[HC\ S*]),

we have S* = S'[HnS*] (Proposition ß). This implies that VS(S')

= VR(S*) = /(©*) = 7(0'), so that ©' is /-regular. Further, noting that

(©': ©*) < », 0' is closed.

Theorem 2. Let R satisfy (A() oi*r S. Let ©'tea closed Nrregular sub-

group of 0 such that VS(/(0')) = 7(0'). TAere 0' is f-regular if and only
if (©': (0,n 0')(7(0')» < co for every open subgroup 0, of 0.

Proof. Suppose that 0' is /-regular. Let 0, be an open subgroup of 0.

Then there exists a finite subset F such that 0(S[F],2?) C 0, (note that,

for a in 0, the sets U(a,F) = {tG0, t|F = a\F\ (F runs over all the

(nonempty) finite subsets of 7?) is a basis for the neighborhoods of a).

Set S' = «7(0', R). Then, by the remark of Lemma 4, 7? satisfies (A,) over

S'. Set T= S'[F,(ev}]. Then [T:S']< », and ®(T,Ä) is a closed /-

regular subgroup of 0(S',Ä) such that «7(0(T, 7?), 7?) = T. Hence, by

Lemma 5 (for S = S' and H=V2R(S')), 0(V|(S') O T,7?) = 0(T, 7?)
(yfi(S')). Further, we have

(0(S",7?): 0( Vl(S') H T, 7?) = # (0(S',Ä) I V|(S') f| T)

= [VR(S')nT:S'}< -

(Proposition 0 and its remark). We have, therefore,

(0(S',7f): ®(T,R)(VR(S'))) < ».

Then, noting that ®(T,Ä) C ®(S',Ä) = ®' and VR(S') = 7(0'), and that

W(7,,Ä)C0(S[F],Ä)C0i, itfollowsthat(®':(®in®')(7(0'))) <
Suppose that (0':0tn0')(7(0')))<oo for every open subgroup

0. of 0. Since Vl(7(0')) = 7(0') and [ V: 7(0')], < », there exists a

finite subset F of Vß(7(0')) such that V«(S[F]) = 7(0'). Further, by

Lemma 3, Vfi(7(0')) is simple. Let jd^} be matrix units of Vs(7(0'))

suchthat the centralizer of {d«( in VÄ(7(0')) is a division ring. Set here

0*= 0(S[F,{dfc}],Ä). Then 0* is closed, and so 0*n©' is a closed

/-regular subgroup of 0 such that 7(0* n 0') = 7(0'). On the other

hand, 0* is open. Then, noting here 0 * n 0' D (7(0')), we have

(0':(0*n0')) < 00 • Hence, by Lemma 6, 0' is /-regular.

Corollary 5. Let R satisfy (A,) over S. Let V be finite over the center C of

R, and set 0*= 0(S[jey}, (r„(],7Z), where jr„( is a linearly independent

left basis of R over 77. Let 0' be a closed N-regular subgroup of 0. Then,

the following conditions are all equivalent.

(i) 0' is regular.

(ii) (0':(0*n 0')<7(0')» < co.

(iii) (0':(©,n ©')(7(©'))) < co for every open subgroup ©, of ©.
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Proof. Since [V: C] < =», ®' is an Nr regular subgroup of © such that

Vfi(/(©')) = /(©') (the fundamental theorem of simple rings). Further

© * is an open (closed) subgroup of ©. Hence, by Theorem 2, it suffices to

prove that (ii) => (iii). Let ©, be an open subgroup of ©. Then there

exists a finite subset F of R such that © (S[F], R) C ®.. Since © * is closed,

©*fl©' is closed and outer (and regular). Set T = J(© * pi ©', Ä)

(regular). Then ©*D ©' = ©(T,i?) (the remark of Lemma 4). Noting

here [T[F]: T] < «, we have (@*n ©': ®(T[F], Ä)) = ((©* n ©') | T[F])
= [T[F]: T] < oo (Proposition 0). Hence

((©*H ©')</(©')): ©(7*[F], «)</(©')» < oo,

and so

(©':©(T[F],fi)</(©')))

= (©': (@*n ®')</(®')»((®*n ®')</(®')>: ®(T*[F],Ä)</(©')))

< oo.

Since ^(T[F],/7) C ®(S[F],Ä) C ©<, and ©(T[F],F) C ©(T,fl) = W*
n©' C       it follows that

(©':(©,n ©')(/(©'))) < oo.

Remark. The equivalence (i) <=> (ii) is contained in [4]. Further,

Corollary 5 is still true for replacing the condition that V is finite over the

center of R by the condition that © is locally compact, and © * by a com-

pact closed-open subgroup of © respectively. The proof may be left to the

reader. In case that V is finite over the center of R, there exists a counter

example of Galois extension satisfying (A() over S such that © contains a

closed 7Y-regular subgroup of © which is not regular [4, Introduction].

Theorem 3. Let R satisfy (A|) over S. Then, every (*f)-regular subgroup

©' of © is f-regular.

Proof. Set S' = J(®',Ä). Then VR(S') = V(©') = /(©') = V|(/(©'))
(Definition). Hence, it suffices to prove that ©(S'.fi) is /-regular. By the

remark of Lemma 4, R satisfies (A() over HC\S', and [S'lflnS'jK °o;

i.e., S' = (HnS')[F] for some finite subset F of S'. Let 0, be an open

subgroup of ©. Then ©(S[F],Ä) O ©, is also an arbitrary open subgroup

of ©. Hence, by Theorem 2, we have

(1)     (<$(HnS',R):(®(HnS',R)n®(S[F},R)n®XV)) < »•

Further, we have

©(HDS'.Ä)D ©(S',Ä),

and
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(0<h ns',*) n ®(s[f],ä) n @.)<v>n ®(S',fi)

(2) =(®(S',Ä)n®j<v>n®(S',Ä)

= (@(S',Ä)n@,)</(®(S',Ä))>.

Hence, it follows from (1) and (2) that

(®(S',i?):(®(S',Ä)nö.)</(©(S',Ä))» < co.

Therefore by Theorem 2, @(S',Ä) is /-regular.

Corollary 6. Let R satisfy (A,) oi#r S, and let T be a subring of R con-

taining S with [T: S], < co. Then, R is TrRr-irreducible if and only if T is

simple and VR(T) is a division ring (i.e., R is a regular subring such that

VR(T) is a division ring).

Proof. "If" part is a direct consequence of Proposition a(i). For "only

if" part, let R be TrRr-irreducible. Then VR(T) is a division ring, and

[V: VR(T)]r< co by Corollary 1. Hence ®(T,Ä) is (*,)-regular and so

/-regular (Theorem 3). By Proposition a(ii), we have J(®(T, R), R) — T.

Thus T is simple.

Theorem 4. Let R satisfy (A;) over S. Then, the following conditions

are equivalent to each other:

(i) Every subring of R containing S is simple.

(ii) V is a division ring.

Proof, (i) => (ii): For any nonzero element a of V, S[a] is simple, and

so, the center of S[a] is a field. Since a is contained in the center of S[a],

a is regular (in R). Hence V is a division ring, (ii) => (i): By Corollary

6, R is Srfir-irreducible. Hence, for any subring S' of R containing S with

[S':S];< co, R is S;'-fir-irreducible, and so S' is simple by Corollary 6.

For any subring R' of fi containing S, we have R' = U S„ where S, runs

over all the subrings of R' finite over S. Then, noting that the uniquely

determined number of S.-irreducible direct summands of S, is not greater

than that of R, R' is simple.

Let R satisfy (A,) over S. If a subgroup ©' of ® is closed and (*/)-

regular (and so /-regular by Theorem 3) then t/(®',f?) is /-regular and

®(J(®',fi),fi) = ®' (and R satisfies (A,) over J(©',f?)). Conversely,

if a subring S' of fi containing S is /-regular then ®(S',R) is closed and

(*/)-regular (and so /-regular). But we cannot see whether Jf.® (S', R),R) co-

incides with S' or not. However, in case [R: H}t g N0, we have J(® (S', fi), fi)

= S' by the fundamental theorem of [4] and Theorem 1. Hence, the

fundamental theorem takes the place of the next

Theorem 5. Let R satisfy (A,) over S, and [R: H]i g K0. Then there

exists a 1-1 dual correspondence between closed (*j)-regular subgroups of ®
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and {-regular subrings of R containing S in the usual sense of Galois theory.

In particular, if V is a division ring, there exists a 1-1 dual correspondence

between closed subgroups )©'; <V(©')> C ©' and [V: V{©')]<<*> } of ©

and subrings \S';S' DS and [V: VR(S')] < °° | of R, in the usual sense of

Galois theory.

Finally, we shall remark about finite Galois theory. So far we have not

required the Galois theory of simple rings [6], [7] except for the (finite)

outer Galois theory and for the fundamental theorem of simple rings (i.e.,

the inner Galois theory of simple rings). Moreover, the fundamental the-

orem is required only for the Remarks 3, 4 of Theorem 1 and Corollary 5.

If R is finite and Galois over S, then [V:C]< co (Corollary 1) and R

satisfies (D;) over S (the fundamental theorem of simple rings), and so

®(S,Ä) is an N-regular group with (©(S,Ä): </(©(£,/?))))[/(©(S,Ä)): C]

(= [i?:S]) < oo (Proposition ß and its remark), where C is the center of

R. Conversely, let © be an iV-regular group of automorphisms of R with

(©:</(©)»[/(©): C] < Set H*=VÄ(/(@)). Then, by the funda-

mental theorem of simple rings, R satisfies (D;) (and so (B;)) over H* and

[R:H*]< oo. Hence R is H*/(©)r#r-irreducible, that is, R is a com-

pletely reducible homogeneous 7(©)r#r-module. If M is an I(®)rRr-

submodule of R, then this is a direct summand of R; R = M + M' (direct

sum) for some 7(©)r#r-submodule M' of R, and, hence, M = eR for

some idempotent e in H*. Now we set S* = J(©,i?). Then, noting that

®(H*.R) = </(©)), ®\H* is a finite group, of order (©:(/(©)», of

outer automorphisms of H* such that J(® | H*,H*)= S*. Hence, by

outer Galois theory (Proposition ß), S* is simple, and H* is finite and

outer Galois over S*. Moreover, H* satisfies (D() (and so (B()) over S*.

Hence, H* is S? Vw.(S*)rH,*-irreducible. Let M be an S,*/(©)rflr-8ub-

module of R. Then, trivially, M is an 7(®)rÄr-submodule of R, so that

M = eR for some idempotent e in H*. Noting here VH.(S*) = VH-(H*)

C/(®), we have M D S*Vtr(S*)eH* = H*. This implies that M = R,

that is, R is S/*/(®)rÄr-irreducible, and so, R is St VH(S*)rÄr-irreducible.

Hence, VR{S*) is simple, and so, S* is regular. Consequently, R is finite

and Galois over S*, and [ VR(S*): C] g \R: S*} < » (Theorem 1). Since

© is an iV-regular subgroup of ®(S*,Ä) such that (®: (/(©))) [/(®): C]

< oo, we have © = &(S*,R) by Corollary 5 and the remark of Lemma 4

(note that ©(S*,R) is discrete). For any N-regular subgroup ©' of ©,

(©': (/(©'))) = (©'(/(©)): (/(©))) g (©: (/(©)»< oo. Hence,

J(®',R) is regular and ®(J(®', R), R) = ©'. Moreover, for a regular

subring S' of R containing S*, ®(S',Ä) is iV-regular, and J(®(S',R),R)

= S' by (E|). This is the Galois correspondence of finite Galois extensions

of simple rings.
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