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1. Introduction. A Riemann surface S is called symmetric if there exists

an anti-conformal map 0 of S onto itself such that <p2 = identity. We say

that 0 is a symmetry on S.

The classical "retrospection theorem" asserts the existence of repre-

sentations of closed Riemann surfaces of genus g by "Schottky groups,"

groups generated by Möbius transformations Ax,---,Ag such that A;

maps the exterior of i\ into the interior of rf, where Ti, T[, T'g are

disjoint Jordan curves bounding a 2g-times connected domain, a standard

fundamental domain for the group.

We will show that a closed symmetric Riemann surface of genus g can

be represented by a Schottky group which has a standard fundamental

domain which exhibits the symmetry. This result is contained in The-

orems I, II and III of §§4-6. The proof does not use the classical theorem.

As a corollary, in §7, we obtain a new proof of the Koebe theorem:

every n-times connected planar domain can be conformally mapped onto

a plane domain exterior to n disjoint circles.

Techniques from the theory of quasiconformal mappings are used to

obtain these results.

I would like to thank Professor Lipman Bers for his invaluable advice

and assistance.

2. Quasiconformal mappings. We recall [l], [3] that a homeomorphism

w(z) of a plane domain A onto another plane domain A is said to be quasi-

conformal if it has generalized derivatives satisfying, at each point z E A,

a Beltrami equation ia_- = ß(z)wz with u(z) E MA, where p(z) 6M4 if it is

denned and measurable in A and ess. sup|/.(z) | __ k < 1 for z£A.

For a given £MC (C the complex plane) there exists a unique

quasiconformal mapping w*(z) of C onto itself satisfying Wj= u(z)wz and

normalized by the conditions w(0) = 0 and w(l) = 1.

If n(z) E Mc is compatible with the Möbius transformation A(z):

u° A = (A2/A>
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or with the anti-Möbius transformation B(z) = (az + b)/(cz + d):

then A* = uf° A° (uf)'1 and B" = uf ° B o («y) -1 are Möbius and anti-

Möbius transformations respectively. If G is a Schottky group generated

by the transformations [Aj\, then the transformations [A]} generate a

Schottky group G*.

We need, also, the following lemmas:

Lemma 1. Let M(z) and N(z) be two anti-Möbius transformations. If

n(z) is compatible with M(z) and M°N{z) then it is compatible with N(z).

The proof is by calculation.

Lemma 2. If p.(z) £ Mc and is compatible with the anti-Möbius trans-

formation R(z), reflection in CatP (the circle with radius p and center at z = a),

that is

R(z) =a + p2/z~=~E

then uf(CaJ is a circle (with center at uf(a)) and

R"(uf(z)) = uf(a) + \2/uf(z) - uf(a),

i.e., reflection in w(CaJ.

Proof. Let 4>(z) = W(z) + P2/uf(R(zJ)~- uf(a). Then it is easily shown

that \p(z) — uf(a) and uf(z) — uf(a) both satisfy the same Beltrami equa-

tion. They are both 0 when z = a and °° when z = ». It follows by

uniqueness that one is a multiple of the other. Then [ w"(z) — uf (a) ]

[ uf(R(z) - uf(a) ] = constant.

For z' on Ca„R(z') = z' and \uf(z') — uf(a) \ = X where X is a positive

constant. Hence uf(CaiP) is a circle with center uf(a) and radius X.

Remark. If, in Lemma 2, Ca,p is the unit circle, then R" = uf° R° (w") ~l

is again reflection in the unit circle. If, in addition, p. is compatible with

the Möbius transformations A and B and A = R° B° R, then A" = R"

o B"° R". This follows by a simple calculation.

Lemma 3. // ß(z) £ Mc and is compatible with the anti-Möbius trans-

formation

Q(z) = a- p2/z - a

which is reflection in the circle Ca„ of radius p and center a, followed by a

rotation about a by the angle ir, then w"(Caf) is a "quasicircle" (i.e., if wx

is on uf(Cttif) then the line through wx and the "center" b = uf(a) intersects

uf(Ca,e) in a point w2 such that (w2 — b)(wx — b) = negative constant). The

anti-Möbius transformation Q"(z) maps the exterior of w"(CaiP) into its interior

in such a way that a point on uf(Ca,p) is mapped into its "diametrically op-

posed" point.
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Proof. As in Lemma 2, one can show that

[w"(z) - W(a)][w"(Q(z)) - uf(a)] = constant = c.

Setting z = a + p and then z = a — p we see that c is real. Suppose c > 0.

Then for z0 such that w"(z0) = uf(a) +y/c, w"(Q(z0)) = W(a) +y/c also,

so that (since uf is a homeomorphism) z0 = 0(zo) • But 0(z) is fixed point

free. Hence c = — X2 and

Q"(ii>M(z)) = W(Q(z)) = uf(a) - \2/uf(z) - uf(a).

Suppose now that w0 is on uf(CaJ. Let w0 = W(a) + pea. Then Q'iwo)

= u/(a) - \2/w0 - uf(a) = _y(a) - (X2/P)_*. But then Q"(u;o), which is on

uf{CaJ, is diametrically opposed to w0. Hence uf(CaJ is a quasicircle.

We recall also [3] that if a homeomorphic map / of a compact Riemann

surface S onto another compact Riemann surface S' is given, there exists

a quasiconformal map f of S onto S' (i.e., a map which is quasiconformal

in terms of local parameters) which is homotopic to /. If, in addition, S

and S' admit anti-conformal involutions <j> and <b' and if f°<p = <b'0f,

then / may be chosen so as to satisfy the relation / o <p = <p' o f. If u(z)

GMc and p.{z) is compatible with the generators jA;} of a Schottky group

G, then, denoting by L and L" the set of limit points of G and G* respec-

tively, w": C—>C induces a quasiconformal map of (C—L)/G onto

(C — L")/G*. Furthermore, if S, S' and S" are three Riemann surfaces

and f" and h" quasiconformal maps; S—*S' and h": S—>S" both satis-

fying (in terms of local coordinates) the same Beltrami equation on S,

then h>° (/")_1 is a conformal map of S' onto S".

3. Symmetric surfaces. If a symmetry <t> on S leaves fixed a point of S,

then it leaves fixed a closed, analytic, Jordan curve through the point,

which we call a transition curve.

If the t _ 0 transition curves separate S, a symmetric Riemann sur-

face of genus g, into two disjoint surfaces (orthosymmetry), we say that

S is symmetric of type (g, + r) with respect to the symmetry <p; otherwise

(diasymmetry) it is of type (g, — t). In the former case S/q> is an orientable

surface with t holes and (g — t + l)/2 handles. In the latter case S/d> is a

nonorientable surface with r holes. Since, topologically, on a nonorientable

surface a handle can be replaced by two cross caps, S/<f> is homeomorphic

to a surface with r holes and, say, k cross caps. It is easily seen that k

= g — t + 1. From these remarks we observe that if S is symmetric of

type (g,er), t = ± 1, then:

iff =+1, theng — t 4- 1 is even and O^g—r-\-l^g,

(1)        if e = - 1, then 0 _i t ^g.

4. Orthosymmetric surfaces. Given e = ± 1 and integers g > 0 and t St 0

satisfying (1), we construct a "standard model of type {g, er)." We as-
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sume at first that t = + 1 and hence t > 0. Let C„ (1 g s :S t — J) and

Hr (1 < r < g — t4-1) be g disjoint circles exterior to the unit circle C0,

and with centers (as and ar respectively) on the real axis. Denote by Rs(z)

reflection in the circle Cs. Let Ar(z) be a Möbius transformation which

maps the exterior of Hr onto the interior of Hr+l, r = 1,3, • •     — t.

Reflect the circles Cu •••,CT_i and Hu ■ ■ ■ ,Hg^r+l in C0, obtaining circles

Ci, •••,C'_i and ■ ■■,Hg_r+1. The exterior of these 2g circles we denote

by F and note that F is a standard fundamental domain of the Schottky

group G generated by the g Möbius transformations

AuA3,---,Ag_7,A[,A3,---,Ag_r,R0oRu...,R0oRr_l

where A'r(z) = R0° Ar° R0(z). We observe that R0° Rs(z) (reflection in Cs

followed by reflection in C0) maps Cs onto C's in such a way that points on

Cs and C's which are symmetrically situated with respect to C0, are identified

by i?0 ° Rs(z) and hence by the group G.

Denoting by * the canonical mapping of (C — L) onto (C—L)/G, we

see that the surface F/G = (C — L)/G is symmetric of type (g, + t) with

respect to the symmetry R, R° ir = it ° R0. We call it the standard model

of type (g, 4- t). If it is identified under i?, the resulting surface (F/G)/R

= F/\G,i?0| has, by computing the Euler characteristic, r holes and

(g - t+ l)/2 handles.

Given a symmetric surface S of type (g, + r), there exists, therefore,

a homeomorphism /: (F/G)/R = ((C - L)/G)/R^S/<t>. We extend / to a

map of F/G onto S by the requirement f°R = <b°f. The homeomorphism

/ can be deformed into a quasiconformal map, which we again denote by

f, of F/G onto S satisfying the same requirement.

The map / defines in F a function p(z) = fj/f* where f*{z) = f°/°2 1

(z and f being local coordinates near p0 on F/G and near f(p0) on S respec-

tively). Due to the above requirement, a(z) is compatible with R0{z). We

extend m to C by requiring that it be compatible with G and observe that

u G MC- Let iu*(z) be the (unique) quasiconformal map of C onto itself

satisfying wj= n{z)wz with w(0) = 0 and w(l) = 1. Denote by uf the in-

duced map of (C - L)/G onto (C - Z/)/G". It is easily seen that F" = uf(F)

is a standard fundamental domain of the Schottky group G". But then

A = /°(u^)-1 is a conformal map of (C-L")/G" onto S. The Schottky

group G", which has the fundamental domain F*, therefore represents the

symmetric surface S.

We examine now the fundamental domain P. By the remark following

Lemma 2,

(a) F1 is symmetric with respect to reflection in the unit circle and

hoR" = fo ((T/J-'o R* = fo Ro (Of)'1 = <p°f° (Of)-1 = <b°h

so that the symmetry 0 in S is represented by reflection in the unit circle.
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(b) Ar(w) and A'r"{w) map the exterior of the symmetrically situated

Jordan curves H"r and H'r" onto the interior of the symmetrically situated

Jordan curves H*r+1 and H'r"+i respectively (r= 1,3, •••,g — r). Here, we

denote by r", the image of a curve r under uf. Furthermore

A'Aw) = R^A^oR^w).

(c) C*s and C's" are circles (by Lemmas 1 and 2) and the Möbius trans-

formation (R0° Rs)" = R(,° R"s maps the exterior of Cs onto the interior

of C's" in such a way that two symmetrically situated points on C"s and C's"

are identified under the group G" (specifically, by the element Ro0 R"s). As

a result, the points on F" which lie on these circles are left fixed (as is the

unit circle Co) by the symmetry: reflection in Cg. We summarize these

results in

Theorem I. A symmetric surface S, of type (g, + t) with respect to a

symmetry <b, can be represented by a Schottky group which has a fundamental

domain symmetric with respect to reflection in the unit circle C, and bounded

by (i) t — 1 identified pairs of symmetrically situated circles Ti, rj, ■ • •, rr_i, r'_i

and (ii) (g — t+ l)/2 identified pairs of Jordan curves in the exterior of C

and (g —t + 1)/2 symmetrically situated identified pairs of Jordan curves

in the interior of C. The symmetry <j> on S is represented by reflection in C

and the r transition curves on S by C and the r — 1 pairs of circles rb rj,

•••,rr-i, r; _..

5. Diasymmetric surfaces with fixed points. We now extend the results

of §4 to symmetric surfaces for which t^O but e = — 1.

To obtain the standard model of type (g, — t) we construct g pairs of

circles:

Ci, C[, ■ ■ ■, C,_i, C'T-i, K\, K[, • • •, Kg-,+i, K'g-,+i

symmetrically situated with respect to the unit circle C0 as in §4. If we

let Qi(z) be reflection in K„ followed by rotation about the center 6, of

by the angle *, and define Rs{z) as in §4 we find that F, the exterior of the

2g circles, is a fundamental domain of the Schottky group

G= \R0°Qi,---,Ro0Qg-,+uRo°Rl,---,Ro°Rr-1\.

Again, under R0 ° Rs, symmetrical points on Cs and C's are identified and

i?0 0 Qi maps each point P of K, onto the point of K[ which is diametrically

opposed to Ra(P), the reflection of P in C0.

F/G, the standard model of type (g, — t) has genus g, is symmetric with

respect to R(z), and has r transition curves. (F/G)/R has t holes and

g — t ~\~ 1 holes with diametrically opposed points identified (i.e., cross

caps). Then, if S is a symmetric surface of type (g, - r), t ^ 0, there

exists a homeomorphism /: F/G—>S satisfying f°R = <j>°f.
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The procedure of §4 can be repeated to obtain a Schottky group G*

(with a fundamental domain F) which represents S. F" has the properties

(a) and (c) of §4 and, in addition, by Lemmas 1 and 3, (b') K\ and K\"

are quasicircles and the Möbius transformation (P0° Qd"(z) maps the

exterior of K\ onto the interior of K\" in such a way that each point P on

one quasicircle is identified with the point P' on the other quasicircle

which is diametrically opposed to the reflection Rq(P) of P. As a result,

a point on F* which lies on one of the quasicircles is identified, under the

group {G*,Ro\, with its diametrically opposed point on the quasicircle.

We state

Theorem II. A symmetric Riemann surface S of type (g, — r), t ^ 0,

with respect to a symmetry <t>, can be represented by a Schottky group which

has a standard fundamental domain symmetric with respect to reflection in

the unit circle C, and bounded by (i) r — 1 identified pairs of symmetrically

situated circles rr, r[, ■ • •, rr_i, T'T-i and (ii) g — T + 1 identified pairs of

symmetrically situated quasicircles A1; \[, • • • , AÄ_r+i, A^_r+1. The symmetry

<bon S is represented by reflection in C; the t transition curves on S by C and

the t — 1 pairs of circles T3,T'S. The pairs of quasicircles A;, A,' represent

(when identified under reflection) g — t + I cross caps on S/<p.

6. Fixed point free diasymmetric surfaces. To extend the results of §§4

and 5 to symmetric surfaces of type (g, 0) we use a different representation

of the symmetry. This is clearly necessary, since the reflection R0(z)

always leaves fixed the points on the unit circle.

Let K0,---,Kg be disjoint circles and let Qj(z), O^j^g, be reflection

in Kj followed by rotation about the center of K, by the angle 7r. Denote

by Kj the circle Q0(Kj), 1 ^g. Denoting by F the exterior of the 2g

circles KUK[, ■■■,Kg,Kg we see that F is a standard fundamental domain

of the Schottky group G = {Q0° Qu • • •> Qo° Qg\- F/G is a symmetric sur-

face (with respect to the symmetry Q, Q ° ir = * ° Q0). It has genus g and

no transition curves. Since, for a point P on Kr, Q0(P) and Q0 ° Qr(P) are

diametrically opposed points on K'r. (F/G)/Q = F/{G,Q0\ is a sphere

with g 4- 1 cross caps. If S is a symmetric surface of type (g, 0) there

exists a homeomorphism / of F/G onto S such that </> ° / = f° Q.

As in §§4 and 5 we obtain a fundamental domain F" of a Schottky group

G" which represents S. Furthermore,

(a) The symmetry <b on S is represented by a symmetry Qo(w) which is

of the form (see Lemma 3)

Q&w) = b - \2/w - b.

(b) Again by Lemma 3, K] and Kj" are quasicircles and the Möbius

transformation (Q0 ° Qi)"(w) maps the exterior of K] onto the interior of

Kj" in such a way that each point P on one quasicircle is identified with
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that point P" on the other quasicircle which is diametrically opposed to

the point Qo(P). Therefore, points on F" which lie on the quasicircles are

identified, under the group {G", OjJ} with their diametrically opposed points.

We assume without loss of generality that the "center" of Kg is at the

origin and that X = 1, so that Qo(w) = — 1/w. We can then state

Theorem III. A symmetric Riemann surface S of type (g,0) with respect

to a symmetry <f> can be represented by a Schottky group G having a funda-

mental domain bounded by g identified pairs of disjoint quasicircles AUA[,

• • • ,Ag, A'g which are symmetrically situated with respect to the symmetry

Q{w) = — 1/w. The symmetry <t> on S is represented by the transformation

Q(w). There is also a quasicircle A which is a closed Jordan curve and which

contains in its interior the quasicircles Au A2, ■■■,Ag. Q(w) transforms A into

itself in such a way that diametrically opposed points are identified, and trans-

forms A, into A'i in such a way that a point P on A, is identified with the point

on A'i which is diametrically opposed to the point on A,' which is identified

with P under the group G. As a result, the quasicircle A, together with the g

pairs of quasicircles A,, A,' represent, when identified under Q, g + 1 cross

caps on S/<b.

7. Mappings of multiply connected domains. We recall that a multiply

connected plane domain D, bounded by n nondegenerate continua, can be

mapped conformally onto a plane domain bounded by n closed analytic

Jordan curves. This follows at once from the Riemann mapping theorem.

Given a domain D bounded by n closed analytic Jordan curves 71, • ■ •, yn,

let S be the closed surface obtained by doubling D [2, pp. 118-119]. We

observe that S is a Riemann surface of genus n — 1, orthosymmetric with

respect to the symmetry 0 denned by the doubling process. Furthermore

S/0 = D. Then by Theorem I, D is conformally equivalent to a region

bounded by n disjoint circles. The above arguments give a new proof of the

Koebe Theorem. A multiply connected plane domain, bounded by n

nondegenerate continua can be mapped conformally onto a plane domain

bounded by n circles.

Remark. This theorem, which has been obtained as a corollary of

Theorem I, can also be obtained directly from Lemma 2.
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