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We study here the location of the zeros of linear combinations of poly-

nomials of the form /(z) — \g(z), where f(z) and g(z) are arbitrary polyno-

mials with complex coefficients and X is a complex number. It is known

[3] that this question is closely connected with the study of the zeros of

polynomials of the form (z — a)n — \(z — ß)r, which indeed is the main ob-

ject of this paper.

We start with a particular case.

Theorem 1. Let the polynomials /(z) = zn + • • •, and g(z) = zr + • ■ •,

n = 2r, have zeros in the circles \ z — a | g rx and \ z — b | £ r2, respectively,

then all the zeros of the polynomial

(1) m - \g(z)

are in the union of the n circles

^(rx + r^2\\\^+ru

where \1/n assumes all the nth roots of \.

Proof. The equation f(z) — \g(z) = 0 can be replaced by Grace's theorem

[3] by the equation (z — a)n — X(z — ß)n/2 = 0, where \a — a\^ru and

\ß-b\ gr2.

Solving for z we obtain

Z = a + \\2/n± X1'" [ (a - ß) + ix2"1] 1/2.

Denoting generically the region \z — c\        by C(c,R) we have

a-ßGCin-b.n + rd,

(a-/? + ix2")1/2ec(± (a-6 + ^X2"1), (r1 + r2)1/2);

hence
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(2) z-a --X2/" + X ln (a 6 + ix-)
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z E C [a + \ A2" ± \1/n (a - b + i X2/n     , (r, + r2) 1/2| X|2/n + n Y

(2) follows since, by assumption, n is an even number.

The result is' sharp for X = 0, and for a = b.

For the general case we have

Theorem 2(2). Let f(z) = z" + ■■■,g(z) = zf + ■•■,n> r, have zeros in the

circles \ z — a \ g n and \ z — b \ ^r2, respectively. Then all the zeros of the

polynomial f(z) — \g(z) are in the circle

\z-a\ ^rx + d,

where d is the positive root of the equation

(3) dn/r - Md - N - 0

with

M=|xr,      AT=|X|1/r(|a-6| +ri + r2).

Proof. Consider the equation

(z- a)"=A(z- ß)r,     \a-a\^ru     \b - ß\ £r2.

For 20 satisfying (z0 - a)n = X(z0 - 0)r, (z0 - a)nlr-1 = \h'((z0 - ß)/(zQ - a)).

Let di be a positive number satisfying

d?r -Mdl-N>0.

For I z0 — a I ^ du (z0 — ß)/(zo — «) belongs to the circle | z — 11 ^ | a — ß \ /dx;

hence

z0 — a
s,xr(I+^),

but

12o - «r-1 ^ dr~l > ix| ̂  (i + ^^-),

for all a,/3 such that |a — a\ grt, and I/3 — b\ ^ r2. We get a contradiction,

which proves that | z„ — a \ <dx.

It is worthwhile to remark that if M + N > 1 an estimate for the posi-

tive zero d is the expression

(n-r)(M + N)n/n-r+rN

^ (M + N) r/n—r

(n - r)(M + N) + rN

For M + N < 1 a bound for the same is ((n - r + rN)/(n - rM)) ^ 1.

(2) Theorem 2 was proved independently and by a different method by Mishael Zedek

[5].
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Different estimates can be obtained by means of estimates similar to

those used in the proof of Theorem 2, which are sharp for X = 0 or asymp-

totically for X —> oo. We indicate some of them which are of a relatively

simple form.

Theorem 3. Let f(z) and g(z) be as in Theorem 2. All the zeros of the

polynomial f(z) — \g(z) are in each of the following regions:

where r>n, d= | X| 1/r(r, + \a\) ~n/r, and d(|a| — rx) - 1 > 0.

(5)      \z-b\ g r2 + 2Max[|X|-(1/'-n,,(|a-&| +r1 + rJ)"/r|X|-(1/r)],

where r = nk, k 2i 2.

--1^-n    7i-.     *-l, ••.,»,(6)
«*- 1

where n> r, w% = X, 5? = X/(l — X), k = 1, • • - ,ra;

m = Max —-—A\a - wkb\ + rx +\wk\r2).

Proof of (4). Let

F,(z) - (z - a)" - A(2 - ß)r,

G{z)=zr.Fx        = z'-(l -za)rt- X(l -0zY;

hence G(z) can also be written in the form: •

G(z) = (-a)"(z-7)r-X(l- ßz)r,

where 7 ranges over a circle including 0 and the points 1/a. If G(z0) = 0,

thenz0 - (« + -y)/(l + 5/3), where 0 = X1/r( - a)/r. Any zero of Ft(z) is thus

of the form (1 + öß)/(5 + 7). Let C(a,6) denote the circle |z-a| ^6. If

a E C(a,r!), then

äGC(|o|2-r2' |a|2-r2)

and

^GC(2TR^'2W^))' 0 = arga-

Thus
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Irl Si\*\-rJ-1<\\\vr{ri+;\a\)-*'sW

by our assumption d(|a| —     — 1 > 0.

Now

, r n ( ßd2 - y d\ßy-l\\

where d = | X11/r(r1 + | a |) ~n/r. Taking into account the inequalities \y\

^ (|a| — ri)_1, \ß\ ^ |6| + r2, we arrive at (4) after a short calculation.

Proof of (5). From F^z) = (z - a)n - X(z - ß)r it follows that

zT.^ + Z?) = -x + zr'n[l + (ß-a)z]n.

If        = 0, then

(7) - 72* + 2*"1 - u = 0,

with f - 1/Z + ß, m - (X)1/n, T - « - 0.

The left-hand side of (7) can be written in the form

It follows by Szegö's Theorem [3, p. 60] that

|*| ^^MindMl^lTl-^lMl17*-1]

= iMin[|X|1/r"rt,|X|1/^-a|-n/r]

and \i-ß\ S 2{Min[|X|1/r-B, \\\yr\ß-*\~(m])-\ (5) follows easily.

It is worthwhile to remark that by the same manipulation we can also

obtain a lower bound for the zeros of f(z) — \g(z) namely writing

- 72* + 2*"1 - uZ + ;-H+;)H+l)
It follows by the same theorem due to Szegö that all the zeros of — 72*

+ zk-l-ßz are in |z| ^ 2Max(l/|7|, (m/7)1/*_1). The final estimate is

|f- ß\ ^ {2Max[|« - ß\~\ |X|1/n*|a-/?|~*]}-\ To obtain a meaningful

result it is necessary to suppose that Min|a — ß\ > 0; then

^ j2Max[(|a-6| - (r. + r^)'1,

|X|1/r(|a-6| - (rj-f rj)-1'"]}-1 - r*
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Proof of (6). Write F,(z) = A(z) - Xg,(z), /,(z) = (z - a)" - X(z - ß)n,

h(z) = (z - £)r - (z - /?)".

The zeros of /i(z) are in the union of the circles

(aj-Wkb r,+ |tt>t|r2\

\ 1 -     *  11 - u>*| /

(see, e.g., [3, p. 57]); hence in C(0,r).

The zeros of gx(z) are in C(6,r2+1). Since /i(z) and gi(z) are both of

degree n we can use the result in [3] to obtain (6).

We conclude this discussion by proving some results about the location

of part of the zeros of the polynomial (z — a)n — X(z — ß)r.

Theorem 4. At least n zeros of the polynomial (z — a)" — X(z — ß)r are in

the circle

\z- a| g ——1« - ß\ ifn<r£2n,
r — n

\z-a\ ^ \a - ß\ if r=- 2n,

and at most n zeros of the above polynomial are in the circle

\z-a\S\a-ß\ ifn<r^2n,

n
\z-a\£-\a-ß\   if r^2n,

r — n

for all complex X.

Proof. By a straightforward calculation one obtains that Re( (z — A) / (z — B))

>0(<0) if and only if

z£C (A + B \A-B\
\     9.     ' 2 ), (.ec( A + B \A-B\

))

for A * B.

Now

(8)

d

86 \

f   (z-aV 1
a^«L-X(z-^)rJ

(n — r) Re

z +
ra — nß -\

n — r

z-ß

Since n < r it follows that (8) is positive if and only if
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(Q> (r{a + ß)-2nß r(a-ß)\

(y' 2(r-n) 'W^rT)J-

In this case

A arg [(2 - «)" - X(2 - ß)r]
\M-m\-B

Thus if

= Aarg [  iZu "\v + i] + ^arg [(-X)(z-pT]
\z-a\=Rl- \(Z - ß) J |2-„|-Ä

\    2(r - ra)       2(r — ra) /

then the polynomial (2 — «)" — X(2 — ß)r has at most n zeros in the circle

C{a,R). It is easy to see that we can take

r_|r-2n|

Ä 2«r-*)

This proves the second part of the theorem. Similarly

d

36

f   (2-a)n  1 „

if and only if

and we can set

/r(« + ß) - 2raff r|« — ff| \

^    V    2(r-n)     ' 2(r-n)/'

fl='a   P\ (r + \r-2n\).
2(r — n)

It follows in particular that for r = 2n, the circle |z — a\ ^ \ a — ß\ con-

tains exactly n zeros of the polynomial (2 — a)" — \(z — ß)r.

The following theorem generalizes a result due to Biernacki and Jankowski

[1], [2].

Theorem 5. Let P{z) = a„zp + ap_szp_s +-h a* q(z) = 6,2" + 6,_,z,_' +

• • ■ + 60- Op^ 0, 0 > p, s ^ 1, t ^ 1 Aai« a// (Aetr 2eros in the circles |z|

^ i?! and \ z\ ^ i?2, respectively. Let r = Min(s,i) ^ 1. At least p zeros of the

polynomial

P(z) + \Q(z)
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are in the circle

(10) |4iM„r(i^±|«)'",s,j.

Proof.

Max ^- arg^^- ^ Max argP(z) - Min ^- arg 0(2).
\z\=r dB   bQ(z)     \2\=r dB \z\-Rdd 6^

For Ä> Max(Ä1;Ä2) we have:

d      P(z)               p     z i z
Max -j- arg-f— ^ Max Re £-Min Re £
i«i ~r de    Q(z)   \i\ -ä   jr, 2 - at *ri 2 - 0*

(11) gpMaxRe—-oMinRe-
|2|-Ä      2 —a Z — ß

R R
—r-7 -q-

R-\a\ HR+\ß\'

where ak, ßk are the zeros of P(z) and Q(z), respectively, and the functions

a{z),ß(z) satisfy \a(z) \ ^ R[/Rr~\ \ß(z) \ ^ Rr2/Rr~\ This follows by a re-

cent result due to Walsh [4]. If the mk, <**, and z are given with mk > 0,

\ak\^A,  |2|>A,  and 2Xim*a* = 0  for  /= 1,2, ■■■,], then a = a(z)

as defined by the equation

*2-i(2-a4)"= (2-a)"

satisfies the inequality

|a(z)| g A>+7|«|"''.

Under the same conditions except that now |«*| ^A, |z| <A, and

XJ-i"1*"*"' = 0 and / = 1,2, • ■ -,j, we have

\<x(z) \ ^ A'+l/\z\'.

In deriving (11) we also notice that

R
Re

and

2 — a Ä

Ä(Ä - rcos(Ö - 0))

-fr2- 2rÄ cos(0 - 0) '

with ß = re1", 2 = Re'*.

The last expression is an increasing function of cos(0 — 0) and attains

its minimum for cos(0 - 0) = - 1. Hence Re(2/(2 - ß)) ^ R/{R + \ß\). It



8 zalman rubinstein

follows now from (11) that

Rr+Rr2 <0

for Rr> ((pRr2+qR[)/(q-p)). It is enough to set

R = Max
pRr2 + qR

Q-P

which implies R ^ Max.(RltR2).

Now one proves similarly to what has been done in Theorem 4 that

A arg(P+ XQ) ̂  2irp

The estimate \z\ ^ R' is due to Biernacki [l]. For large r, R tends to

Max(i?„fl2).
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which concludes the proof.

It is clear that
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