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1. Introduction. Schwartz [7] and Korevaar [4] have obtained results on

the Hermite series of certain classes of distributions. Thus distributions

which are finite order derivatives of functions growing no faster than ea,

c < ? , are uniquely determined by their Hermite series. The Hermite

expansion of every distribution of polynomial growth (tempered distribution)

converges to it in the distribution sense. Similarly (it is well known) distri-

butions of period 2ir are uniquely determined by their Fourier coefficients

and have Fourier series convergent to them in the distribution sense.

In this paper, expansions of distributions with respect to some general

classes of complete orthonormal systems are investigated. Since a uniqueness

theorem is not always available, other methods are used to prove the con-

vergence of a series to the desired distribution. These methods are also used

to get related results.

The first principal result gives a condition for the completeness of an

orthonormal system on (0,1), namely, that the expansion with respect to it

of ö(x — y) converge to it in the distribution sense on (0,1) X (0,1). This

condition is necessary and sufficient. Certain complete orthonormal systems

(abbreviated C.O.N.'s) \gn\ on (0,1) are studied. They are those which have

the property that for each integer q ^ 0 there is an integer p = 0, such that

the series

£14-" 1-1«? I-
n

converges. Hereg„~p' denotes an appropriate anti-derivative of order p of gn.

For such C.O.N.'s, the expansion of every integrable distribution converges

to it. The Legendre polynomials furnish an example of a system satisfying

this condition.

Those C.O.N.'s \gn\ which consist of the eigenfunctions of a regular self-

adjoint boundary value problem on a finite interval (a, b) are considered. If

\an\ is the sequence of expansion coefficients of an integrable distribution,

then there are positive constants M and m such that \an\ < M\\n\m, where

{X„} is the sequence of nonzero eigenvalues of the boundary value problem.

On the other hand, any series X) anSn whose coefficients obey this inequality
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converges to a distribution. The expansion of an integrable distribution

converges to it.

Finally, a system is considered in which a uniqueness theorem can be used,

that of the spherical harmonics (on the surface of the sphere). The expansion

in spherical harmonics of every distribution on the sphere converges to it.

The fundamental sequence approach to distributions will be used in this

paper. That is, distributions will be considered to be equivalence classes of

fundamental sequences rather than functionals. This is the approach used by

MikusihskiandSikorski [5]and Korevaar [3]. Following Korevaar, the funda-

mental sequences will be made up, in general, of integrable functions. A

distribution of order m will be an mth order generalized derivative of an

integrable function. (This does not agree with Schwartz.)

If {fk} is a fundamental sequence belonging to the distribution / on an

interval I, and (fi~p) j converges in the mean on I, the first sequence will be

said to be p-conuergent to / on I. When p is not specified, the sequence {/*)

will be said to converge in the sense of distributions.

In higher dimensions, the integer p must be replaced by an n-tuple of

integers. A sequence {fk} of functions integrable on an n-dimensional rec-

tangle R is said to be {px,Pi, • -.p«)-convergent if there is a sequence of

anti-derivatives of order p = (p\,Pz, • • - ,Pn) which converge in the mean on

R. A function g is called an anti-derivative of / of order p if g can be written

as an indefinite integral of order p of / and an integrable pseudo-polynomial

of degree < p.

The concept of integrable distribution will be needed. A definition slightly

more restrictive than that given in [5 j will be used, since often the behavior

of the distribution outside of a finite interval (a, b) will be unknown. Since

each distribution has an anti-derivative distribution, the following makes

sense.

Definition. A distribution f is integrable from a to b iff there is an anti-

derivative distribution gof f having values at a and b. The integral of f from a to b,

is given by g(b) - g(a).
In cases in which the behavior of the distribution is known only on the

open interval (a, b), the integral from a"1" to b will be used. Its definition is

given by replacing a by     and b by b  in the above definition.

The notion of value of a distribution at a point used here (due to

Lojasiewicz) is equivalent to that used in [5].

Definition. The distribution f has the value c at a point x0 iff there is an

integer k^O and a continuous function F such that DhF = f and

or

lim   F(X)    - °
x-^(X-Xo)* k\'
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A consequence of the definition of integrable distribution is the integra-

tion by parts formula (see [5, p. 45]). If « is a sufficiently differentiable func-

tion on [a, b ] and / a distribution with values at a and 6, then

wDf=u(b)f(b) -«(o)/(o).

2. A completeness condition. The main result in this section will be a

theorem giving a condition for the completeness of an orthonormal system in

L2(0,1). A preliminary result, dealing with the convergence of some particu-

lar series, is considered first.

2.1. The notation/l_p) shall mean (in this section) that pth anti-derivative

of / which together with its first p — 1 derivatives vanishes at the origin.

Here p is a positive integer, whereas q and m will denote non-negative

integers.

Theorem. Let [gk\ be a C.O.N. in L2(0,1), with each gk in C""[0,l], and

with q f m. Then the series

Z(-i)^fp)(x)gf(y)

is (0,o)-convergent on S = (0,1) X (0,1) to Äl«-p)(x - y).

Let U(t) be the unit step function. The proof depends on properties of the

expansion of U(x — y) as a function of y. Since the kth expansion coefficient

of U(x — y) isgk~l>(x), we have

(1) Zgl-Ll(x)gk(y) = U(x-y),
fc-0

where the convergence is in the square mean on (0,1) for each x in [0, l].

That is,

XllU(x-y) -zZgk-i,(x)gk(y)
2

dy-^0

as K—> oo for each x in [0, l]. But the terms of this sequence of functions of

x are bounded by 1 (by Bessel's inequality), permitting us to integrate with

respect to x from 0 to 1. It follows that the series in (1) converges in the

square mean on S = (0,1) X (0,1), and hence in the mean. Integrating both

sides of (1) p — 1 times with respect to x (from 0 to x), we get

(2) ig\rp,(x)gk(y) = i3!~y\V U(x - y),

the convergence being in the mean on S. By differentiating the series in (2)

termwise and the right side globally q times with respect to y, we get the

desired conclusion.
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Remark. If p > q, 6{q~p)(x - y) is the function

The series in (2) may be differentiated termwise r times (with r ^ p) with

respect to x. This differentiated series then becomes (r,0)-convergent to
8kr-p,(x-y).

2.2. By taking r = p in the above statement, we have the proof of one

direction of the

Theorem. Let \gk\ be an orthonormal system in L2(0,1). A necessary and

sufficient condition that {gk} be complete is that the series

CO

2ZSk(x)gk(y)

converge to ö(x — y) in the sense of distributions on S.

To prove the theorem in the other direction, we show first that the series

(3) tgi^Mg^y)

converges in the mean on S without the assumption of completeness. Indeed,

^\g{fu(x) 12 still converges by Bessel's inequality. Hence for each x in [0,1],

the series (3) converges in the square mean to a function F(x,y), square

integrable with respect to y. But

f I F(x, y) 12 dy = £     u(x)|2^ C\U(x-y)\2dy
Jo ü Jo

indicating that F is in L2(S). This enables one to use the same argument as

in the case of the C.O.N. with U(x — y) replaced by F(x,y).

Differentiating (3) with respect to x we get

(4) Zgk(x)gk(y) = D^F(x,y),

where convergence is in the sense of distributions on S ((l.O)-conv.). By

hypothesis, the same series is assumed to converge to 5(x — y) on S in the

sense of distributions. Hence D{mF(x,y) = 5(x -y), implying that F(x,y)

= U(x — y) + H(y), where H is an integrable function on (0,1) (since both

F and U are).

Let/be any function in C"[0, l] and vanishing at 0 and 1. Multiplying each

term of (3) by f'(x), we retain the square mean convergence on S. The new

series converges to j U(x - y) + H(y) }f'(x). Integrating with respect to x

from 0 to 1, we get
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(5)     E ( f 8iuf) MM = f U(x - y)f'(x) dx + H(y) t f'{x) dx
k=o{Jo ) Jo Jo

with convergence now in the square mean on (0,1).

The coefficient integral on the left may be integrated by parts, and the

integrals on the right of (5) may be evaluated to get

This result can be shown to imply completeness of the C.O.N. since those

functions in C vanishing at 0 and at 1 form a dense subset of L2. (If h is an

Ll function with vanishing expansion coefficients, it follows that the integral

of the product of h with any / vanishes. A standard argument then leads to

the conclusion that h vanishes almost everywhere.)

3. A class of C.O.N.'s having an interesting property. In this section we show

that those C.O.N.'s satisfying a condition rm have the property that the

expansions of integrable distributions converge to them. The condition is

given in the

Definition. A C.O.N. \gk\ in L2(0,1) satisfies condition rm when each gk

is in Cm[0, l] and when there is an integer p > m and a sequence \gi~p)\ of

anti-derivatives of order p such that I

converges.

Here gk~p> no longer necessarily denotes the standard anti-derivative of

the last section.

Remark. A C.O.N. satisfying condition rm also satisfies condition r, for

q = 0,1, ■■■,m.

This can be shown by noting that there is a constant Mq such that

\\g^\\^Mq\\gruu
for q = 0,1, • • •, m - 1, and this statement can be proved by observing first

that ||g*|| „ —> o° as k —> oo.

Indeed, each gk for k large enough must have at least one zero ak in [0, l].

Then since 1 = fo'gi, either | f f0akgk or i f fa\g2k. Assume the first pos-

sibility holds, and letgjf1' be such that gi'^iO) = 0. Then, by integrating by

parts, get

fisihun-

Since termwise integration of XXite*~u(x)) 2 is permissible and implies that

l^*-1' II2 —*0 as k—> od, the statement follows.

r«k

Jo
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The proof may be completed by using Taylor's formula

rf-"(x + A) =        + hgf(x) +| gru(t).

By first solving for giq>(x), we get the inequality

holding for q — 0,1, ■ ■•,m — 1. In particular it holds for g = 0, whence,

taking /i = 4~m/2 and noting that \\g{'l)\\ . ^ 1, we get

HftlU ̂ 4m+1 + 4-"-1||^|U.

Corresponding to g = 1, and h = 4~m, one has

I^IU ^2.4m||^|„+2.4-m-1||^|U

g2.42m+1 + i||^|U + 2.4-"-1|^|U,

or

^42m+2+4-m||^|U-

A similar inequality can be found for 0 ^ q ^ m — 1 by induction. From this

the desired inequality and hence the remark follows easily.

3.1. Before taking up the expansion of a distribution with respect to such

C.O.N.'s, we consider the convergence of a related series.

Theorem. Let \gk \ be a C.O.N. in L2(0,1) satisfying condition Tm. Let f be

a distribution given by f = DmF where F is an integrable function on (0,1) and

letak = { — l)mJllFg{m\ Then the series J]a*£* IS convergent to f in the sense of

distributions on (0.1).

The hypothesis implies that there is a p such that the series

(1) E(-l)mgi'p)(x)gt>{y)

converges uniformly on S. Denoting the sum function by V(x, y) we have

D^V{x,y) = {~l)mT.gk(x)g[m){y) = Dm8(x - y)
k

since by Theorem 2.2, 8(x - y) - £,kgk(x)gk(y) ■ Thus, V(x,y) is an anti-

derivative of order (p,0) of Dm5(x — y), and can be written, in general, as

V(x,y) = j-_       U{x -y)+ x'-'H.iy) + x"-2H2(y) + ■■■+ Hp(y),
(p - m - 1)!

where H.iy), i = 1, ...,p, is a bounded integrable function on (0,1) (in fact,

is continuous if p > m + I).
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Multiplication of each term of (1) by F(y) and integration from 0 to 1 with

respect to y gives us

£ (- DMgi-»(x) {gt*(y)F(y) dy] = F(m-"\x) + Bp_i(*).

the convergence now being uniform in x. (Here Rp-i(x) is a polynomial of

degree p — 1.) By differentiating each side p times, we reach the conclusion

of the theorem.

Quite a few examples of C.O.N.'s satisfying condition rm exist. One that

immediately comes to mind is the trigonometric system. Another one is given

in the following

Example. The Legendre polynomials \P„\ satisfy the recurrence relation

P'n+1(x) - P'n-M = (2n + l)Pn(x)

for x in [—1,1]. Using this repeatedly, one can derive the inequality which

may be found, e.g., in [6],

\Pnm)(x)\ ^ n2m/m\.

One can use the same relation to go the other way, namely

\p\rl)(x)\ = ^p^dx

and can repeat it to show

\Pn + 1(x) -Pn-l(x)\

-2nTl-<n >

|Prm,W| < Cmn~m.

The normalized Legendre polynomials \pn} constitute a C.O.N. (p„(x)

= Pn(x)(n+ |)1/2). The series

Lipi"2,""3)ii-iiprii„<ci:n-2
n=m n=m

converges, indicating that this C.O.N. satisfies the condition rm for any non-

negative integer m.

3.2. We now are ready to talk about the expansion of a distribution with

respect to our C.O.N. As for a function, we define the expansion coefficients

of the distribution / with respect to by

1

f-gk.

Notice that the integral is from 0+ to 1"; if the distribution (and function)

are defined on an open interval containing [0, l], then we could also speak of

the integral from 0 to 1 or from 0" to 1+. Of course, the integral we want does

not necessarily exist for all distributions. We will limit ourselves to those for
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which it does. If each£* is sufficiently differentiable, then for any distribution

integrable from 0+ to 1" the required integrals will exist. We now give the

principal

Theorem. Let \gk] be a C.O.N. satisfying the condition Tm. Then the expan-

sion of every distribution f= DmF on (0,1) which is integrable from 0+ to 1"

converges to f (in the sense of distributions) on (0,1).

The expansion coefficients of / are given by

Since DmF is integrable from 0+ to 1", Dm~lF must have a value at 0+ and

r. But if Dm lF has values at 0+ and 1~, so does Dm~2F. In fact, all global

derivatives of order less than m do. Hence, repeated integration by parts

(of distributions) is legitimate, i.e.,

ch = [DmlFgk - Dm~2Fg'k +■■■ + (-l)m~lFglr-l>f+ + ( - Dm f Vrf"
o Jo

(2)

From Theorem 3.1 we know there is an integer p such that

Z Okgk = /
*=o

in the sense of p-convergence on (0,1). Thus, in order that the expansion also

converge to /, the series composed of the integrated terms in (2) must equal

0. Letting y be first 0 and then 1 in (1) we see that

igl-p}(x)g{kq)(0) = (-1)«    X" 9 '   , + x'^HAO) + •■■+ Hp(0),
k-o (P — Q — 1)1

and

igl-p)(x)gkq)(D = tf-'HAl) + ■■■ + Hp(l)      (q = 0, ■ ■ - ,m - 1),
t=o

where the convergence is, by hypothesis, uniform. By differentiating p times,

wefindbothZ^orf'W^andX^o^'HD^tobep-convergent to 0 on (0,1).

Hence

- ,m-\

E \ZaqglQ)(0)+ ßäPil) \gk = 0,

which is what was to have been shown.

If the distribution / is not necessarily integrable from 0+ to 1', but is de-
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fined on the interval JD [0, l], we can make an alternate statement in the

form of the following

Corollary. Let f = DmF, where the function F is integrable over the open

interval J3 [0,1], and let f= DmF, where F= F in (0,1) and 0 elsewhere.

Then

convergence being in the sense of distributions on (0,1).

As in the proof of the theorem, repeated integration by parts is permis-

sible; it gives us

f 7& = f DmF-gk= (-l)m flF.g^ = (-I)* C1 F.g[m\
Jo' Jo J° J°

This time it is simpler since EPF = 0 outside [0,1 ] for q = li 2, • • •, and all the

integrated terms vanish. Hence the series E*°=o{ 7o-+ fgk\gk and £r=oa*£*

are identical. The latter series was shown in Theorem 3.1 to converge to /.

The conclusion follows.

Notice that the same series also converges to /, and, in fact, to any distri-

bution equal to / in (0,1).

4. C.O.N.'s of eigenfunctions. It is possible to get additional results involv-

ing the rate of growth of coefficients if the C.O.N. is made up of eigenfunc-

tions of a self-adjoint boundary value problem.

Let P be the nth order differential operator given by

Px = p0x(nl + p,**"-" + • • • + pnx,

where the p, 0' = 0,1, •••,n) are real valued functions of class C™ on the

closed interval [a,b] and p0(x) ^0 on [a,b]. This operator, together with

appropriate boundary conditions determines a boundary value problem. We

assume it to be self-adjoint and to have only nonzero eigenvalues. The

characteristic pairs will be denoted by (\k,gk), and the eigenfunctions will be

assumed to be normalized (and hence will form a C.O.N.). The Green's func-

tion associated with the problem will be denoted by G(t, r) with t and t in

[a, b}.
4.1. The results of §3 can be shown to apply to the class of C.O.N.'s con-

sidered in this section. It is sufficient to show that property r, holds. That it

does follows from the

Lemma. There is a constant Mm such that

|A*r+I)nMm     (*-0,l,—;»-0,±t±2,-.)
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for the derivatives and suitable anti-derivatives of the gk.

Since the integral operator &, whose kernel is the Green's function G, is

the inverse of P, the characteristic pairs obey gk = \k&gk- Hence

— (t,s)gk(s)ds     (p-0,1,-•.,»-!)

since the continuity properties of the first n — 1 derivatives of G make it

permissible to differentiate as much as re — 1 times under the integral sign.

Thus

U**lfl™G      I2 I1'2
h=(M) \ds\   ^\\k\Mm     (m = 0,...,re-l).

a  \  dt )

hetgk~1} denote the standard anti-derivative of gk. Then

•6

It is possible to use the procedure in §3 to get a better bound for ||gim)|| .

when rre = 0,1,2, • •  re — 2. Indeed, the inequality used there,

is now used with h taken as

Since ||g*m)|| „ ^ M||gim_1'||«,, we can use the same C for all k, and still permit

h to be sufficiently small. This gives

By substituting the same inequality with m replaced by m + 1 in the factor

on the right, and solving the resulting inequality for \\gkm>\\    we get

nm)\\.^ cMm-v\\gim+2,\\^3-

In a similar manner, one can show, for m = 0,1, • • - ,re — 2,

UsHU s cM'l}\\i^m~i)V'1)\\^+1,,n ^ Mm\\k\(m+l),n.

Thus the lemma holds for m = —1,0,1, • • • ,n — 1.

The operator P may now be used to extend this inequality to higher

derivatives. Solving Pgk = \kgk for gkn\ we get

Po \ i-0 /

and hence

IUHU ^ Mn\\k\ln+lh".
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For still higher derivatives, one differentiates the right side of the equality

above repeatedly.

For the anti-derivatives, a similar procedure is used. Since |X*| —it is

possible to write, for k sufficiently large

1 I
gk = --— Zp„-igi°.

A* — Pn i-1

An mth anti-derivative gl~m) (m = 1,2, • • ■) of gk exists such that

gi-m) = ^i(qn-dV-m)
A* i=l

+ - + (-D"(ölM)l"")j.

See [3, p. 494]. Here on_, = pn_;/(l — Pn/X*). We use this last expression with

the already defined anti-derivatives of gk together with repeated integration

from a to define g{~m)- Induction proves our inequality. (Note that

defined here is not the standard anti-derivative used before.)

From this property of our C.O.N., we can invoke the theorem of §3.2 to

get the

Corollary. Suppose f is a distribution on (a, 6) which is integrable from a+

tob~. Then the expansion of f converges to f in the sense of distributions on (a, b).

Take p and q as positive integers such that p — q ^ 2n + 2. Then our

C.O.N. satisfies condition r, (with the interval (0,1) replaced by (a,6)).

4.2. We now look at the rate of growth of the coefficients in series of our

C.O.N. The desired result will require some new techniques. These new

techniques involve iterates Pm of the differential operator P and iterates

Gm of the Green's function G, some of whose properties are given in the

following lemmas.

Lemma A. For each positive integer p, there is a number L such that for each

m ^ L, the mth iterate Gm of G is in class Cp on the square S = [a,b] X [a, b].

The series

A \grj\x)gjJ\y)\

h ix*r
is majorized by

*=o

which converges for m ^ L = ((p + 2)/n) + 2.
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Since

and since each of these functions is continuous, must also be

continuous.

We denote by ^m the integral operator with kernel Gm. The integration by

parts proves the

Corollary. If f is a distribution of order p on (a,b) integrable from a+ to b~,

then ^m f is a function continuous on [a, b].

Phrased in terms of fundamental sequences, a partial converse can be

proved by using the fact that the operators &m and P" are inverses. It is

Lemma B. Let \hk\ be a sequence of integrable functions such that \hk}

converges in the mean on (a,b). Then \ hk\ is mn-convergent on (a,b).

From the hypothesis it follows that [Dl^mhk\ is /-convergent and hence

also ./-convergent for j > i. So is \pDl3?mhk\ for any function p in C°[a,b}.

So are sequences composed of sums of these. The sequence j F"^, hk} = {hk \

is one such.

We shall need a statement similar to the above corollary, but stronger and

phrased in terms of fundamental sequences also.

Lemma C. Let \fk j be a sequence of integrable functions, p-convergent on some

finite interval I, and let be a linear differential operator (with C" coefficients

and zero free leading coefficient) of order n 2: p. Then there is a sequence of func-

tions {hk) such that If hk = fk for k = 1,2, ■ • ■, and j hk \ converges in the mean

on I (uniformly if n> p).

From the theory of ordinary differential equations, one knows that the

linear nonhomogeneous equation i^y = / has a solution. Using matrix nota-

tion, and letting W denote the Wronskian, W'1 its inverse matrix, y the

vector (y,y',y", • • ■,y("~1,)I and f the vector (0,0, •••,0,f), we see that the

solution vector y is given by y = Wz, where Dz can be shown to be given by

W_1f. Since the coefficients of are assumed to be in C", the elements of W

are also and so are those of W1. (In particular, if /E C°° the equation 5fy=f

has only the classical C solutions.)

Since {/*) is p-convergent, so is the product {g ■ fk) for a C°° function g

and hence each coordinate of the vector sequence jW"'L.( is. But Dzk

= W xfk, so each coordinate of Dzk is a term in a p-convergent sequence.

Taking suitable anti-derivatives, the coordinates of zk form (p — 1)-

convergent sequences and so do those of yk = Wzk. In particular, the last

coordinate of y* forms a (p - 1)-convergent sequence, i.e., {yin_1)} is (p — 1)-

convergent. Hence \ykn)} is p-convergent. But p f n by hypothesis, so that
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\y[n)} is re-convergent. This implies that \yk\ converges in the mean on (a, b)

since it is already (p — 1)-convergent. If p < re, the convergence is uniform,

since then ( y'k) converges in the mean.

We now can prove more easily the main result of this section.

Theorem. The partial sums of the series fTö ak8k form a sequence convergent

in the distribution sense on (a, b) if and only if the coefficients obey the inequality

|a,|<M|X4|"      (k = 0,1,2, ■■■)

for some constant M and integer m.

Suppose first of all that the coefficients obey the inequality. Applying the

operator ^m+x to the ffth partial sums of the series, we get

k k K gk

&m+\ _ cikgk = £ ak&m+lgk = £ ak —j-.

The coefficients of the series Ylakgk/^k+1 are majorized by M/|X*|, hence

this series converges in the mean on (a,b). Thus the sequence {^m+iSu)

converges in the mean, and by Lemma B, the sequence \ SK} of partial sums

of the series is (m + 1) re-convergent on (a, b).

To prove the theorem in the other direction, we take [SK\ to be p-

convergent for some integer p ^ 0. Then by Lemma C, there is a sequence of

functions {hK } such that PmhK = SK, where m > p/n, which converges uni-

formly on [a,b]. Since Pmgk = \kgk, the solution of PmhK = SK is given by

«x=X>fe+Ä*      (ff-0,1,..,).
*=0 A*

where Rk is a solution of the homogeneous equation Pmy == 0.

The "nice part" of this solution can be expressed as

\ m        2^ a m '     \ m
k=0       Afc *«1 A* Ao

K   c K-l q

\ m        L—i   \ m
k=0 Afc jfc_o \k+1

Since \SK\ is p-convergent on (a, b), some sequence of anti-derivatives

{SjfrP_1>} converges uniformly on [a, 6], and is therefore uniformly bounded.

The integer m may be taken to be greater than 2 without loss of generality,

so that £l/|Xt|m converges. Hence the series

»   c(-p-u » <J(-P-1)

——    and   > —-—
k-0     A* t_o \k+l

both converge uniformly and the "nice part" sequence is (p 4- 1)-convergent.

Since [hK] is uniformly convergent and hence also (p + 1)-convergent, the
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difference sequence of these two must be (p + 1)-convergent. The difference

sequence is

Now RK, as a solution of Pmy = 0, may be written as

m-n

Rk=12 cfwi,

where {w(} is a set of m ■ n linearly independent solutions. Since fixed anti-

derivatives w\~p'1) together with p + 1 linearly independent polynomials Q,

of degree fp form a set of (m • n) + p + 1 linearly independent functions,

the mean convergence of the sequence

l»-0 j-0 )

as K—» oo implies the convergence of the coefficient sequences. Hence the

sequence

{mn .

converges uniformly.

This permits the conclusion that

r gk
lZ ak — = lim hK - lim RK,

where the convergence is uniform on [a, b]. Since it is uniform it is also in

the square mean on (a, b), and the coefficients are bounded. That is,

\ak\fC\Xk\m (jk-0,1,...)

and the proof is complete.

Remark. We might have modified the last step of the proof. If we had had

only a sub-interval (a,ß) of (a, b) every step would have been valid except

the last one. Some other argument would have been needed to show that the

coefficients of a uniformly convergent series on (a,ß) are bounded. Since this

condition is a property of certain C.O.N.'s, e.g., the trigonometric functions,

we see that we have also proved the following:

If \gk} has the property that every locally uniformly convergent series in gk has

bounded coefficients, then convergence of the series in the distribution

sense on an arbitrary subinterval {a,ß) of (a, b) implies that there is a constant

M and integer m ^ 0 such that

\ak\ < M\\k\m.

4.3. We now consider further results which can be proved by the methods

of §4.2. The corollary in §4.1 was one which could have been. It was

The expansion of a distribution f of finite order on (a, b) which is integrable
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froma+tob~ is convergent to the distribution on (a,b) in the sense of distributions.

To prove it, we note that by the corollary to Lemma A in §4.2 there is an

integer m such that F = ^m f is a continuous function, and

F= £ (F,gk)gk

in the sense of L2(a, b). Hence

/= _ (F,gk)Pmgh = Z (F,gk)\?gk

in the sense of mn-convergence. But since/ is integrable on (a+, b~), we have

{% f,g„) = if, ÄA) = %}      (k = 0,1,2, • • •)•
At

because ^m is self-adjoint. Hence the coefficients in the series are the expan-

sion coefficients of /, proving the result.

What about the case in which the distribution is not necessarily integrable

on (a+, 6")? By Lemma C of §4.2, we see that it is still possible to write

/ = FT with the difference that F now is not given by %,f necessarily. Thus

the best we can do is conclude that

/=_ <F,gk)XTgk

convergence being in the sense of distributions. Notice that other series of

this kind converge to /. They differ by coefficients of solutions of Pmy = 0.

This can be shown to give us a substitute for a uniqueness theorem, namely

Theorem. The series ^ckgk is convergent to 0 in the sense of distributions

on (a,b) if and only if there is an integer m 3: 0 such that ck = (f,gk)K for

k = 0,1, • • •, where f is a solution of Pmy = 0.

Suppose ck = (f,gk)\k, where Pmf = 0. Then by the above remark

i>*ft=i; (f,gk)Kgk= Pmf=0,

where the series converge in the sense of distributions on (a, b).

On the other hand, if is p-convergent, then by the theorem of §4.2,

\ck\ < Mm_2|A*|m-1 for some m and all k. Hence the sequence

l     *=o      )     U=o A* )

converges in the mean to a function F, and the series ^ckgk converges to

P^F in the sense of distributions. Since by hypothesis it equals 0 also, P*F

= 0. All solutions of this equation are C" functions. Thus the kth expansion
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coefficient of F must be given by ck/\k whence

ck = K(F,gk)     (ft-0,1,2,—),

proving the theorem.

An alternate form of this theorem, which perhaps indicates better what we

have, comes from an easy integration by parts. It is the following

Corollary. IfzZj>=oCkgk converges to the zero distribution on (a, b), then there

are constants a, and ßQ such that

mn — l

ck= £ {«^(aJ+MPW      (ft «0,1,2, —).

From the theorem, we have

ck = \kn(F,gk) = (F,\kngk)

= (F, P"a) = ± (PmF,gk) + (integrated terms).

But PmF = 0; and the general form of the integrated terms is given by the

conclusion.

Remark. A different substitute for a uniqueness theorem could be

There is at most one admissible series convergent to an integrable distribution.

(An admissible sequence {/*} is one for which \\mk^a fahfk= fX f.)

Suppose the partial sums of ££>*£* converge to / and form a sequence

admissible on {a+,b~). Then
K

lim £ bkigk,g) = if.g)
*=0

whenever g is sufficiently differentiable. Taking g = gn, we have bn = (f,gn).

5. The spherical harmonics. The method used to get results about the

trigonometric Fourier series of distributions can be used to get similar

results about the expansion in spherical harmonics (the Laplace series) of a

distribution on the surface of the sphere. In both cases the distribution may

be considered to be defined on a compact differentiable manifold. A distribu-

tion defined on such a manifold (by means of sequences of integrable func-

tions locally p-convergent) is always integrable over it. This can be shown

by the use of a differentiable partition of unity (just as with functions).

We use the notation of [6] for spherical harmonics. The expansion of an

integrable function F on the surface of the sphere   is given by

* 1 "
(1) F ~ £ - a^ua + £ a^u^ + bamvnm = £ Y„(F).

n-0 * m = l n-0

The nth spherical harmonic Y„ may be given directly at the point P on Q by

(2) Y„(F,P) = ^±1Z_2 f F(Q)Pn(C0S(P,Q))dn(Q),
Z7T Ja
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where (P, Q) is the angular distance from P to Q; Pn, the Legendre poly-

nomial of degree n.

Let A indicate the Laplacian operator on the sphere. Applied to any

spherical harmonic Y„, it gives

(3) AY„= -n(n+l)Yn.

This holds in particular for the functions vnm or u^.

Green's identity enables us to show that

(4) Y„(aF) = AY„(F)

for FE C2. Indeed, the relation

(AF.u™) = (F.AiO = -n(n + l)(F,wmn)

holds. The same one holds if u„n is replaced by vm. Hence we have Y„(AF)

= -n(rt + l)Y„(F).

Now let F be a function in L'(fi), whose integral over the sphere fi is 0.

Then, using (2),

I Y„(F,P) I ̂  P.I- [\F(Q)\dQ^ "-^K,     (n-0,1,2,.-.).
Zir Ja 2 TT

Consider the series consisting of the functions Y„= — Y„(F)/(ra + 1)«. The

series £ || Yn || 2 converges, whence the series of orthogonal functions £ Y„

converges in the mean to a function G. Hence

£ A Y„ = £ Y„(F) = AG

in the distribution sense. We would like to show that AG = F.

Integration by parts enables us to define spherical harmonics for distribu-

tions. Then the relation (4) can be extended to distributions (by going to

fundamental sequences). Hence, since Y„(G) = Y„,

Y„(AG) = AY„(G) = -n{n + 1) Yn = Y„(F).

Thus the distribution (or function) AG has the same spherical harmonics as

the function F. A uniqueness theorem would enable us to conclude that AG

equals F.

Theorem (Uniqueness). Let /= A"H, HEL2(Sl), p S 1, such that Y„(/)

= 0forn = 0,1,2,   •. Then f= 0.

If H E L2(Q), the fact that Yn(ApH) = 0 implies that Yn(H) = 0 for n = 1,

2,---, by repeated application of (4). But the completeness ensures that if

Yn(H) = 0 for n = 1,2, ■ ■ •, then H is a constant and hence A"H = 0.

Corollary. The Laplace series of an integrable function F on the sphere Q

converges to F in the distribution sense.

In order to show that the Laplace series of a distribution / converges we
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need a bound on the spherical harmonics of /.

Suppose/is given by the fundamental sequence {/*} of order (p;,g.) in the

neighborhood Nit i = 1,2, •■-,) (|Ji-iM = fi)- Then the coefficient a^if)
is given by (the normalizing factor ((n — m)!/(n + m)!) • ((2ra + l)/2ir)

times):

JfUnm = Hm    I folln,
a *—» Ja

= t f FfaiW**,
i-l jNi

where Fi = lim^»f\ Pi' *' on TV,- and [K] is a partition of unity with

Ai = 0 outside Nt. The fact that |Pim,(x)| fn^/ml (see §2) enables us to

conclude that || (A1unm)(p"',,|| „ f C,n"' for some integer vt and constant C, in

TV,-. Hence <imn(/) obeys the same sort of inequality and so does Y„(/), which

may be written as || Y„(/) |. f Cnp(n + l)p (it - 1,2,-..). Since Y„(/t)

—»Yn(f) as fc—> <=°, the same inequality holds for Yn(fk), uniformly in k.

We can now show £ Yn{f) converges to a distribution. Indeed,

~ Y„(/)
Äo[n(n + D]p+1

converges in the mean to a function F in L2(Q). Hence

in the sense of distributions. If / = Ap+ F + Y0(/), by showing that / = /, we

can prove the

Theorem. The Laplace series of a distribution on the sphere converges to it.

We use the uniqueness theorem to complete the proof. Indeed, define

Fkby

T Yn{h)

to [Mn + l)]p+1-

Then

/* - Yo(A) = Ap+1Ft

by the uniqueness theorem. But Fk—*F in the mean. Hence Ap+1Fk—> AP+1F

in the sense of distributions. Since Y0(/*) —» Y0(/), we have /* —> AP+1F + Y0(f).

Thus/=Ap+1F+ Y0(/).
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